用户名: 密码: 验证码:
基于单抗敲除技术的葛根素与葛根改善SH-SY5Y细胞糖氧剥夺损伤炎症因子作用的量效关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中药药效物质基础是中医药现代化研究的热点和难点。中药方剂配伍理论现代机制研究、中医辨证论治现代内涵研究和中药新药研发都离不开中药药效物质的指引和证实。因此揭示中药药效物质基础一直是中医药现代化研究的关键。然而由于中药内成分繁多,又常以复方制剂应用,使得成分间交互作用极为复杂,因此确认有效成分非常困难。即便是《中国药典》记载的药物中,已明确有效成分的中药品种亦不到5%。而当前绝大部分中药用于质量控制的指标性成分仅根据含量多少而设定,不一定是为药材贡献主要药效的成分。这不仅制约着中医药理论现代化研究难以取得实质性的进展,而且容易引发药物安全性问题,因此中药药效物质基础研究又是中医现代化研究中亟待解决的难点问题。
     导师团队致力于中药药效物质基础研究多年,为解决这一问题,导师提出采用不同于以往“还原论”研究模式的,基于中药小分子单克隆抗体技术免疫“敲除”法的研究思路,通过特异性敲除中药中某一成分,比较敲除前后和单一成分三者之间的药效异同,不仅能够反映该成分单独作用的效果,更能反映该成分在原中药中发挥的作用与单独使用的差异,以此揭示该成分可能的交互作用和对该中药功效的真实贡献度。
     《中国药典》上以葛根素作为葛根质控的指标性成分,脑缺血是葛根及葛根素在临床上确有疗效且机制较为明确的适应症,经过多年的研究,虽然葛根素对脑缺血的作用机制已经被大量揭示,但是葛根素对葛根抗脑缺血功效的贡献度研究,尚未见报道。本研究以葛根为模式药物,以脑缺血的体外模型——SH-SY5Y细胞糖氧剥夺模型和为载体,通过建立基于葛根素单克隆抗体的葛根素免疫亲和色谱柱,特异性敲除葛根素后,比较葛根特异性敲除葛根素前后对该模型药效及炎症因子调节功能的量效改变,揭示葛根素对葛根功效的贡献度。
     第一章、葛根素免疫亲和色谱柱制备和敲除液制备和葛根提取液中葛根素的敲除
     目的:基于葛根素单克隆抗体,制备葛根素免疫亲和色谱柱,并对葛根提取液中的葛根素进行敲除,以获得后续研究所需的药物。
     方法:采用辛酸-硫酸铵法对葛根素单克隆抗体腹水进行纯化,采用SDS-PAGE法检测抗体纯度,Bradford法检测抗体浓度,ELISA法检测抗体效价和竞争,确认抗体具有制备免疫亲和色谱柱的效能;将纯化后的葛根素单抗与CNBr-activated SepharoseTM4B偶联,检测偶联比和偶联率,掌握亲和柱的性能;对葛根提取液进行上样敲除,采用HPLC法检测葛根提取液和敲除液中葛根素含量,计算敲除率,获得定量敲除葛根素的葛根敲除液。
     结果:SDS-PAGE结果显示纯化后葛根素单抗杂蛋白减少,纯度达92%;纯化前葛根素单抗腹水蛋白浓度为4.28mg/mL,纯化后的浓度为2.16mg/mL; ELISA检测显示纯化前后葛根素单抗的效价均约为稀释度1:51200,均与葛根素呈现良好的线性竞争,线性范围未发生明显变化;经计算,纯化后的葛根素单抗与CNBr-activated SepharoseTM4B凝胶的偶联率为99.3%,偶联比为3.4mg/mL;经HPLC法检测,原上样葛根溶液中约90%的葛根素已经被剔除。
     结论:辛酸-硫酸铵法纯化的葛根素单抗,去除了大量杂蛋白提高了抗体纯度,而抗体效价和竞争不受明显影响,能够满足制备免疫亲和色谱柱的需要;纯化后的葛根素单抗与CNBr-activated Sepharose TM4B凝胶偶联效果非常好,敲除率较高,能够满足药效实验的需要。
     第二章葛根提取液,葛根敲除液和葛根素对SH-SY5Y细胞糖氧剥夺损伤药效比较研究
     目的:考察葛根素SH-SY5Y细胞内的药代动力学过程揭示药效产生过程,建立稳定的SH-SY5Y细胞糖氧剥夺损伤模型,考察葛根提取液、葛根敲除液和葛根素对该模型诱导的细胞损伤的保护作用药效差异。
     方法:
     (1)考察3.9、7.8、15.6、31.3、62.5、125、250、500μg/mL8个不同浓度2h,8h,16h和24h四个不同时间葛根素对正常SH-SY5Y细胞的影响;选用31.25μg/mL、62.5μg/mL、125μg/mL三种浓度葛根素孵育细胞,于5、15、30、45、60、90、120、150、180、210、240、270、300、330、360、390、420、480、540、600min,共20个时间点取上清,间接竞争ELISA法检测上清中葛根素含量。给药浓度减去上清浓度即为细胞内葛根素浓度。
     (2)利用无糖细胞培养液和Na2S2O4诱导缺氧缺糖损伤模型,考察0.4、0.8、1.6,3.2mmol/L四种造模浓度,2、8、16、24h四种孵育时间的造模效果,在倒置相差显微镜下观察造模后的细胞形态,以MTT分析法测定细胞存活率和乳酸-丙酮酸法检测细胞上清中LDH水平。;
     (3)按葛根素的浓度和敲除前应含葛根素的浓度,将葛根提取液、葛根素和葛根敲除液分别设为3.9,7.8,15.6,31.3,62.5,125,200,250,500μg/mL九个浓度干预模型,以MTT分析法测定细胞存活率和乳酸-丙酮酸法检测细胞上清中LDH水平。
     结果:
     (1)3.9、7.8、15.6、31.3、62.5、125、250μg/mL葛根素在8小时内对细胞存活率和LDH水平均无显著影响;高、中、低三个剂量组的Cmax和AUClast呈剂量依赖性减小,中剂量组的Tmax和MRTlast高于低剂量组和高剂量组,提示该剂量在细胞内吸收过程的特殊性。
     (2)倒置相差显微镜下进行一般形态学动态观察,SH-SY5Y细胞经糖氧剥夺损伤后,严重变形,受损程度呈剂量和时间依赖性,16h和24h组各组细胞均损伤严重,多数死亡;通过测定细胞存活率和细胞上清中的LDH水平发现,造模8小时,0.8、1.6、3.2mmol/L剂量模型组的细胞存活率比正常组显著降低(P<0.01),造模8小时,0.4、0.8、1.6mmol/L剂量模型组细胞上清的LDH水平比正常组显著升高(P<0.01)。
     (3)葛根素以15.6,31.3,62.5,125、200μg/mL剂量干预SH-SY5Y细胞糖氧剥夺模型,细胞存活率和上清中LDH水平与M组相比具有显著差异(P<0.01或P<0.05),提示模型所造成的损伤能够被葛根素抑制,说明造模成功,62.5μg/mL效果最好可能与其在细胞内的特殊吸收过程有关。
     葛根敲除液按敲除前应含葛根素浓度15.6,31.3,62.5,125,200,250,500μg/mL剂量干预SH-SY5Y细胞糖氧剥夺模型,细胞存活率和上清中LDH水平与M组相比具有显著差异(P<0.01或P<0.05)。葛根提取液按葛根素浓度3.9,7.8,15.6,31.3,62.5,125,200,250,500μg/mL分别干预时SH-SY5Y细胞糖氧剥夺模型,细胞存活率和上清中LDH水平与M组相比具有显著差异(P均<0.01)。在15.6-250μg/mL范围内葛根提取液效果优于葛根敲除液。
     结论:在本实验所取剂量范围内,葛根提取液效果优于葛根素说明多种成分综合作用的效果优于单一成分单独使用;葛根提取液效果优于葛根敲除液说明敲除90%葛根素会减弱葛根整体的药效,葛根素与葛根整体药效具有关联关系;葛根提取液效果优于二者单独使用共同说明葛根素与葛根中其它成分可能具有协同作用。
     第三章葛根素与葛根改善SH-SY5Y细胞糖氧剥夺损伤炎症因子作用的量效关系研究
     目的:通过在葛根提取液、葛根敲除液和葛根素各自最佳剂量上的比较,以及含不同比例葛根素的葛根之间比较,揭示葛根素与葛根改善SH-SY5Y细胞糖氧剥夺损伤炎症因子作用的量效关系
     方法:(1)分别取葛根提取液、葛根敲除液和葛根素三者最佳浓度与该浓度上其它两种药物干预SH-SY5Y细胞糖氧剥夺损伤,进行敲除前后的药效对比研究;
     (2)取葛根提取液最佳剂量和相应剂量的葛根敲除液,向葛根敲除液中定量添加葛根素至葛根素含量为原提取液的25%,比较添加前后及与葛根提取液药效的差异;
     采用MTT检测细胞存活率,乳酸-丙酮酸法检测LDH水平;Westernblot检测炎症因子NF-κB、TNF-α和IL-6表达水平;采用黄嘌呤氧化酶检验法检测SOD,硫代巴比妥酸法测定MDA,硝酸还原酶法检测NO。
     结果:
