用户名: 密码: 验证码:
偶氮聚合物材料的光致各向异性和偏振全息研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含偶氮聚合物具有出色的光偏振敏感特性,近些年来在光存储领域被广泛地研究。在可吸收波段的激光照射下,偶氮分子由于发生反复的顺反异构过程而转动;如果作用光是线偏振光,则偶氮分子会被有序排列在垂直于光偏振的方向上,从而样品薄膜表现出光学各向异性(二向色性和双折射特性)。如果采用偏振态空间调制的光场照射偶氮聚合物薄膜,则偶氮分子的取向也相应周期性变化,即在薄膜中完成了偏振全息记录。记录得到的偏振光栅可以控制光束的传播方向和偏振态,在功能性光学器件中有很大应用价值。本论文主要针对含偶氮聚合物薄膜的光致各向异性和偏振全息记录开展了一系列研究。
     首先,介绍了偶氮聚合物材料的化学、光学特性。其中着重介绍了非线性光学、光致异构和光致各向异性特性,这些特性对于光存储研究非常关键。进一步,通过实验具体研究了一种含偶氮离子型液晶聚合物的非线性光学和光致各向异性特性。其三阶非线性折射率由Z扫描方法测量得到,各向异性特性由光致二向色性实验作了定性分析。结果表明,该样品具有较大的三阶非线性折射率和显著的光致各向异性特性,是一种理想的光存储材料。
     其次,研究了三种偶氮聚合物的光致双折射性质。研究了泵浦光强对样品光致双折射值的影响,并采用理论公式对实验结果进行了拟合。另外,结果表明在室温下两种偶氮侧链液晶样品的双折射值(~10~(-2))比普通偶氮侧链样品(~10~(-3))大,并且液晶样品中双折射的存储非常稳定,在弛豫过程中双折射值甚至会自发增大。文中采用液晶材料的自组织特性来解释了这一现象。进一步,温度特性实验表明样品的光致双折射值与温度间存在明显的依赖关系,改变温度能有效控制光致双折射值的大小,文中对其中机制进行了讨论。
     再次,在光致各向异性研究的基础上,完成了两种偶氮液晶聚合物薄膜中的偏振全息记录。实验采用两束偏振相互正交的532nm线偏或圆偏光在薄膜中写入了纯偏振光栅。光栅的偏振特性通过实验和理论两方面研究,尤其是偶氮侧链液晶样品中偏振光栅独特的特性表明,该样品在线偏振记录过程中产生了圆双折射。进一步,提出了一种利用圆偏光偏振全息实现的图像存储方法,该方法中再现图像信号具有较高的衍射效率,并且图像亮度可以通过改变再现光的偏振态来有效控制。
     最后,液晶聚合物样品的偏振全息记录扩展到了二维记录,即采用多次曝光的方法在样品同一点上记录多个偏振光栅。实验中得到的二维偏振光栅由两个正交的一维偏振光栅元组成。光栅特性研究表明,二维光栅的衍射效率较只存在单个一维光栅时低,其偏振特性是两个一维光栅元特性的叠加。进一步,二维偏振光栅被应用到一种光斯托克斯参量测量系统中,达到了简化原系统的目的。测试结果说明改进后的系统能够提供较高的测量精确度,同时也证明了所使用的二维偏振光栅具有良好的稳定性。
In the past decades, azobenzene containing polymers have attracted considerable interest in optical storage owing to their outstanding photoactive characteristics. It is well known that azo molecules undergo trans-cis-trans isomerization cycles under the irradiation at a wavelength lying in the absorption region. If the pump light is linearly polarized, the molecules are oriented perpendicular to the pump polarization direction. This photoinduced orientation results in macroscopic anisotropy, thus the dichroism and birefringence in polymer films. Since azo molecules can be photo-oriented, irradiating with a light field whose polarization is periodically modulated in space can induce the periodical orientation of molecules correspondingly, i.e. polarization holographic recording. The obtained polarization gratings are very useful for highly functionalized optical devices because they can control both the beam propagation direction and polarization state. This thesis gives a detailed description of the photoinduced anisotropy and polarization holography in azo polymer films.
     First of all, the chemical and optical properties of azo polymers are introduced. Especially the characteristics of nonlinear optics, photo-isomerization and photoinduced anisotropy are emphasized, because they are crucial for optical storage. Furthermore, the optical properties of an azo ionic liquid-crystalline (LQ) polymer are investigated experimentally. The third-order nonlinear refractive index is determined by Z-scan measurements, and the photoinduced anisotropy is studied through dichroism. The large value of nonlinear refractive index and pronounced photoinduced anisotropy indicates that the polymer is an ideal material for optical storage.
     Secondly, the photoinduced birefringence of three azo polymers is investigated. The influence of pump intensity on birefringence value is studied, and the experimental results are analyzed by theoretical fitting. The results also indicate that the two azo LQ polymers possess larger birefringence value (~10~(-2)) than that of the ordinary azo side-chain polymer (~10~(-3)) in room temperature, and the stored birefringence in LQ polymers is very stable (even exhibits self-enhancement in relaxation). This phenomenon is attributed to the self-organization effect of the LQ molecules. Moreover, it is proved that the photoinduced birefringence has a strong dependence on the temperature, therefore the birefringence value can be controlled effectively by varying the temperature, and the mechanism is discussed.
     Thirdly, based on the characterization of photoinduced anisotropy, polarization holographic recordings are accomplished in two azo LQ polymers. Pure polarization gratings are recorded by two 532 nm laser beams with both orthogonal linear and circular polarizations. The polarization properties of the gratings are investigated experimentally and theoretically. Especially, the unusual diffraction properties of gratings in azo side-chain LQ polymer reveal that circular birefringence is induced in linear-polarization holographic recording. Furthermore, a method of image storage based on circular-polarization holography is presented, which provides high diffraction efficiency of the reconstructed image and an effective approach to control the image brightness by changing reconstructing polarization.
