用户名: 密码: 验证码:
香豆素类金属离子探针的设计、合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以香豆素类化合物为母体,在其不同化学位点连接不同的识别基团,得到了一系列性质各异的金属离子探针,用荧光光谱和紫外光谱研究了这类探针对环境极性的敏感程度和对不同金属离子的识别能力。
     设计、合成了十二个含有N、O和S原子的不同识别基团单臂和双臂单香豆素荧光团分子探针。单臂荧光探针体系中,我们通过对香豆素不同位点的修饰,得到了基于ICT机理的有效专一识别Fe3+的荧光探针7-二乙氨基-N-(2-羟乙基)-3-香豆素甲酰胺(E1)。双臂香豆素类荧光分子探针体系中,我们研究了含有不同杂原子的识别基团对PET型荧光探针识别性能的影响,优化了探针的选择性,得到了可以选择性识别某种过渡金属和重金属离子的荧光增强型分子探针4-[双(N-乙酰氧乙基)氨甲基]-7-甲氧基香豆素(B3)和4-[双(N-二乙氨基硫代甲酰硫乙基)氨甲基]-7-甲氧基香豆素(B4);而在ICT型荧光探针的研究中,我们发现具有不同杂原子的识别基团可以对识别性能产生影响的同时,连接位置的改变也对识别能力有很大的影响。如相同的识别基团二乙醇胺从香豆素的6-位转移到7-位识别性能明显提高,得到了可以较好识别Cu2+和Fe3+的荧光探针。
     以一条具有识别功能的链将两个信号单元连接起来,设计、合成了十三个新的双香豆素荧光团分子探针。在PET型系列探针设计中发现将四甲基三丙撑四胺引入识别基团得到一种不仅可以作为灵敏的氢离子荧光分子开关的探针,荧光强度变化在100倍以上;还可以在水溶液中敏感地选择性络合促进荧光增强识别Hg2+和Fe3+的探针2,6,10,14-四甲基-1,15-双(7-甲氧基-4-香豆素基)-2,6,10,14-四氮杂十五烷(G4)。将比色识别探针( Colorimetric Sensor )应用于Fe3+的检测是非常罕见的。在比色识别探针设计中,得到两种Fe3+比色探针N,N’-双(7-二乙氨基-3-香豆素甲酰基)间苯二甲氨(H3), N,N’-双(7-二乙氨基-3-香豆素甲酰基)己二胺(H4)。同时在ICT型探针的设计中,将亚丙二硫基和亚乙二硫基引入识别基团,得到了两个Hg2+荧光探针1,9-双(4-甲基-7-香豆素氧基)-3,7-二硫杂壬烷(I1), 1,8-双(4-甲基-7-香豆素氧基)-3,6-二硫杂辛烷(I2)。
     利用C=N键异构( C=N isomerization )机理设计了九个以香豆素为母体的希夫碱、腙和酰腙类荧光探针。我们对这类化合物的阳离子识别研究得到两种选择性络合促进荧光增强识别Cu2+的探针3-(2-羟基苯亚胺)甲基-7-二乙氨基香豆素(J1),3-[4-二(2-羟乙基)氨基苯亚胺甲基]-7-二乙氨基香豆素(J2),它们适合于环境微量Cu2+的检测,同时得到一种专一性Fe3+比色探针7-二乙胺基-3-香豆素甲醛缩氨基硫脲(J9)。
A series of probes with various receptors attached to coumarin fluorophores were designed for the detection of metal ions. Their sensitivity to solvent polarity and recognition ability to metal ions were studied through the UV and FL spectra.
     Twelve of single- and double-armed probes were designed by introducing various receptors containing N, O and S atoms to the comarins. The fluorescent probe with single-armed receptor, 3-N-(2-hydroxyethyl)carboxamido-7-(diethylamino) coumarin (E1) shows remarkably sensitivity and selectivity response to Fe3+, which was turned out as an ICT mechanism. In others with double-armed receptors, the probes 4-(N,N-bisacetoxyethylaminomethyl)-7-methoxycoumarin. (B3) and 4-[(N,N- bis(diethylaminodithiocarboxyethyl aminomethyl)-7-methoxycoumarin (B4) with pronounced fluorescence enhancement response to special heavy and transition metal ions were proposed as PET mechanism; for those with double-armed receptors following ICT mechanism, their performances are influenced by not only the structure of the receptors but also the attaching position of it.