     (1)在葛根素的最佳剂量上,葛根敲除液改善SH-SY5Y细胞糖氧剥夺损伤所致的细胞存活率、LDH水平、NF-κB、TNF-α、SOD、MDA、NO异常的效果低于葛根提取液和葛根素,对IL-6的效果优于葛根素,与葛根提取液明显差别;在葛根敲除液和葛根提取液各自的最佳剂量上,葛根素改善细胞存活率、LDH水平、NF-κB、TNF-α、SOD、 MDA、NO、IL-6效果低于葛根敲除液和葛根提取液,葛根敲除液对除IL-6以外的其它因子的改善效果亦明显低于葛根提取液。
     (2)向葛根素含量为10%的葛根敲除液中定量添加葛根素至含25%葛根素后,对细胞存活率、LDH、NF-κB、TNF-α、SOD、MDA、NO改善优于单独使用原葛根敲除液和单独使用添加剂量的葛根素,但仍差于含100%葛根素的葛根提取液。
     结论:
     (1)在本实验选取的葛根素三个不同浓度上,敲除90%葛根素对葛根改善SH-SY5Y细胞糖氧剥夺损伤药效都具有不同程度的削弱作用,说明葛根素与葛根这一药效具有关联关系;葛根素对葛根改善SH-SY5Y细胞糖氧剥夺损伤药效的影响具体包括下调NF-κB、 TNF-α水平,改善SOD含量、减少MDA、NO等炎症因子,而对IL-6的影响则较弱。本实验为葛根素与葛根功效的关联关系提供了直接证据。
     (2)向葛根敲除液中定量添加15%葛根素之后的葛根敲除液的药效得到增强,优于单独使用葛根敲除液和葛根素,意味着葛根敲除液中的成分和所添加的葛根素之间存在协同作用;含100%葛根素的提取液对SH-SY5Y细胞糖氧剥夺损伤所致的不同炎症因子异常表达的改善效果,不同程度地优于含25%葛根素的敲除液组和含10%葛根素的敲除液组,说明葛根素对葛根改善SH-SY5Y细胞糖氧剥夺损伤的作用受葛根素含量的影响,而且与不同炎症因子有不同的量效趋势;葛根素含量对葛根改善SH-SY5Y细胞糖氧剥夺损伤功效的影响主要涉及对NF-κB、TNF-α, SOD、MDA, NO的调节作用。
The material foundation of efficacy of Traditional Chinese Medicine (TCM)is the hot and difficult spot of modern research of the theory of compound compatibility, development of new drug and clarifying the modern connotations for syndrome differentiation The biological effects of Chinese medicinal formulae and the effectiveness of syndrome differentiation and treatment all can hardly be revealed without the guidance and confirmation of medicinal material base Therefore, revealing the the material foundation of efficacy of Chinese herbs is always key issue for modernization of TCM. However, due to the complexity of the chemical constituents of Chinese herbs and the use of compound preparation, the interactions between each element could be extremely complex and the identification of active compounds could be rather difficult. Even if the Chinese herbs documented in Chinese Pharmacopeia(2010edition), the varieties of traditional Chinese medicine with definite functional components makes up less than5%。At the present, the index components of the most Chinese herbs for quality control were set depended on the content of the components. So they were not necessarily the the main efficacy components。This problem is not only restricting the modernization of TCM from achieving substantial progress, it also can easily lead to drug safety. Therefore, the research of material foundation of efficacy of TCM is also the difficult and crucial part in modernization of TCM, which should be solved urgently.
     The team of my tutor have striven to the research of material foundation of efficacy of TCM for years, To deal with this problem, my tutor had put forward the idea of utilizing method of "knockouts" basing on the monoclonal antibody of small molecules of TCM, which differed from the method of reductionism. Through knocking out some component of a TCM specifically, we can compare the differences and similarities of efficacy before and after knocked out and the single component. The method could not only reflect the effect of the single compoent isolated from the mix, but also could show the role the component played within the herb. Therefore, the possible connections between regulators and other circuit components and the true contribution to efficacy of herb could be revealed-
     PRR (PRR) is the documented index components of PRA (PRA) for quality control. PRA and PRR have definite effect in the treatment of ischemic stroke and the mechanism is relatively clear.On the basis of many years of research, although lots of mechanism of PRR for ischemic stroke have been set out, the contribution of PRR to PRA has not been reported。 So we chose PRR as pattern drug, the vitro mode of ischemic stroke—oxygen glucose deprivation (OGD)in SH-SY5Y cells as carrier, intended to reveal the contribution of PRR to PRA in regulation of the Inflammatory factors in the model by comparing the function of PRA before and after the PRR was knocked out specially.