     At last, the polarization holography in LQ polymers is extended to two-dimensional (2D) recordings, i.e. polarization gratings overlap at the same place through multiple recordings. The 2D polarization grating in present makes up of two orthogonal 1D polarization gratings, which are written by two orthogonally polarized 532 nm beams (linearly or circularly). The diffraction properties of the 2D gratings are investigated. It is found that the diffraction efficiency of 2D grating is lower than that of 1D grating, and the 2D grating acts as the integration of its componential 1D gratings. Furthermore, the 2D grating is applied in a stokes-meter, which simplifies the system. Test results show that the improved stokes-meter can provide a high accuracy, which also indicates the stable performance of the 2D polarization grating.
引文
[1]钱学森,《光子学、光子技术、光子工业》,中国激光,1979,1(1),1-3.
    [2]王玉堂,《光子学与光子技术发展战略研究》,光电子·激光,1998,9(6), 75-78.
    [3]于荣金,《集成光学与光子学》,光电子·激光,1998,9(2), 77-80.
    [4] H. Ooki, "Development of optical disk technology in the 1990s", Opt. Quantum Electronics, 1993, 25(9), 587-595.
    [5]樊美公,《光子存储原理与光致变色材料》,化学进展,1997,9(2),62-70.
    [6] J. Fabian, H. Nakazumi and M. Matsuoka, "Near-infrared absorbing dyes", Chem. Rev., 1992, 92(6), 1197-226.
    [7]彭必光,李群,《光盘染料研究进展》,感光科学与光化学,1994,2,150-65.
    [8] T. Ngerasimova, V. V. Shelkovnikov, "Orgnaic dyes for memory optical discs", Russ. Chem. Rev., 1992, 61(1), 55-66.
    [9] J. E. Kuder, "Organic materials for optical data storage media-an overview", J. Imag. Technol., 1986, 12(3), 140-43.
    [10] M. Matsuoka, "Dyes for optical recording", Mol. Cryst. Liq. Cryst. Sci. Tech. A, 1993, 224, 85-94.
    [11] Y. Suzuki, M. Horie, Y. Okamato, et al., "Thermal and Optical Properties of Metal Azo Dyes for Digital Video Disc-Recordable Discs", Jpn. J. Appl. Phys., 1998, 37(3B), 2084-88.
    [12] Y. Suzuki, Y. Okamato, Y. Kurose, et al. ,“High-Speed Recording Performance of Metal Azo Dye Containing Digital Video Disc-Recordable Discs”, Jpn. J. Appl. Phys., 1999, 38(3B), 1669-74.
    [13] Y. Suzuki, Y Ookijima, Takeshimah, et al., "The 4.7 GB recordable digital versatile disc (DVD-R) for multiple speed recording", Jpn. J. Appl. Phys., 2001, 40(3B), 1588-89.
    [14] C. S. Paik and H. Morawetz, "Photochemical and Thermal Isomerization of Azoaromatic Residues in the Side Chains and the Backbone of Polymers in Bulk", Macromolecules, 1972, 5(2), 171-77.
    [15] J. Minabe, T. Maruyama, S. Yasuda, et al. "Design of dye concentrations in azobenzene-containing polymer films for volume holographic storage", Jpn. J. Appl. Phys., 2004, 43(7B), 4964-67.
    [16] M. Halckel, L. T. Breiner, K. Kreger, et al., "Blends of Poly(methacrylate) Block Copolymers with Photoaddressable Segments", Macromolecules, 2007, 40(6), 2100-08.
    [17] M. Hackel, L. Kador, D. Kropp and H. W. Schmidt, "Polymer blends with azobenzene-containing block copolymers as stable rewritable volume holographic media", Adv. Mater., 2007, 19(2), 227-31.
    [18] T. S. Lee, D. Y. Kim, X. L. Jiang, et al., "Synthesis and optical properties of polyureas with azoaromatic groups in the main chain", Macromol. Chem. Phys., 1997, 198(7), 2279-89.
    [19] P. C. Che, Y. N. He and X. G. Wang, "Hyperbranched azo-polymers synthesized by azo-coupling reaction of an AB(2) monomer and postpolymerization modification", Macromolecules, 2005, 38(21), 8657-63.
    [20] H. Yu, K. Okano, A. Shishido, et al., "Enhancement of Surface-Relief Gratings Recorded on Amphiphilic Liquid-Crystalline Diblock Copolymer by Nanoscale Phase Separation", Adv. Mater., 2005, 17(18), 2184-88.
    [21] Y. Morikawa, S. Nagano, K. Watanabe, et al., "Optical alignment and patterning of nanoscale microdomains in a block copolymer thin film", Adv. Mater., 2006, 18(7),883.
    [22] A. Y. G. Fuh, C. R. Lee and T. S. Mo, "Polarization holographic grating based on azo-dye-doped polymer-ball-type polymer-dispersed liquid crystals", J. Opt. Soc. Am. B, 2002, 19(11), 2590-94.
    [23] N. Kawatsuki, T. Hasegawa, H. Ono and T. Tamoto, "Formation of polarization gratings and surface relief gratings in photocrosslinkable polymer liquid crystals by polarization holography", Adv. Mater., 2003, 15(12), 991.
    [24] S. Yoneyama, T. Yamamoto, O. Tsutsumi, et al., "High-performance material for holographic gratings by means of a photoresponsive polymer liquid crystal containing a tolane moiety with high birefringence", Macromolecules, 2002, 35(23), 8751-58.
    [25] K. Okano, O. Tsutsumi, A. Shishido and T. Ikeda, "Azotolane Liquid-Crystalline Polymers: Huge Change in Birefringence by Photoinduced Alignment Change", J. Am. Chem. Soc., 2006, 128(48), 15368-69.