     Thirteen fluorescent probes with twin coumarin fluorophores were designed. When 6,10-dimethyl-2,6,10,14-tetraazapentadecane was introduced as spacer and receptor. The probe 2,6,10,14-tetramethyl-1,15-bis(7-methoxy-4-coumarinyl)-2,6,10, 14-tetraazapentadecane (G4) based on PET mechanism was found to enhance the fluorescence intensity to 100 times, which can be used as fluorescent switches for protons. This probe can also recognize Hg~(2+) and Fe~(3+) sensitively in aqueous solution. The colorimetric sensors used to the detection of Fe~(3+) are very scarce. In this thesis, sensors N,N-bis(7-diethylamino-3-coumarinformyl)-m-phenylenebis(methylamine) (H3), N,N-bis(7-diethylamino-3-coumarinformyl)hexanediamine (H4) were found to show excellent selectivity towards Fe~(3+). Two sensors 1,9-bis(4-methoxy-7- coumarinoxy)-3,7-dithianonane (I1), 1,8-bis(4-methoxy-7-coumarinoxy)-3,6- dithia- octane (I2) for recognition of Hg~(2+) were also obtained by introducing 1,3-bis(methylthio)propandiyl and 1,2-bis(methylthio)ethandiyl respectively as the spacer.
     Nine probes based on the C=N isomerization were also synthesized and it was found that two probes 3-(2-hydroxyphenyliminomethyl)-7-diethylaminocoumarin (J1), 3-[(4-bis(2-hydroxyethyl)aminophenyliminomethyl]-7-diethylaminocoumarin (J2) show fluorescence enhancement to Cu~(2+) significantly, which can be used for trace measurement of Cu~(2+) in the enviroment. Another probe 7-diethylamino -3-cumarinaldehyde thiosemicarbazone (J9) was found as colorimetric sensor to Fe~(3+).
引文
[1] Cram, D .J.; Cram, J .M. Host-Guest Chemistry, Science, 1974, 183, 803–809.
    [2]刘育,尤长城,张衡益,超分子化学–合成受体的分子识别与组装,天津:南开大学出版社,2002, 3–4.
    [3] Beer, P. D.; Gale, P. A. Anion recognition and sensing: The state of the art and future perspectives, Angew. Chem. Int. Ed., 2001, 40, 486–516.
    [4]罗晓兰,吡啶脲基化合物的合成、分子识别及配位化学研究:[天津大学硕士学位论文],天津:天津大学,2006, 1–3.
    [5]陈国珍,黄贤智,许金钩等,荧光分析法,北京出版社,1989, 113-145.
    [6] de Silva, A. P.; Gunatame, H. Q. N.; Gunnlauggson T. et al. Signaling recognition events with fluorescent sensors and switches, Chem. Rev., 1997, 97, 1515– 1565.
    [7] Bissell, R. A.; de Silva, A. P.; Gunaratne, H. Q. N.; et al. Molecular fluorescent signaling with“fluor–spacer–receptor”systems: approaches to sensing and switching devices via supramolecular photophysics, Chem. Soc. Rev., 1992, 21, 187–195.
    [8] Wiskur, S. L.; Ait-Haddou, H.; Lavigne, J. J.; Anslyn, E. V. Teaching old indicators new tricks, Acc. Chem. Res., 2001, 34, 963–972.
    [9]何磊,偶氮分子为连接臂的金属离子探针的设计、合成及光学性质研究:[天津大学博士学位论文],天津:天津大学,2008, 1–3.
    [10]张华山,王红,赵媛媛,分子探针与检测试剂,北京:科学出版社,2002, 163–165.
    [11] Cram, D. J. Preorganization-From Solvents to Spherands, Angew. Chem. Int. Ed. Engl., 1986, 25, 1039–1057.
    [12] Yuan, A.; Zhu, M; Han, S. Supramolecular inclusion complex formation and application of beta-cyclodextrin with heteroanthracene ring cationic dyes, Anal. Chim. Acta., 1999, 389, 291–298.
    [13]吴成泰,冠醚化学,北京:科学出版社,1992.
    [14]马会民,马泉莉,杯芳烃光学识别试剂,分析化学,2002,9, 1137–1142.
    [15] Kovalevsky, A. Yu.; Shishkin, O. V.; Ponomarev, I. I. et al. Acta Cryst. C 55, 1999, 1911–1913.