     Chapter1Preparation of immunoaffinity column and the knocking out of PRR in PRA exact
     Objective:To Prepare immunoaffinity column basing of the PRR monoclonal antibody. Then the PRR in PR exact should be knocked out and the drug for follow-up study should be prepared.
     Method:The ascites containing PRR monoclonal antibody(Mab) was purified by method of octanoic acid-ammonium sulfate; purity of antibodys before and after were tested by SDS-PAGE; concentrations of antibodys were measured by Bradford quantitative determination;the titer and competition of antibodys were detected by ELISA; the purified PRR Mab was coupled with the CNBr-activated SepharoseTM4B and the conjugation efficiency and conjugation rate were computed; PRA-exact(PRA-EXT) was loaded in the immunoaffinity column and the concentrations of PRR in PRA-EXT and the knock out couple (PRA-KO)were tested by HPLC, the rate of knock out was calculated.
     Result:SDS-PAGE showed that the other protein in PRR Mab were reduced, the purity of PRR Mab was92%; the concentration of PRR Mab ascites is3.67mg/mL, the concentration of the purified PRR Mab is2.29mg/mL; the ELISA showed that the titer of PRR Mab are both1:51200before and after purified, no apparent changes of linearity rangewere observed; the conjugation efficiency is99.3%, conjugation rate is3.1mg/mL; the90%of PRR was knocked out form PRA-EXT.
     Conclution:The PRR Mab purified by by method of octanoic acid-ammonium sulfate with less Miscellaneous protein and without influence to the titer and competition, met the requirement for preparation of immunoaffinity column, the conjugation between PRR Mab and the CNBr-activated SepharoseTM4B was well and the rate of knock out could meet the demands of follow-up study.
     Chapter2Comparative study on the pharmacodynamics of PRA-EXT, PRA-KO and PRR on the OGD injury of SH-SY5Y cells
     Objective:Studying the pharmacokinetics of PRR in SH-SY5Y cells to reveal the efficacy generation process. To establish a stable oxygen glucose deprivation-reperfusion (OGD) in SH-SY5Y cells. To compare the differences between pharmacological activities of PRA-EXT, PRA-KO and PRR for this model.
     Method:
     (1)The effect of PRR on normal SH-SY5Y cells was studied with8different concentrations(3.9,7.8,15.6,31.3,62.5,125,250,500μg/mL) and4different incubation time(2h,8h,16h,24h); Cells were incubated with3different concentrations of PRR (31.25μg/mL,62.5μg/mL,125μg/mL) respectively, the supernatant was collected at20timepoints sequentially (0.08,0.25,0.5,0.75,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6,6.5,7,8,9,10h) and tested by icELISA for the concentration of PRR. The intracellular concentration of PRR was obtained by subtracting the concentration of PRR in supernatant from the total dosage.
     (2) The OGD model in SH-SY5Y cells were reduced by sugar-free cell-culture medium and Na2S2O4, the condithons of Na2S2O4with4different concentrations (0.4,0.8,1.6,3.2mmol/L) and4different incubation time (2,8,16,24h) was investigated. Cytomorphology was observed under optic microscope; Cell survival rate was tested by MTT assay, Activities of lactate dehydrogenase (LDH) also be detected.
     (3) The PRA-EXT, PRA-KO and PRR was used to intervene the model with nine different concentrations of PRR (3.9,7.8,15.6,31.3,62.5,125,200,250,500μg/mL) individually. Cell survival rate was tested by MTT assay, Activities of lactate dehydrogenase (LDH) also be detected.
     Results:
     (1)PRR of3.9,7.8,15.6,31.3,62.5,125,250μg/mL had no significant effect on cell viability and LDH levels within8hours; The AUCiast and Cmax of high, medium and low dose groups decreased in a dose-dependent manner, The Tmax and MRTiast of medium dose group was higher than that of low-dose group and high-dose group, which showed the he particularity of the medium dose absorbed process in the cell.
     (2)The result of MTT and LDH test showed that the cell survival rates of cells in groups with dose of Na2S2O4is0.8,1.6and3.2mmol/L were decreased remarkablythan that in the control groups(P<0.01); the level of LDH in supernatant of cells in groups of0.4,0.8,1.6and3.2mmol/L were significantly higher than that in the control groups.
     (3)The result of MTT and LDH test showed that the cell survival rates and the level of LDH in supernatant of cells in PRR groups with dose of PRR is15.6,31.3,62.5,125and200μg/mL were improved remarkably(P<0.01or P<0.05) than that in the model groups; which means the damage caused by the model can be inhibited by PRR, indicating successful model. The best dose of PRR is62.5μg/mL, which may be related to the specific intracellular absorption process..
     The cell survival rates and the level of LDH in supernatant of cells in PRA-KO groups with dose of PRR(Before kocked out) is15.6,31.3,62.5,12,200,250,500μg/mL were improved remarkably (P<0.01or P<0.05) than that in the model groups;
     The cell survival rates and the level of LDH in supernatant of cells in PRA-EXT groups with dose ofPRR is3.9,7.8,15.6,31.3,62.5,125,200,250,500μg/mL were improved remarkably(P<0.01) than that in the model groups; The best dose was250μg/mL. Within15.6-250μg/mL range the efficacy of PRA-EXT groups was better than that of PRA-KO groups.
     Conclusion:
     Taken within the dose range of this experiment, the effect of PRA-EXT was better than the effect of PRR showed the combined effects of a variety of ingredients was better than single ingredient used alone; PRA-EXT performed better than PRA-KO indicated that knockout90%PRR from EXT will weaken the overall efficacy, PRR had a relationship with the overall efficacy of PRA-EXT; the effect of PRA-EXT was better than that of both PRA-KO and PRR used alone illustrated PRR may have a synergistic effect with other components of Pueraria.
     Chapter3Research on the dose-effect relationship between PRR and the efficacy of PRA in improving the inflammatory cytokines of SH-SY5Y cells caused by the OGD injury
     Objective:To reveal the dose-effect relationship between PRR and the efficacy of PRA in improving the inflammatory cytokines of SH-SY5Y cells caused by the OGD injury by the comparison amang the PRA-EXT, PRA-KO and PRR on each optimal dose, as well as the comparison amang the PRA ontaining different proportions of PRR.