    [26] C. Barrett, A. Natansohn and P. Rochon, "Thermal Cis-Trans Isomerization Rates of Azobenzenes Bound in the Side Chain of Some Copolymers and Blends", Macromolecules, 1994, 27(17), 4781-86.
    [27] L. Nikolova, P. Markovsky, N. Tomova, et al., "Optically-controlled Photo-induced Birefringence in Photo-anisotropic Materials", J. Mod. Opt., 1988, 35(11), 1789 - 99.
    [28] O.-K. Song, C. H. Wang, and M. A. Pauley, "Dynamic Processes of Optically Induced Birefringence of Azo Compounds in Amorphous Polymers below Tg", Macromolecules, 1997, 30(22), 6913-19.
    [29] T. Buffeteau, F. L. Labarthet, M. Pezolet and C. Sourisseau, "Dynamics of photoinduced orientation of nonpolar azobenzene groups in polymer films. Characterization of the cis isomers by visible and FTIR spectroscopies", Macromolecules, 2001, 34(21), 7514-21.
    [30] R. Raschella, I. G. Marino, P. P. Lottici, et al., "Photoinduced dichroism in dye-dopedhybrid sol-gel films", Opt. Mater., 2006, 28, 909-12.
    [31] M. Dumont and A. El Osman, "On spontaneous and photoinduced orientational mobility of dye molecules in polymers", Chem. Phys., 1999, 245(1-3), 437-62.
    [32] J. A. Delaire and K. Nakatani, "Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials", Chem. Rev., 2000, 100(5), 1817-46.
    [33] M. Eich and J. Wendorff, "Laser-induced gratings and spectroscopy in monodomains of liquid-crystalline polymers", J. Opt. Soc. Am. B, 1990, 7(8), 1428-36.
    [34] M. Eich and J. H. Wendorff, "Erasable holograms in polymeric liquid crystals", Macromol. Chem. Rapid Commun., 1987, 8(9), 467-71.
    [35] W. M. Gibbons, P. J. Shannon, S.-T. Sun and B. J. Swetlin, "Surface-mediated alignment of nematic liquid crystals with polarized laser light", Nature, 1991, 351(6321), 49-50.
    [36] T. Ikeda and O. Tsutsumi, "Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films", Science, 1995, 268(5219), 1873-75.
    [37] N. C. R. Holme, P. S. Ramanujam and S. Hvilsted, "Photoinduced anisotropy measurements in liquid-crystalline azobenzene side-chain polyesters", Appl. Opt., 1996, 35(23), 4622-27.
    [38] N. Pfeffer, T. Isoshima, M. Q. Tian, et al., "Anisotropy in the transient absorption change of a molecular system with two-dimensionally degenerate transitions", Phys. Rev. A, 1997, 55(4), R2507-R10.
    [39] A. Natansohn and P. Rochon, "Photoinduced motions in azo-containing polymers", Chem. Rev., 2002, 102(11), 4139-75.
    [40] H. Ono, A. Emoto, F. Takahashi, et al., "Highly stable polarization gratings in photocrosslinkable polymer liquid crystals", J. Appl. Phys., 2003, 94(3), 1298-303.
    [41] G. Cipparrone, A. Mazzulla, S. P. Palto, et al., "Permanent polarization gratings in photosensitive Langmuir-Blodgett films", Appl. Phys. Lett., 2000, 77(14), 2106-08.
    [42] R. Birabassov and T. V. Galstian, "Analysis of the recording and reconstruction of the polarization state of light", J. Opt. Soc. Am. B, 2001, 18(10), 1423-27.
    [43] P. H. Rasmussen, P. S. Ramanujam, S. Hvilsted and R. H. Berg, "A remarkably efficient azobenzene peptide for holographic information storage", J. Am. Chem. Soc., 1999, 121(20), 4738-43.
    [44] T. Todorov, L. Nikolova and N. Tomova, "Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence", Appl. Opt., 1984, 23(23), 4309-12.
    [45] T. Todorov, L. Nikolova and N. Tomova, "Polarization holography. 2: Polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence", Appl. Opt., 1984, 23(24), 4588-91.
    [46] T. Todorov, N. Tomova and L. Nikolova, "High-sensitivity material with reversible photo-induced anisotropy", Opt. Commun., 1983, 47(2), 123-26.
    [47] L. Nikolova, T. Todorov, V. Dragostinova, et al., "Polarization reflection holographic gratings in azobenzene-containing gelatine films", Opt. Lett., 2002, 27(2), 92-94.
    [48] R. Birabassov, T. V. Galstyan, F. Dechamplain and A. Ritcey, "Polarization recording and reconstruction in Disperse Red 1-doped cellulose acetate", Opt. Lett., 1999, 24(10), 649-51.
    [49] R. Raschella, I. G. Marino, P. P. Lottici and D. Bersani, "Polarization holographic gratings in hybrid solgel films doped with Disperse Red 1", Opt. Lett., 2003, 28(22), 2240-42.
    [50] P. S. Ramanujam, "Evanescent polarization holographic recording of sub-200-nm gratings in an azobenzene polyester", Opt. Lett., 2003, 28(23), 2375-77.
    [51] H. Ono, F. Takahashi, A. Emoto and N. Kawatsuki, "Polarization holograms in azo dye-doped polymer dissolved liquid crystal composites", J. Appl. Phys., 2005, 97(5), 053508.
    [1]魏斌,吴谊群,顾冬红,干福熹,《偶氮染料:新型高密度、多功能光盘存储介质》,功能材料, 2003, 34(1), 1-4.
    [2] J. Griffiths, "II. Photochemistry of azobenzene and its derivatives", Chem. Soc. Rev., 1972, 1(2), 481-93.
    [3] S. Q. Wang, S. Y. Shen, H. J. Xu, et al., "Synthesis and optical properties of an azo metal chelate compound for optical recording medium", Dyes and Pigments, 1999, 42(2), 173-77.
    [4] Y. Suzuki, M. Horie, Y. Okamoto, et al., "Thermal and optical properties of metal azo dyes for digital video disc-recordable discs", Jpn. J. Appl. Phys., 1998, 37(4B), 2084-88.
    [5]耿永友,顾冬红,干福熹,《偶氮金属镍薄膜的折射率和吸收特性研究》,中国激光, 2004, 31(9), 1091-94.
    [6]魏斌,吴谊群,顾冬红,干福熹,《偶氮金属螯合物薄膜的光学常数和吸收光谱》,光学学报, 2004, 24(6), 739-42.
    [7]魏斌,吴谊群,顾冬红,干福熹,《光存储用偶氮镍螯合物染料的光学和热学性质研究》,中国激光, 2004, 31(7), 820-24.
    [8] K. K. Sharma, K. D. Rao and G. R. Kumar, "Nonlinear optical interactions in dye-doped solids", Opt. Quantum Electron., 1994, 26(1), 1-23.
    [9] P. N. Prasad and B. A. Reinhardt, "Is there a role for organic materials chemistry in nonlinear optics and photonics?" Chem. Mater., 1990, 2(6), 660-69.
    [10] J. T. Li, J. L. Shi, C. Y. Wei, et al., "Azo chromophore monomerically bonded mesostructured silica films with large third-order nonlinearity but negligible nonlinear absorption", Journal of Physical Chemistry C, 2008, 112(35), 13754-62.
    [11] Z. Li, A. J. Qin, J. W. Y. Lam, et al., "Facile synthesis, large optical nonlinearity, and excellent thermal stability of hyperbranched poly(aryleneethynylene)s containing azobenzene chromophores", Macromolecules, 2006, 39(4), 1436-42.
    [12] R. Rangel-Rojo, S. Yamada, H. Matsuda and D. Yankelevich, "Large near-resonance third-order nonlinearity in an azobenzene-functionalized polymer film", Appl. Phys. Lett., 1998, 72(9), 1021-23.
    [13]郝红,梁国正,范小东,《"非线性光学聚合物材料的研究进展》,高分子材料科学与工程, 2003, 19(3), 35-39.
    [14] C. L. Folcia, I. Alonso, J. Ortega, et al., "Achiral bent-core liquid crystals with azo and azoxy linkages: Structural and nonlinear optical properties and photoisomerization", Chem. Mater., 2006, 18(19), 4617-26.
    [15] A. Y. G. Fuh, H. C. Lin, T. S. Mo and C. H. Chen, "Nonlinear optical property of azo-dye doped liquid crystals determined by biphotonic Z-scan technique", Opt. Exp., 2005, 13(26), 10634-41.
    [16] S. D. Durbin, S. M. Arakelian and Y. R. Shen, "Optical-Field-Induced Birefringence and Freedericksz Transition in a Nematic Liquid Crystal", Phys. Rev. Lett., 1981, 47(19), 1411-14.
    [17] T. Buffeteau, F. L. Labarthet, M. Pezolet and C. Sourisseau, "Photoinduced orientation of azobenzene chromophores in amorphous polymers as studied by real-time visible and FTIR spectroscopies", Macromolecules, 1998, 31(21), 7312-20.
    [18] T. Buffeteau, F. L. Labarthet, M. Pezolet and C. Sourisseau, "Dynamics of photoinduced orientation of nonpolar azobenzene groups in polymer films. Characterization of the cis isomers by visible and FTIR spectroscopies", Macromolecules, 2001, 34(21), 7514-21.
    [19] T. Huang and K. H. Wagner, "Photoanisotropic incoherent-to-coherent optical conversion", Appl. Opt., 1993, 32(11), 1888-900.
    [20] R. H. Page, M. C. Jurich, B. Reck, et al., "Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films", J. Opt. Soc. Am. B, 1990, 7(7), 1239-50.
    [21] Z. Sekkat and M. Dumont, "Polarization effects in photoisomerization of azo dyes in polymeric films", Appl. Phys. B, 1991, 53(2), 121-23.
    [22] Z. Sekkat and M. Dumont, "Photoassisted poling of azo dye doped polymeric films at room temperature", Appl. Phys. B, 1992, 54(5), 486-89.
    [23] A. Natansohn, S. Xie and P. Rochon, "Azo polymers for reversible optical storage. 2.Poly[4'-[[2-(acryloyloxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene]", Macromolecules, 1992, 25(20), 5531-32.
    [24] T. Todorov, L. Nikolova and N. Tomova, "Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence", Appl. Opt., 1984, 23(23), 4309-12.
    [25] L. Nikolova, P. Markovsky, N. Tomova, et al., "Optically-controlled Photo-induced Birefringence in Photo-anisotropic Materials", J. Mod. Opt., 1988, 35(11), 1789-99.
    [26] X. Meng, A. Natansohn and P. Rochon, "Azo polymers for reversible optical storage: 13. Photoorientation of rigid side groups containing two azo bonds", Polymer, 1997, 38(11), 2677-82.
    [27]吴立锋,彭华根,王晓工等,《芳香族偶氮聚合物的光效应及应用》,高分子材料科学与工程, 2000, 16(4), 147-50.
    [28] N. Nishimura, T. Sueyoshi, H. Yamanaka, et al., "Thermal Cis-to-Trans Isomerization of Substituted Azobenzenes II. Substituent and Solvent Effects", Bulletin of the Chemical Society of Japan, 1976, 49(5), 1381-87.
    [29] T. K. Nobuhiro Kuramoto, "The Photofading of 1-Arylazo-2-naphthols in Solution", J. Soc. Dyers. Colour., 1980, 96(10), 529-34.
    [30] T. Omura, Y. Kayane and Y. Tezuka, "Design of chlorine-fast reactive dyes : Part 1: The role of sulphonate groups and optimization of their positions in an arylazonaphthol system", Dyes and Pigments, 1992, 20(4), 227-46.