     Method:
     (1)According to the best dosage of the three drugs elected in the Chapter l,the OGD model of SH-SY5Y cells were treated by the PRA-EXT, PRA-KO and PRR on3different concentration of PRR for comparing the efficacy of them;
     (2)At the best dose of PRA-EXT and the corresponding dose of PRA-KO, PRR was quantitatively added into PRA-KO (the content of PRR is10%) to the content of25%for the PRA-EXT, then comparing the efficacy of PRA-KO(the content of PRR is10%), PRA-KO (the content of PRR is25%) and PRA-EXT (the content of PRR is100%);
     Tested the cell survival rate and LDH level; SOD activities were measured by xanthine oxidase method; the content of MDA were measured by thiobarbituric acid method;the content of NO was detected with Griess method;the expression of NF-κB、TNF-αand IL-6were was investigated by Western blot.
     Result:
     (1)At the best dose of PRR, the improving effect of PRA-KO on abnormal change of cell survival rate,LDH level, NF-κB, TNF-α, SOD, MDA, NO caused by OGD were worse than these of PRA-EXT, the improving effect of PRA-KO on IL-6is better than PRR, but non difference with PRA-EXT; at the best doses of PRA-EXT and PRA-KO, the improving effect of PRR on cell survival rate,LDH level, NF-κB, TNF-α, SOD, MDA, NO, IL-6were worse than these of PRA-EXT and PRA-KO; the improving effect of PRA-KO on cell survival rate,LDH level, NF-Kb, TNF-α SOD, MDA, NO were worse than these of PRA-EXT;
     (2)The improving effect of PRA-KO(the content of PRR is25%) on cell survival rate, LDH level, NF-κB, TNF-α, SOD, MDA and NO were better than these of PRA-KO(the content of PRR is10%) and PRR (which equal to the dose added in PRA-KO), but still worse than PRA-EXT (the content of PRR is100%).
     Conclusion:
     (1) In three different concentrations of PRR selected in the present study, the efficacy of PRA in improving the inflammatory cytokines of SH-SY5Y cells caused by the OGD injury was weaken by knocking out90%PRR from PRA, indicating there was a relationship between the efficacy of PRA and PRR; the effect of PRR on the efficacy of PRA in improving the inflammatory cytokines of SH-SY5Y cells caused by the OGD injury included reducing NF-κB, TNF-α levels, improving SOD levels, reducing MDA, NO, but the effect on IL-6is relatively weak. This experiment provided the direct evidence for the relationship between PRA and PRR.
     (2) After PRR was quantitatively added into PRA-KO (the content of PRR is10%) to the content of25%, the improving effect of PRA-KO(the content of PRR is25%) was enhanced and better than PRR and PRA-KO use alone, which means synergies existed between PRR and the components of PRA-KO; The improving effect of PRA-EXT (the content of PRR is100%) is better than that of PRA-KO (the content of PRR is25%) and PRA-KO(the content of PRR is10%), indicating the influence of PRR on the efficacy of PRA in improving the inflammatory cytokines of SH-SY5Y cells caused by the OGD injury worked in a dose-dependent manner; This effect mainly related to the regulation of NF-κB, TNF-α. SOD, MDA and NO.
引文
[1]国家药典委员会编.中华人民共和国药典(一部)(s)北京:化学工业出版社,2010,312。
    [2]董英,徐斌,林琳,查青.葛根的化学成分研究[J].食品与机械,2005,06:85-88+100.
    [3]魏述永,徐晓玉.葛根素的药理作用研究进展[A].中国化学会产学研合作与促进委员会、重庆市科学技术委员会.化学与创新药物——2013年中国化学会产学研合作研讨会会议论文集[C].中国化学会产学研合作与促进委员会、重庆市科学技术委员会:,2013:1.
    [4]付纯芳,贾琳琳,王浩任.葛根素预处理对大鼠脑缺血再灌注保护作用的初步研究[J].黑龙江医药科学,2007,05:15-16.
    [5]王福文,王磊一,徐淑兰,柴象枢.葛根素对兔脑循环及脑代谢的影响[J].时珍国医国药,2000,07:590-591.
    [6]赖清瑶,丁选胜.不同血管段活性差异对葛根素血管舒张作用机制的影响[J].吉林医学,2010,18:2773-2775.
    [7]董侃,陶谦民,夏强,单绮娴,潘国标.葛根素的非内皮依赖性血管舒张作用机制[A].浙江省医学会心血管病学分会.2004年浙江省心血管病学学术年会论文汇编[C].浙江省医学会心血管病学分会:,2004:2.
    [8]Modes of Neuronal Calcium Entry and Homeostasis following Cerebral Ischemia
    [9]Jayanthi LD,Wilson JJ, Montalvo J, et al. Differential regulation of mammalian brain-specific proline transporter by calcium and calcium-dependent protein kinases [J]. Br J Pharmacol,2000,129(3):465-70.
    [10]张茹,郭荷娜,吴海琴,成红学,王虎清.葛根素对大鼠局灶性脑缺血后钙超载的保护作用[J].南方医科大学学报,2010,06:1268-1271.
    [11]唐瑜.葛根素对脑缺血再灌注损伤神经元L-型钙通道的影响[J].中西医结合心脑血管病杂志,2007,01:38-40.
    [12]许旭伟,李进禧,汪涛,赵虹.葛根素对新生大鼠脑细胞内钙超载的影响[J].中西医结合心脑血管病杂志,2003,02:74-76.
    [13]肖桂凤,宁钢民,葛亚坤,郑筱祥.葛根素对培养人脐静脉内皮细胞钙超载的影响[J].中国药理学通报,2005,11:1388-1392.[14]翁鸿博,刘玉兰,程能能.葛根黄豆苷元对沙土鼠 脑缺血及再灌注损伤的神经保护作用(英文)[J].中国临床药学杂志,2012,05:265-270.
    [14]Carr KR, Zuckerman SL, Mocco J. Inflammation, Cerebral Vasospasm, and Evolving Theories of Delayed Cerebral Ischemia. Neurol Res Int.2013;2013:506584.
    [15]Pantoni L, Sarti C, lnzitari D. Cytokines and cell adhesion molecules in cerebral ischemia experimental bases and the fapeutic perspective[J]. Arterioscler Thromb Vasc BioI, 1998,18(4):503-513.
    [16]陈燕启,刘德红,姜宏志,杨光田.葛根素对脑缺血-再灌流时大鼠肿瘤坏死因子-α和白细胞介素-β表达的影响[J].中华急诊医学杂志,2005,02:119-121.
    [17]娄海燕,魏欣冰,王汝霞,张岫美.葛根素对大鼠局灶性脑缺血再灌注损伤后炎症反应的抑制作用[J].中国病理生理杂志,2007,02:366-369.
    [18]纪艾玲,张晓健.葛根素注射液治疗急性脑梗死炎症因子的影响[J].南京中医药大学学报,2009,02:145-147.
    [19]杨黎,何世银.葛根素对大鼠脑缺血再灌注后炎性细胞因子变化的影响[J].中国老年学杂志,2003,03:173-174.
    [20]汪亮.葛根素对大鼠局灶性脑缺血再灌注损伤后TLR4/NF-KB信号通路的影响[D].宁波大学,2012.