    [31] D. G. Whitten, P. D. Wildes, J. G. Pacifici and G. Irick, "Solvent and substituent on the thermal isomerization of substituted azobenzenes. Flash spectroscopic study", J. Am. Chem. Soc., 1971, 93(8), 2004-08.
    [32] M. Sheik-Bahae, A. A. Said, T. H. Wei, et al., "Sensitive measurement of optical nonlinearities using a single beam", IEEE J. Quant. Electron., 1990, 26(4), 760-69.
    [33] Q. Bo, A. Yavrian, T. Galstian and Y. Zhao, "Liquid crystalline ionomers containing azobenzene mesogens: Phase stability, photoinduced birefringence, and holographic grating", Macromolecules, 2005, 38(8), 3079-86.
    [34] K. Okano, O. Tsutsumi, A. Shishido and T. Ikeda, "Azotolane Liquid-Crystalline Polymers: Huge Change in Birefringence by Photoinduced Alignment Change", J. Am. Chem. Soc., 2006, 128(48), 15368-69.
    [1] E. Kim, Y. K. Choi and M. H. Lee, "Photoinduced refractive index change of a photochromic diarylethene polymer", Macromolecules, 1999, 32(15), 4855-60.
    [2] A. Shishido, O. Tsutsumi, A. Kanazawa, et al., "Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by reflection-mode analysis", J. Am. Chem. Soc., 1997, 119(33), 7791-96.
    [3] K. Yamada, W. Watanabe, T. Toma, et al., "In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses", Opt. Lett., 2001, 26(1), 19-21.
    [4] T. Buffeteau, F. L. Labarthet, M. Pezolet and C. Sourisseau, "Photoinduced orientation of azobenzene chromophores in amorphous polymers as studied by real-time visible and FTIR spectroscopies", Macromolecules, 1998, 31(21), 7312-20.
    [5] T. Buffeteau, F. L. Labarthet, M. Pezolet and C. Sourisseau, "Dynamics of photoinduced orientation of nonpolar azobenzene groups in polymer films. Characterization of the cis isomers by visible and FTIR spectroscopies", Macromolecules, 2001, 34(21), 7514-21.
    [6] A. Natansohn, S. Xie and P. Rochon, "Azo polymers for reversible optical storage. 2.Poly[4'-[[2-(acryloyloxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene]", Macromolecules, 1992, 25(20), 5531-32.
    [7] T. Todorov, L. Nikolova and N. Tomova, "Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence", Appl. Opt., 1984, 23(23), 4309-12.
    [8] D. Brown, A. Natansohn and P. Rochon, "Azo Polymers for Reversible Optical Storage. 5. Orientation and Dipolar Interactions of Azobenzene Side Groups in Copolymers and Blends Containing Methyl Methacrylate Structural Units", Macromolecules, 1995, 28(18), 6116-23.
    [9] E. Mohajerani and N. H. Nataj, "Studying the temperature dependence of the laserinduced birefringence in azo dye doped polymer films", Opt. Mater., 2007, 29(11), 1408-15.
    [10] L. Y. Pan, Q. X. Yang, M. Jin, et al., "Temperature dependence of photo-induced birefringence in azo-doped polymers containing different substitutions", J. Phys. D-Appl. Phys., 2004, 37(7), 1002-06.
    [11] T. Ikeda and O. Tsutsumi, "Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films", Science, 1995, 268(5219), 1873-75.
    [12] J. Minabe and K. Kawano, "Reversible control of thermally enhanced birefringence in semicrystalline azo polymer films with polarized light", Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief Commun. Rev. Pap., 2006, 45(5A), 4123-27.
    [13] J. Yang, H. Ming, J. Y. Zhang, et al., "Effects of laser-induced heating on the photoinduced birefringence in azobenzene-side-chain copolymer", Chin. Phys. Lett., 2003, 20(10), 1826-28.
    [14] K. Okano, O. Tsutsumi, A. Shishido and T. Ikeda, "Azotolane Liquid-Crystalline Polymers: Huge Change in Birefringence by Photoinduced Alignment Change", J. Am. Chem. Soc., 2006, 128(48), 15368-69.
    [15] I. Zebger, M. Rutloh, U. Hoffmann, et al., "Photoorientation of a liquid-crystalline polyester with azobenzene side groups: Effects of irradiation with linearly polarized red light after photochemical pretreatment", Macromolecules, 2003, 36(25), 9373-82.
    [16] S. J. Zilker, M. R. Huber, T. Bieringer and D. Haarer, "Holographic recording in amorphous side-chain polymers: a comparison of two different design philosophies", Appl. Phys. B-Lasers Opt., 1999, 68(5), 893-97.
    [17] Y. L. Wu, Y. Demachi, O. Tsutsumi, et al., "Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 1. Effect of light intensity on alignment behavior", Macromolecules, 1998, 31(2), 349-54.
    [18] X. Meng, A. Natansohn and P. Rochon, "Azo polymers for reversible optical storage. 11poly{4,4'-(1-methylethylidene)bisphenylene 3-[4-(4-nitrophenylazo) Phenyl]-3-aza-pentanedioate}", J. Polym. Sci. B: Polym Phys., 1996, 34(1461.
    [19] M. S. Ho, A. Natansohn and P. Rochon, "Azo Polymers for Reversible Optical Storage. 7. The Effect of the Size of the Photochromic Groups", Macromolecules, 1995, 28(18), 6124-27.
    [20] T. C. He, C. S. Wang, X. Pan, et al., "The nonlinear optical property and photoinduced anisotropy of a novel azobenzene-containing fluorinated polyimide", Appl. Phys. B-Lasers Opt., 2009, 94(4), 653-59.