    [21]陈燕启,刘德红,杨光田.鼠脑缺血再灌注时葛根素对核因子_(κ)B表达的影响(英文)[J].中国临床康复,2005,37:187-189.
    [22]梅志刚,王明智,刘晓洁,曾永保.葛根素对大鼠脑缺血再灌注损伤a7nAChR、 NF-κBp65及STAT3 m RNA表达的影响[J].中华中医药杂志,2013,01:113-117.
    [23]丁美萍,封菲,胡海涛.葛根素对脑缺血再灌注后核因子kappaB表达的影响[J].中国中药杂志,2007,23:2515-2518.
    [24]张茹,郭荷娜,吴海琴,成红学,王虎清.葛根素对大鼠局灶性脑缺血后海马CA1区NMDA受体的影响及其意义[J].四川大学学报(医学版),2011,01:52-55.
    [25]Inhibition of excitatory amino acid efflux contributes to protective effects of puerarin against cerebral ischemia in rats.
    [26]齐中华.葛根素对实验性脑缺血GAD、VEGF表达变化的影响[D].吉林大学,2004.
    [27]张蕊,韩慧蓉,高尔,曹焕军,孙丽娜.葛根素对脑缺血损伤家兔皮质血管超微结构和血液流变学的影响[J].潍坊医学院学报,2005,06:421-423+482
    [28]邵胜敏,王小同,黄汉津,陈松芳.葛根素对慢性低氧高二氧化碳大鼠海马超微结构的影响[J].实用医学杂志,2006,13:1496-1497.
    [29]吴艳,万华印.葛根素对培养脑细胞缺氧/再给氧损伤的保护作用[J].中国药理学通报,2006,09:1130-1133.
    [30]毛庆军,张军华,夏瑞.葛根素对脑缺血再灌注家兔血浆SOD含量的影响[J].现代中西医结合杂志,2007,36:5408-5409.
    [31]张蕊,曹焕军,高尔.葛根素对家兔脑缺血再灌注损伤的抗自由基作用[J].潍坊医学院学报,2002,04:267-269.
    [32]张小花,张兰.葛根素对大鼠脑缺血再灌注损伤的保护作用[J].安徽医药,2007,08:688-689.
    [33]张茹,成红学,吴海琴,郭荷娜,王虎清.葛根素对局灶脑缺血大鼠脑组织内LPO含量影响的研究[J].陕西医学杂志,2010,07:803-805.
    [34]谭军,潘登,孙兆印.葛根素预处理对大鼠脑缺血再灌注损伤后脑组织中一氧化氮水平的影响[J].新乡医学院学报,2008,05:453-455.
    [35]徐晓虹,郑筱祥.葛根素对氧糖剥夺大鼠海马神经细胞Ca-(2+)和NO的影响[J].中国药学杂志,2008,17:1308-1312.
    [36]张茹,成红学,吴海琴,王虎清,郭荷娜.葛根素对大鼠局灶性缺血脑组织内海马神经元型一氧化氮合酶表达的影响[J].西安交通大学学报(医学版),2010,06:669-672.
    [38]赵雪花,曾垦.葛根素对大鼠脑缺血再灌注后Caspase-3和c-fos表达的影响[J].数理医药学杂志,2012,05:511-512.
    [39]曾垦,赵雪花.葛根素对大鼠脑缺血再灌注后保护作用的分子机制[J].数理医药学杂志,2013,01:76-77.
    [40]徐晓虹,陈瑜,郑筱祥.葛根素对脑缺血诱导神经细胞凋亡的保护作用[J].中国药学杂志,2006,21:1628-1631.
    [41]潘登,谭军,赵秀娟,李保东.葛根素对脑缺血-再灌注损伤细胞凋亡和p53表达的影响[J].中国热带医学,2007,07:1100-1101.
    [42]周亚东,夏作理,杨琳,王政霞,王德峰.葛根素对大鼠局灶性脑缺血后神经元凋亡的影响[J].山东中医杂志,2008,10:703-705.
    [43]韩江全,李官成,周晓兰,朱选平,梁恒,李继中,林冬融,赖敏.葛根素对大鼠局灶性脑缺血再灌注后神经细胞凋亡及Bcl-2、Bax蛋白表达的影响[J].中西医结合心脑血管病杂志,2008,10:1179-1181.
    [44]何敏.葛根素对鼠脑缺血侧皮质区p-Akt (Ser473)的作用研究[D].遵义医学院,2009.
    [45]Pan M, Han H, Zhong C, et al. Effects of genistein and daidzein on hippocampus neuronal cell proliferation and BDNF expression in h197 neural cell line [J]. J Nutr Health Aging,2012,16(4):389.
    [46]曾靖,黄志华,黎晓,林或夫,王菁菁.大豆苷元通过抑制炎症反应对大鼠脑缺血再灌注损伤保护作用[J].中国药理学与毒理学杂志,2012,03:416.
    [47]曹性玲,黄志华,李良东,黎晓,曾雪亮,曾靖.大豆苷元对脑缺血再灌注损伤的保护作用[A].中国药理学会.中国药理学会第十一次全国学术会议专刊[C].中国药理学会:,2011:1.
    [48]翁鸿博,刘玉兰,程能能.葛根黄豆苷元对沙土鼠脑缺血及再灌注损伤的神经保护作用(英文)[J].中国临床药学杂志,2012,05:265-270.
    [49]翁鸿博,马涛,尤越人,刘玉兰.葛根黄豆苷元的抗缺氧缺血作用[J].沈阳药科大学学报,1999,01:66-67.
    [50]韩进,万海同,葛立军,朱振洪,郭莹,张宇燕,李金辉.3’-甲氧基葛根素对大鼠脑缺血再灌注损伤保护作用研究[J].中国中药杂志,2009,11:1422-1425.
    [51]张义兵,杜贵友,熊玉兰,赵雍,崔海峰,曹春雨,刘莎.3’-甲氧基葛根素对大鼠脑缺血保护作用研究[J].中国中药杂志,2008,05:537-540.
    [52]韩进,万海同,李金辉,葛立军.3’-甲氧基葛根素对缺血再灌注大鼠脑内氨基酸动态变化的实验研究[J].中国中药杂志,2012,07:1023-1027.
    [53]刘亚君,陈筱南,刘克敬,柴强,李景新,孙东,陈连璧.3’-甲氧基葛根素抗大鼠脑缺血再灌注损伤作用[J].山东医药,2009,20:13-15.
    [54]王培源,王海萍,李光武.葛根黄酮对大鼠脑缺血再灌注损伤的保护作用[J].中国中药杂志,2006,07:577-579.
    [55]金锡姣,欧阳洁,郭莹,戴波娜.葛根黄酮对脑缺血再灌注损伤大鼠脑组织NO及NOS的影响[J].中国中医急症,2013,08:1360+1370.