    [21] A. Natansohn and P. Rochon, "Comments on the Paper "Dynamic Processes of Optically Induced Birefringence of Azo Compounds in Amorphous Polymers below Tg" by O.-K. Song, C. H. Wang, and M. A. Pauley (Macromolecules 1997, 30, 6913)", Macromolecules, 1998, 31(22), 7960-61.
    [22]陆伟,佘卫龙,张灵志, "掺杂偶氮苯聚合物薄膜光致双折射特性",中国激光, 2002, 29(9), 845-49.
    [23] R. W. Date, A. H. Fawcett, T. Geue, et al., "Self-ordering within thin films of poly(olefin sulfone)s", Macromolecules, 1998, 31(15), 4935-49.
    [24] J. Minabe, K. Kawano and Y. Nishikata, "Thermally assisted recording of holographic gratings in semicrystalline azobenzene-containing polymers", Appl. Optics, 2002, 41(4), 700-06.
    [25] A. Natansohn, P. Rochon, M. Pezolet, et al., "Azo Polymers for Reversible Optical Storage. 4. Cooperative Motion of Rigid Groups in Semicrystalline Polymers", Macromolecules, 1994, 27(9), 2580-85.
    [26] Z. Sekkat, J. Wood, E. F. Aust, et al., "Light-induced orientation in a high glass transition temperature polyimide with polar azo dyes in the side chain", J. Opt. Soc. Am. B, 1996, 13(8), 1713-24.
    [27] Y. Q. Tian, J. L. Xie, C. S. Wang, et al., "Synthesis and investigation of photoinducedanisotropy of a series of liquid crystalline copolymers with azo groups", Polymer, 1999, 40(13), 3835-41.
    [28] P. S. Ramanujam, "Evanescent polarization holographic recording of sub-200-nm gratings in an azobenzene polyester", Opt. Lett., 2003, 28(23), 2375-77.
    [29] B. Sapich, A. B. E. Vix, J. P. Rabe and J. Stumpe, "Photoinduced self-organization and photoorientation of a LC main-chain polyester containing azobenzene moieties", Macromolecules, 2005, 38(25), 10480-86.
    [30] T. Buffeteau, A. Natansohn, P. Rochon and M. Pezolet, "Study of cooperative side group motions in amorphous polymers by time dependent infrared spectroscopy", Macromolecules, 1996, 29(27), 8783-90.
    [31] F. Dall'Agnol, J. R. Silva, S. C. Zilio, et al., "Temperature dependence of photoinduced birefringence in polystyrene doped with Disperse Red-1", Macromol. Rapid Commun., 2002, 23(16), 948-51.
    [32] M. Schonhoff, M. Mertesdorf and M. Losche, "Mechanism of Photoreorientation of Azobenzene Dyes in Molecular Films", J. Phys. Chem., 1996, 100(18), 7558-65.
    [33] I. Mita, K. Horie and K. Hirao, "Photochemistry in polymer solids. 9. Photoisomerization of azobenzene in a polycarbonate film", Macromolecules, 1989, 22(2), 558-63.
    [34] E. R. Richard, "Effect of free-volume fluctuations on polymer relaxation in the glassy state", J. Polym. Sci., Polym. Symp., 1978, 63(1), 173-83.
    [35] H. Kurihara, A. Shishido, O. Tsutsumi, et al., "Effects of intensity of actinic light and temperature on photochemical phase transition of azobenzene liquid crystals probed by a near-infrared laser beam", Mol. Cryst. Liq. Cryst., 2005, 443(229-38.
    [36] J. Liu, Q. J. Zhang, J. G. Gao, et al., "Photoinduced orientation of azobenzene liquid crystal polymer under irradiation at different temperature", Acta Polymerica Sinica, 2003, 2), 256-60.
    [37] T. Fischer, L. Lasker, S. Czapla, et al., "Interdependence of photoorientation andthermotropic self-organization in photochromic liquid crystalline polymers", Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A-Mol. Cryst. Liq. Cryst., 1997, 297(489-96.
    [38] M. Kidowaki, T. Fujiwara, S. Morino, et al., "Thermal amplification of photoinduced optical anisotropy of p-cyanoazobenzene polymer films monitored by temperature scanning ellipsometry", Appl. Phys. Lett., 2000, 76(11), 1377-79.
    [39] X. Li, X. M. Lu, Q. H. Lu and D. Y. Yan, "Photoorientation of liquid crystalline azo-dendrimer by nanosecond pulsed laser for liquid crystal alignment", Macromolecules, 2007, 40(9), 3306-12.
    [40] S. J. Zilker, T. Bieringer, D. Haarer, et al., "Holographic data storage in amorphous polymers", Adv. Mater., 1998, 10(11), 855-57.
    [1]赵凯华,钟锡华,光学(北京大学出版社, 1999).
    [2] X. An, D. Psaltis and G. W. Burr, "Thermal Fixing of 10,000 Holograms in LiNbO3:Fe", Appl. Opt., 1999, 38(2), 386-93.
    [3] J. F. Heanue, M. C. Bashaw and L. Hesselink, "Volume Holographic Storage and Retrieval of Digital Data", Science, 1994, 265(5173), 749-52.
    [4] F. H. Mok, "Angle-multiplexed storage of 5000 holograms in lithium niobate", Opt. Lett., 1993, 18(11), 915.
    [5] S. D. Kakichashvili, "Method for phase polarization recording of holograms", Sov. J. Quantum. Electron., 1974, 4(6), 795-98.
    [6] L. Nikolova and T. Todorov, "Diffraction Efficiency and Selectivity of Polarization Holographic Recording", J. Mod. Opt., 1984, 31(5), 579 - 88.
    [7] T. Todorov, L. Nikolova and N. Tomova, "Polarization holography. 2: Polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence", Appl. Opt., 1984, 23(24), 4588-91.
    [8] T. Todorov, L. Nikolova and N. Tomova, "Polarization holography. 1: A newhigh-efficiency organic material with reversible photoinduced birefringence", Appl. Opt., 1984, 23(23), 4309-12.