    [1]Dobrovolskaia MA, Neun BW, Man S et al. Protein corona composition does not accurately predict hematocompatibility of colloidal gold nanoparticles. McNeil SE. Nanomedicine 2014 Feb 7. pii:S1549-9634(14)00033-1
    [2]朱文钏,孔繁德,林祥梅,徐淑菲,吴德峰,韩雪清,吴绍强.免疫胶体金技术的应用及展望[J].生物技术通报,2010,04:81-87.
    [3]黄燕婷,谭智毅.干化学法和胶体金单克隆抗体法在尿液血红蛋白试验中的比较[J].吉林医学,2013,21:4341.
    [4]刘尚武,李王平,邹远妩,金发光,穆德广.胶体金与蛋白芯片结核抗体检测方法在结核病辅助诊断中的临床价值[J].中华肺部疾病杂志(电子版),2011,05:388-391.
    [5]邢国杰,张芳,王锋,孙轶卓,沈鹤柏.胶体金免疫层析法视黄醇结合蛋白检测试剂对肾小管功能损伤的诊断价值评价[J].现代生物医学进展,2012,36:7030-7033.
    [6]赵青平,孙岩.HCV胶体金与ELISA法在检测血库血液丙型肝炎抗体中的应用[J].中外医学研究,2012,18:46.
    [7]袁杰.胶体金法与ELISA法在检测血液丙型肝炎病毒抗体中的比较[J].中国老年学杂志,2012,21:4650-4651.
    [8]邱忠平,吴丽娟.胶体金试纸条快速检测结核抗体的临床意义探讨[J].国外医学(临床生物化学与检验学分册),2004,03:209-210.
    [9]王静,邵天舒,周长明,吕雯.胶体金法代替酶联免疫吸附法检测人血清蛋白HBsAg的研究[J].国际检验医学杂志,2014,03:68-69.
    [10]韩继美,方菲,朱龙章,叶明强,赵露晶,沈鹤柏.甲胎蛋白和癌胚抗原的胶体金免疫层析同步检测[J].现代生物医学进展,2009,04:726-729.
    [11]王铁成,张涛,杨松涛,王化磊,高玉伟,孙玮,靳晓霞,赵平森,冯娜,黄耕,邹啸环,夏咸柱.狂犬病病毒抗体胶体金检测试纸的制备[J].生物工程学报,2011,05:799-804.
    [12]马水锋.免疫胶体金技术检测禽流感病毒的研究及初步应用[D].扬州大学,2008.
    [13]程晓宏,谢超,魏要武,史玉坤.胶体金-DNA体系法测定食品中汞离子[J].环境与职业医学,2013,10:800-801.
    [14]邹新海.磺胺甲噁唑单抗制备及胶体金免疫层析试纸条的研制[D].扬州大学,2010.
    [15]姜燕,吕昌龙,单风平.吗啡和甲基安非他明单克隆抗体联合胶体金检测试卡的研制[J].中国免疫学杂志,2007,07:637-640.
    [16]王丽哲,赵瑜,唐慧林,王丽丽,于重楠,刘敏,何艳玲.新霉素半定量胶体金试纸条的研制[J].食品科学,2014,:39-41.
    [1]施峰,贾晓斌,陈彦.中医方药物质基础研究的名词术语标准化探讨[J].中国中药杂志,2009,34(9):1179-1181.
    [2]王本祥,周秋丽.关于中药活性成分的认识及其研究方法[J].中国中药杂志,2001,26(1):10-13.
    [3]罗国安,王义明.中药复方物质基础和药效相关性研究[J].世界科学技术-中药现代化基础与系列标准,1998,11(7):25.
    [4]张贵君,杨晶凡.中药标准物质的科学内涵及其研究思路[J].现代药物与临床,2009,24(2):71-72.
    [5]赵文华,石任兵,刘斌,等.连翘病毒清胶囊抗病毒有效部位化学成分的研究[J].中成药,2005,27(4):449.
    [6]Wang XJ, Zhang N, Sun WJ, et al. Preliminary study on serum pharmacochemistry of Liuweidihuangwan [J]1ChinJ NatMed(中国天然药物),2004,2(4):21922221
    [7]Ding G, Cui Y, Sheng L S, et al. Preliminary study on serum pharmacochemistry of Radix Rehmannia Glutinosa [J]1ChinJ NatMed(中国天然药物),2003,1(2):8528811
    [8]窦志华,丁安伟,王陆军,等.复方五仁醇胶囊血清药物化学研究[J].中草药,2006,37(8):1137.
    [9]田友清,尚靖,何婷,蔡旻煊,阿布卡德.基于中药血清化学及血清药理学方法探讨香青兰保护心肌细胞缺氧/复氧损伤物质基础[J].中国中药杂志,2012,(05):620-624.
    [10]莫红缨,赖克方,江永南,谢建屏,钟南山.双黄连及其拆方抗呼吸道合胞病毒作用的药效学研究[J].中国中医基础医学杂志,2005,03:194-196.
    [11]韩笑,刘建勋,林成仁.血清药理学关键问题的存疑与讨论[J].中药药理与临床,2009,02:122-124.
    [12]邹汉法,汪海林.生物色谱技术分离、鉴定和筛选中药活性成分[J].世界科学技术2中药现代化,2000,2(2):9-14.
    [13]张博,贺浪冲.用细胞膜色谱法分析金刷把中具有细胞毒活性的有效成分[J].现代医药卫生,2006,22(15):2303-2304
    [14]Liu CX. Significance of metabonomics in modern research of Chinese material medica [J]1Chin Tradit HerbDrugs(中草药),2004,35(6):60126051
    [15]赵琰,屈会化,王庆国.利用单克隆抗体特异性敲除技术解析中药药效物质基础的新方法[J].中国中药杂志,2013,17:2906-2910.
    [16]孔维军.基于成分敲出/敲入的中药(牛黄)药效物质辨识和质量控制模式的初步研究[D].成都中医药大学,2011.
    [17]李俊贤.基于成分敲出/敲入的中药(黄连)药效物质辨识和质量控制模式的研究[D].昆明理工大学,2013.
    [18]俞凌燕,王毅,范骁辉,瞿海斌,程翼宇.用组分剔除法研究中药的有效组分[J].中国中药杂志,2009,03:336-339.
    [19]杨文宇,万德光,杨鑫嵎.虚拟筛选辅助揭示中药药效物质基础的思路与初步实践[J].中草药,2011,09:1665-1672.
    [20]龙伟.中药复方黄连解毒汤药效物质基础的计算机虚拟筛选研究[D].中国协和医科大学,2008.
    [1]施峰,贾晓斌,陈彦.中医方药物质基础研究的名词术语标准化探讨[J].中国中药杂志,2009,34(9):1179-1181.
    [2]王本祥,周秋丽.关于中药活性成分的认识及其研究方法[J].中国中药杂志,2001,26(1):10-13.