    [9] R. Birabassov and T. V. Galstian, "Analysis of the recording and reconstruction of the polarization state of light", J. Opt. Soc. Am. B, 2001, 18(10), 1423-27.
    [10] H. Ono, A. Emoto, F. Takahashi, et al., "Highly stable polarization gratings in photocrosslinkable polymer liquid crystals", J. Appl. Phys., 2003, 94(3), 1298-303.
    [11] H. Ono, F. Takahashi, A. Emoto and N. Kawatsuki, "Polarization holograms in azo dye-doped polymer dissolved liquid crystal composites", J. Appl. Phys., 2005, 97(5), 053508.
    [12] H. Blume, T. Bader and F. Luty, "Bi-directional holographic information storage based on the optical reorientation of FA centers in KCl:Na", Opt. Commun., 1974, 12(2), 147-51.
    [13] L. Nikolova, T. Todorov and P. Stefanova, "Polarization sensibility of the photodichroic holographic recording", Opt. Commun., 1978, 24(1), 44-46.
    [14] N. F. Borrelli, J. B. Chodak and G. B. Hares, "Optically induced anisotropy in photochromic glasses", J. Appl. Phys., 1979, 50(9), 5978-87.
    [15] J. M. C. Jonathan and M. May, "Anisotropy induced in a silver-silver chloride emulsion by two coherent and perpendicular light vibrations", Opt. Commun., 1979, 29(1), 7-12.
    [16] T. A. Shankoff, "Recording Holograms in Luminescent Materials", Appl. Opt., 1969, 8(11), 2282-84.
    [17] T. Todorov, L. Nikolova, N. Tomova and V. Dragostinova, "Photochromism and dynamic holographic recording in a rigid solution of fluorescein", Opt. Quantum Electron., 1981, 13(3), 209-15.
    [18] T. Todorov, N. Tomova and L. Nikolova, "High-sensitivity material with reversible photo-induced anisotropy", Opt. Commun., 1983, 47(2), 123-26.
    [19]A. Natansohn and P. Rochon, "Photoinduced motions in azo-containing polymers", Chem. Rev., 2002, 102(11), 4139-75.
    [20] C. Barrett, A. Natansohn and P. Rochon, "Thermal Cis-Trans Isomerization Rates of Azobenzenes Bound in the Side Chain of Some Copolymers and Blends", Macromolecules, 1994, 27(17), 4781-86.
    [21]D. Brown, A. Natansohn and P. Rochon, "Azo Polymers for Reversible Optical Storage. 5. Orientation and Dipolar Interactions of Azobenzene Side Groups in Copolymers and Blends Containing Methyl Methacrylate Structural Units", Macromolecules, 1995, 28(18), 6116-23.
    [22] T. Buffeteau, F. L. Labarthet, M. Pezolet and C. Sourisseau, "Photoinduced orientation of azobenzene chromophores in amorphous polymers as studied by real-time visible and FTIR spectroscopies", Macromolecules, 1998, 31(21), 7312-20.
    [23] T. Buffeteau, F. L. Labarthet, M. Pezolet and C. Sourisseau, "Dynamics of photoinduced orientation of nonpolar azobenzene groups in polymer films. Characterization of the cis isomers by visible and FTIR spectroscopies", Macromolecules, 2001, 34(21), 7514-21.
    [24] R. Raschella, L. G. Marino, P. P. Lottici and D. Bersani, "Polarization holographic gratings in hybrid solgel films doped with Disperse Red 1", Opt. Lett., 2003, 28(22), 2240-42.
    [25] P. H. Rasmussen, P. S. Ramanujam, S. Hvilsted and R. H. Berg, "A remarkably efficient azobenzene peptide for holographic information storage", J. Am. Chem. Soc., 1999, 121(20), 4738-43.
    [26] T. Ikeda and O. Tsutsumi, "Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films", Science, 1995, 268(5219), 1873-75.
    [27] K. Okano, O. Tsutsumi, A. Shishido and T. Ikeda, "Azotolane Liquid-Crystalline Polymers: Huge Change in Birefringence by Photoinduced Alignment Change", J. Am. Chem. Soc., 2006, 128(48), 15368-69.
    [28] S. J. Zilker, T. Bieringer, D. Haarer, et al., "Holographic data storage in amorphous polymers", Adv. Mater., 1998, 10(11), 855-57.
    [29] L. Nikolova, T. Todorov, M. Ivanov, et al., "Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy", Appl. Opt., 1996, 35(20), 3835-40.
    [30] S. Pagès, F. Lagugné-Labarthet, T. Buffeteau and C. Sourisseau, "Photoinduced linear and/or circular birefringences from light propagation through amorphous or smectic azopolymer films", Appl. Phys. B, 2002, 75(4), 541-48.
    [31] S. J. Zilker, M. R. Huber, T. Bieringer and D. Haarer, "Holographic recording in amorphous side-chain polymers: a comparison of two different design philosophies", Appl. Phys. B-Lasers Opt., 1999, 68(5), 893-97.
    [32]L. Huff, in Handbook of Optics, edited by M. Bass et al. (McGraw-Hill, New York, 1995), pp. 23.1-23.31.
    [33] M. Eich and J. Wendorff, "Laser-induced gratings and spectroscopy in monodomains of liquid-crystalline polymers", J. Opt. Soc. Am. B, 1990, 7(8), 1428.
    [34] P. F. Wu, X. C. Wu, L. Wang, et al., "Image storage based on biphotonic holography in azo/polymer system", Appl. Phys. Lett., 1998, 72(4), 418-20.
    [35] T. Yamamoto, M. Hasegawa, A. Kanazawa, et al., "Holographic gratings and holographic image storage via photochemical phase transitions of polymer azobenzene liquid-crystal films", Journal of Materials Chemistry, 2000, 10(2), 337-42.
    [36] Q. Yang, Z. Wei, Y. Zhang, et al., "Polarized-light-controlled holographic recording in an azobenzene-doped polymer film", Appl. Phys. B-Lasers Opt., 2001, 72(7), 855-58.
    [37] A. Yavrian, K. Asatryan, T. Galstian and M. Piche, "Real-time holographic image restoration in azo dye doped polymer films", Opt. Commun., 2005, 251(4-6), 286-91.
    [38] B. L. Yao, Z. W. Ren, N. Menke, et al., "Polarization holographic high-density optical data storage in bacteriorhodopsin film", Appl. Optics, 2005, 44(34), 7344-48.
    [1] B. L. Yao, Z. W. Ren, N. Menke, et al., "Polarization holographic high-density optical data storage in bacteriorhodopsin film", Appl. Opt., 2005, 44(34), 7344-48.
    [2] S. J. Zilker, T. Bieringer, D. Haarer, et al., "Holographic data storage in amorphous polymers", Adv. Mater., 1998, 10(11), 855-57.
    [3] R. Birabassov and T. V. Galstian, "Analysis of the recording and reconstruction of the polarization state of light", J. Opt. Soc. Am. B, 2001, 18(10), 1423-27.
    [4] H. Ono, F. Takahashi, A. Emoto and N. Kawatsuki, "Polarization holograms in azo dye-doped polymer dissolved liquid crystal composites", J. Appl. Phys., 2005, 97(5), 053508.
    [5] R. Raschella, L. G. Marino, P. P. Lottici and D. Bersani, "Polarization holographic gratings in hybrid solgel films doped with Disperse Red 1", Opt. Lett., 2003, 28(22), 2240-42.
    [6] A. Natansohn and P. Rochon, "Photoinduced motions in azo-containing polymers", Chem. Rev., 2002, 102(11), 4139-75.
    [7] C. Barrett, A. Natansohn and P. Rochon, "Thermal Cis-Trans Isomerization Rates of Azobenzenes Bound in the Side Chain of Some Copolymers and Blends", Macromolecules, 1994, 27(17), 4781-86.
    [8] C. Provenzano, P. Pagliusi and G. Cipparrone, "Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography", Opt. Exp., 2007, 15(9), 5872-78.
    [9] W. Y. Wu, M. S. Li, H. C. Lin and A. Y. G. Fuh, "Two-dimensional holographic polarization grating formed on azo-dye-doped polyvinyl alcohol films", J. Appl. Phys., 2008, 103(8),
    [10] S. P. Gorkhali, S. G. Cloutier and G. P. Crawford, "Two-dimensional vectorial photonic crystals formed in azo-dye-doped liquid crystals", Opt. Lett., 2006, 31(22), 3336-38.
    [11] G. P. Crawford, J. N. Eakin, M. D. Radcliffe, et al., "Liquid-crystal diffraction gratings using polarization holography alignment techniques", J. Appl. Phys., 2005, 98(12), 10.
    [12] H. Ono, A. Emoto, N. Kawatsuki and T. Hasegawa, "Multiplex diffraction from functionalized polymer liquid crystals and polarization conversion", Opt. Exp., 2003, 11(19), 2379-84.
    [13] S. J. Zilker, M. R. Huber, T. Bieringer and D. Haarer, "Holographic recording in amorphous side-chain polymers: a comparison of two different design philosophies", Appl. Phys. B-Lasers Opt., 1999, 68(5), 893-97.
    [14] J. Minabe, K. Kawano and Y. Nishikata, "Thermally assisted recording of holographic gratings in semicrystalline azobenzene-containing polymers", Appl. Opt., 2002, 41(4), 700-06.
    [15] L. Nikolova, T. Todorov, M. Ivanov, et al., "Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy", Appl. Opt., 1996, 35(20), 3835-40.
    [16]程敏熙,何振江,黄佐华, "偏振光斯托克斯参量的测量和应用",红外与激光工程, 2006, 35(s), 109-15.
    [17]尚世铉,近代物理实验技术(高等教育出版社, 1993), pp. 168-69.
    [18] R. M. A. Azzam, "Division-of-amplitude Photopolarimeter (DOAP) for the Simultaneous Measurement of All Four Stokes Parameters of Light", J. Mod. Opt., 1982, 29(5), 685 - 89.
    [19] R. M. A. Azzam, "Beam-splitters for the Division-of-amplitude Photopolarimeter", J. Mod. Opt., 1985, 32(11), 1407 - 12.
    [20] R. M. A. Azzam, "Arrangement of four photodetectors for measuring the state of polarization of light", Opt. Lett., 1985, 10(7), 309-11.
    [21] R. M. A. Azzam and A. De, "Optimal beam splitters for the division-of-amplitude photopolarimeter", J. Opt. Soc. Am. A, 2003, 20(5), 955-58.
    [22] T. Todorov and L. Nikolova, "Spectrophotopolarimeter: fast simultaneous real-time measurement of light parameters", Opt. Lett., 1992, 17(5), 358-59.
    [23] M. Ivanov, I. Naydenova, T. Todorov, et al., "Light-induced optical activity in optically ordered amorphous side-chain azobenzene containing polymer", J. Mod. Opt., 2000, 47(5), 861-67.
    [24] I. Naydenova, L. Nikolova, P. S. Ramanujam and S. Hvilsted, "Light-induced circular birefringence in cyanoazobenzene side-chain liquid-crystalline polyester films", J. Opt. A-Pure Appl. Opt., 1999, 1(4), 438-41.
    [25] L. Nikolova, T. Todorov, M. Ivanov, et al., "Photoinduced circular anisotropy in side-chain azobenzene polyesters", Opt. Mater., 1997, 8(4), 255-58.
    [26] C. Provenzano, G. Cipparrone and A. Mazzulla, "Photopolarimeter based on two gratings recorded in thin organic films", Appl. Opt., 2006, 45(17), 3929-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700