    [3]罗国安,王义明.中药复方物质基础和药效相关性研究[J].世界科学技术-中药现代化基础与系列标准,1998,11(7):25.
    [4]张贵君,杨晶凡.中药标准物质的科学内涵及其研究思路[J].现代药物与临床,2009,24(2):71-72.
    [5]武孔云,梁光义等.中药复方药效物质基础研究的思路及方法[J].世界科学技术-中药现代化,2003,5(6):13-17.
    [6]张继稳,陈立兵,葛卫红,等.中药物质组相关概念释义[J].世界科学技术-中医药现代化,2008,12(2):1-4.
    [7]马春涛,雷燕.中药复方效应物质基础的研究进展及展望[J].中国实验方剂学杂志,2003,9(3):46-49.
    [8]国家药典委员会.中国药典(一部)[S].北京:中国医药科技出版社,2010.
    [9]袁理春,陈翠,杨丽云,等.滇重楼根状茎繁殖诱导初报[J].中药材,2004,27(07):477.
    [10]李群,陈丽萍,葛方兰.重楼属植物愈伤组织的诱导和培养[J].四川师范大学学报(自然 科学版),2006,29(1):120-122.
    [11]肖小河,鄢丹,袁海龙等.基于成分敲除/敲入的中药药效组分辨识与质量控制模式的商建[J].中草药,2009,40(9):1345-1348.
    [12]赵琰,屈会化,王庆国.利用单克隆抗体特异性敲除技术解析中药药效物质基础的新方法[J].中国中药杂志,2013,17:2906-2910.
    [13]程京艳.基于葛根功能主治的药效组分研究[D].北京中医药大学,2011.
    [14]刘婵,张水寒,梁雪娟.浅谈葛根的综合开发与利用[A].中国商品学会中药商品专业委员会.第三届中国中药商品学术年会暨首届中药葛根国际产业发展研讨会论文集[C].中国商品学会中药商品专业委员会:,2012:4.
    [15]张晓瑢,王明奎,彭树林,刘发强,丁立生.葛根的化学成分研究(英文)[J].中草药,2002,01:13-16.
    [16]汪亮.葛根素对大鼠局灶性脑缺血再灌注损伤后TLR4/NF-κB信号通路的影响[D].宁波大学,2012.
    [17]娄海燕,魏欣冰,王汝霞,张岫美.葛根素对大鼠局灶性脑缺血再灌注损伤后炎症反应的抑制作用[J].中国病理生理杂志,2007,02:366-369.
    [18]王明智,梅志刚,曾永保,刘晓洁.葛根素通过激活胆碱能抗炎通路抑制大鼠脑缺血再灌注损伤[J].中国老年学杂志,2012,12:2563-2566.
    [19]陈燕启,刘德红,杨光田.鼠脑缺血再灌注时葛根素对核因子-κB表达的影响(英文)[J].中国临床康复,2005,37:187-189.
    [20]陈燕启,刘德红,姜宏志,杨光田.葛根素对脑缺血-再灌流时大鼠肿瘤坏死因子-α和白细胞介素-1β表达的影响[J].中华急诊医学杂志,2005,02:119-121.
    [21]赵丽霞.葛根素纳米给药系统药动学特性及对脑缺血再灌注损伤的保护作用研究[D].山东大学,2012.
    [22]Pan M, Han H, Zhong C, et al. Effects of genistein and daidzein on hippocampus neuronal cell proliferation and BDNF expression in H19-7 neural cell line. [J]J Nutr Health Aging.2012,16(4):389-94.
    [23]金锡姣,欧阳洁,郭莹,戴波娜.葛根黄酮对脑缺血再灌注损伤大鼠脑组织NO及NOS的影响[J].中国中医急症,2013,08:1360-1370.
    [24]翁鸿博,刘玉兰,程能能.葛根黄豆苷元对沙土鼠脑缺血及再灌注损伤的神经保护作用(英文)[J].中国临床药学杂志,2012,05:265-270.
    [1]Hu S, Liu H, Qiao S, He P, Ma X, Lu W. Development of Immunoaffinity Chromatographic Method for Isolating Glycinin (11S) from Soybean Proteins. J Agric Food Chem.2013 May 8;61(18):4406-10.
    [2]Karimi Z, Babashamsi M, Asgarani E, Salimi A. Development of an immunoaffinity method for purification of streptokinase. Avicenna J Med Biotechnol.2012 Jul;4(3):142-7.
    [3]ZengA, XingJ. WangC, SongJ, LiC, YangX. YangG. Simultaneous analysis and retention behavior of major isoflavonoidsin Radix Puerariaelobatae and RadixPuerariae thomsonii by high performance liquid chromatography with cyclo dextrinsasa mobile phase modifier. Anal Chim Acta.2012 Jan 27;712:145-51.
    [4]MuronetzVI,KorpelaT. JChromatogrB,2003,790:53.
    [5]吴雄文,梁智辉.实用免疫学实验技术.武汉:湖北科学技术出版社),2002:36.
    [1]葛根抗脑缺血功效,李锋,王莹莹,高薇,黄敏,郭莹.葛根伍用川芎对脑缺血大鼠神经功能症状及脑组织SOD. MDA的影响[J].世界中西医结合杂志,2011,12:1025-1027.
    [2]翁鸿博,马涛,刘玉兰.葛根黄豆苷元对脑缺血的保护作用及机制探讨[J].中国药理学通报,1999,06:58-60.
    [3]张嘉家,易荆丽,周毅生,王嵩,赵永恒.葛根总黄酮分散片的药动学研究及其与愈风宁心片的比较[J].中国实验方剂学杂志,2014,01:107-110.
    [4]刘安昌,赵丽霞,邢杰,高健,娄红祥.液相色谱-串联质谱法测定大鼠血浆中脱水葛根素浓度及其药代动力学研究(英文)[J].中国天然药物,2013,05:566-571.
    [5]姜丽.基于理化性质—药效—体内外吸收评价葛根素和天麻素配伍应用的合理性[D].北京中医药大学,2013.
    [6]Montagna M., Visai L., Di Comite A., Ionuniello V., Avanzini M. A., Bloise N., Stronati M., Ragazzi M. Development and validation of an enzyme linked immunosorbent assay for palivizumab serum determination[J].. Int J Immunopathol Pharmacol,2013,26,503-10.
    [7]Yang X.-m., Zhang X.-l., Chen Y.-c., Liu F. LC Method for Determination of Ginkgolic Acids in Mice Plasma and Its Application to a Pharmacokinetic Study[J].. Chromatographia, 2009,69,593-596.
    [8]Tsai T. H. Pharmacokinetics of pefloxacin and its interaction with cyclosporin A, a P-glycoprotein modulator, in rat blood, brain and bile, using simultaneous microdialysis[J]. Br J Pharmacol,2001,132,1310-6.
    [9]Dirnhofer S., Klieber R., De Leeuw R., Bidart J. M., Merz W. E., Wick G., Berger P. Functional and immunological relevance of the COOH-terminal extension of human chorionic gonadotropin beta:implications for the WHO birth control vaccine[J]. FASEB J, 1993,7,1381-5.
    [10]Yi Y., Wang Z., Li M., Zhu K., Ying G. Preparation and purification of monoclonal antibodies against chloramphenicol[J]. Cytotechnology,2012,64,157-63.
    [11]Chao Z., Tan M., Paudel M. K., Sakamoto S., Ma L., Sasaki-Tabata K., Tanaka H., Shoyama Y., Xuan L., Morimoto S. Development of an indirect competitive enzyme-linked immunosorbent assay (icELISA) using highly specific monoclonal antibody against paclitaxel[J]. J Nat Med,2013,67,512-8.
    [12]Lu S. Y., Zhou Y., Li Y. S., Lin C., Meng X. M., Yan D. M., Li Z. H., Yu S. Y., Liu Z. S., Ren H. L. Production of monoclonal antibody and application in indirect competitive ELISA for detecting okadaic acid and dinophytoxin-1 in seafood[J]. Environ Sci Pollut Res Int,2011, 19,2619-26.
    [13]Li W., Meng M., He F., Wan Y., Xue H., Liu W., Yin W., Xu J., Feng C., Wang S., Lu X., Liu J., Xi R. Preparation of an anti-diethylstilbestrol monoclonal antibody and development of an indirect competitive ELISA to detect diethylstilbestrol in biological samples[J]. Chinese Science Bulletin,2011,56,749-754.
    [14]李翼飞.葛根素免疫亲和层析柱的制备及其敲除法的应用研究[D].北京中医药大学,北京,41-69(2011).
    [15]王瑶瑶,周芳,张经纬,宋大炜,李松潞,查伟斌,吴晓兰,王广基.抗生素胞内抗菌活性及其细胞药代动力学评价的研究进展[J].中国临床药理学与治疗学,2012,12:1419-1426.
    [16]刁波,唐瑛,文晔,杨李.脑缺血损伤体外模型的建立及评价[J].华南国防医学杂志,2009,06:31-33.
    [17]罗洁.山楂酸对大鼠皮层神经元氧糖剥夺损伤的保护作用[D].中南大学,2012.
    [18].Wang XQ, Yao RQ, Liu X, Huang JJ, Qi DS, et al. Quercetin protects oligodendrocyte precursor cells from oxygen/glucose deprivation injury in vitro via the activation of the PI3K/Akt signaling pathway[J]. Brain Res Bull,2011,86:277-284.
    [19]许蜀闽,王培勇,马红英.连二亚硫酸钠在建立培养细胞的无氧环境中的应用[J].第三军医大学学报,2005,27(2):359-3608
    [20]Wu Y, Yang Z. Protective effects of MCI-186 on ischemic injury in PC 12cells induced by sodium cyanide and sodium dithionite[J]. Chinese Journal of NewDrugs,2003 12(10):825-828.
    [21]Tang BB, Yang G, Xia L, et al. Effects of GM1 on Heme Oxygenase-1 Expression in PCI2 Cells During Oxygen Glucose Deprivation and the Role of Phosphatidylinositol 3-kinase/Akt Pathway in the Course[J]. Medical Journal of Wuhan Universtiy,2006:27(5):580-584.
    [22]Feng B, W ang R, Sheng S L. Mimicmodel of nerve cells in the study of neurodegenera tive disease:origin, characteristics and application of human neuroblastomacell line SH-SY5Y[J]. Chin J Clin Rehabil,2006:10 (6):121-12.
    [23]红景天苷衍生物SO1对谷氨酸及缺氧缺糖所致SH2SY5Y细胞损伤的保护作用
    [24]Tagliari B, Zamin LL, Salbego C G, et al. Homocysteine increases neuronal damage in hippocampal slices receiving oxygen and glucosedeprivation [J]. Metab Brain Dis,2006:21 (4):2732278.
    [25]Nortriptyline protect smitochndria and reduces cerebral ischemia/hypoxia injury [J]. Stroke,2008,39 (2):455-462.
    [26]冯波,王蓉,盛树力.神经退行性疾病研究中拟神经细胞模型:人神经母细胞瘤株SH-SY5Y的来源特性及应用[J].临床康复,2006;10(6):121-123.
    [27]Xie HR, Hu LS, Li GY. SH-SY5Y human neuroblastoma cell line:in vitro cell model of dopaminergic neurons in Parkinson's disease.Chin Med J (Engl) 2010:123 (8):1086-1092
    [28]汪亮.葛根素对大鼠局灶性脑缺血再灌注损伤后TLR4/NF-κB信号通路的影响[D].宁波大学,2012.
    [29]胡文志.葛根素干预核因子-κB防治动脉粥样硬化的实验研究[D].苏州大学,2011.
    [30]程月发,朱国旗,关亚丽,刘颖硕,胡艳,李庆林.葛根素对MPP~+诱导的SH-SY5Y细胞线粒体途径凋亡的保护作用[J].中国中药杂志,2011,09:1222-1226.
    [1]Leeman J R,Gilmore T D. Alternative splicing in the NF-kappaB signaling pathway [J].Gene.2008,423(2):97-107.
    [2]Liu P K,Grossman R G,Hsu C Y, et al. Ischemic injury and faulty gene transcripts in the brain[J]. Trends Neurosci.2001,24 (10):581-588.
    [3]段绍瑾.自由基与衰老[M].合肥:中国科学技术出版社,1999:2565.50.
    [4]许勇,姬汴生,石乐鸣,刘红,张贵卿.米帕明对谷氨酸损伤中枢神经细胞的保护作用[J].滨州医学院学报,2005,28(2):84-86.51.
    [5]Loster H, Bohm U. L-carnitine reduces malondialdehyde concentrations in isolatedrat hearts in dependence on perfusion conditions[J]. Mol Cell Biochem 2001;217(1-2):83-90..
    [6]吴炜景,李理,袁伟锋,李伟峰,黄文杰.NF-κB p65基因在TNF-α诱导的肺泡上皮细胞氧化损伤中的作用[J].中国呼吸与危重监护杂志,2012,01:46-51.
    [7]汪亮.葛根素对大鼠局灶性脑缺血再灌注损伤后TLR4/NF-κB信号通路的影响[D].宁波大学,2012.
    [8]王明智,梅志刚,曾永保,刘晓洁.葛根素通过激活胆碱能抗炎通路抑制大鼠脑缺血再灌注损伤[J].中国老年学杂志,2012,12:2563-2566.
    [9]毛庆军,张军华,夏瑞.葛根素对脑缺血再灌注家兔血浆MDA. SOD含量的影响[J].现代中西医结合杂志,2007,36:5408-5409.
    [10]王维维.葛根素对大鼠缺血性脑损伤的保护作用[J].江苏大学学报(医学版),2013,05:373-376.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700