    [16] Kim, J. S.; Quang, D. T. Calixarene-derived fluorescent probes, Chem. Rev., 2007, 107, 3780–3799.
    [17] Valeur, B,; Leray, I. Design principles of fluorescent molecular sensors for cation recognition, Coord. Chem. Rev., 2000, 205, 3–40.
    [18] Wang, Y. C.; Morawetz, H. Studies of intramolecular excimer formation in dibenzyl ether, dibenzylamine, and its derivatives. J. Am. Chem. Soc., 1976, 98, 3611–3615.
    [19] Selinger, B. K. Fluorescence quenching of excited state donor-acceptor pairs in surfactant micelles during a pH titration, Aust. J. Chem., 1977, 30, 2087–2090.
    [20] Nakaya, T.; Tomomoto, T.; Imoto, M. Plastic scintillators. III. the synthesis of some anthracene derivatives as wavelength shifters in plastic scintillators. Bull. Chem. Soc. Jpn., 1966, 39, 1551–1556.
    [21] de Silva, A. P.; de Silva, S. A. Fluorescent signalling crown ethers;“switching on”of fluorescence by alkali metal ion recognition and binding in situ, J. Chem. Soc., Chem. Commun., 1986, 23, 1709–1710.
    [22] de Silva, A. P.; Gunaratne, H. Q. N. Fluorescent PET Sensors Selective for Submicromolar Calcium with Quantitatively Predictable Spectral and Ion-binding Properties, Chem. Commun. 1990, 186–187.
    [23] de Silva, S. A.; Zavaleta, A.; Baron, D. E. A fluorescent PET sensor for cations with an“off–on–off”proton switch. Tetrahedron. Lett., 1997, 38(18), 2237–2240.
    [24] de Silva, A. P.; Gunaratne, H. Q. N.; McCoy, C. P. Nature, 1993, 364, 42.
    [25] Grynkiewicz, G.; Poenie, M.; Tsien, R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties, J. Biol. Chem., 1985, 260, 3440–3450.
    [26] Delmond, S; Letard, J. F.; Lapouyade, R. et al. Cation-triggered photoinduced intramolecular charge transfer and fluorescence red-shift in fluorescence probes, New J. Chem., 1996, 20, 861–869.
    [27] Rettig, W. Top. Curr. Chem., 1994, 169, 253.
    [28] Kakizawa, Y.; Akita, T.; Nakamura, H. Syntheses and complexing behavior of new fluorescent reagents for alkaline earth metal ions, Chem. Lett., 1993, 22, 1671–1674.
    [29] Kim, J. S.; Choi, M. G.; Song, K. C. et al. Ratiometric determination of Hg ions based on simple molecular motifs of pyrene and dioxaoctanediamide,2+Org. Lett., 2007, 9(6), 1129–1132.
    [30] Lee, M. H.; Kim, H. J.; Yoon, S. et al. Metal ion induced FRET off-on in tren/dansyl-appended rhodamine, Org. Lett., 2008, 10(2), 213–216.
    [31] Spesier, S. Photophysics and mechanisms of intramolecular electronic energy transfer in bichromophoric molecular systems: solution and supersonic jet studies, Chem. Rev., 1996, 96, 1953–1976.
    [32] Bourson, J.; Pouget, M. N.; Valeur, B. Ion-responsive fluorescent compounds. 4. effect of cation binding on the photophysical properties of a coumarin linked to monoaza- and diaza-crown ethers, J. Phys. Chem. 1993, 97, 4552–4557.
    [33] Blackburn, C.; Bai, M. Q.; Lecompte, K. A., et al. Lithum responsive fluorophores derived from monoaza-12-crown-4 and coumarin– the influence of a methoxy side-arm on photophysical properties, Tetrahedron Lett., 1994, 35(43), 7915– 1918.
    [34] Crossley, R.; Goolamali, Z.; Gosper, J. J., et al. Synthesis and spectral properties of new fluorescent probes for potassium, J. Chem. Soc., Perkin Trans. 2, 1994, 513– 520.
    [35] Karsh, N.; Erk, C. Bis coumarin podands and their complexes with Na +, K + and Pb 2+ cations, Dyes and Pigments. 1996, 32(2), 85–92.
    [36] Erk, C.; Gocmen, A.; Bulut, M. The synthesis of novel crown ethers. Part IV. Coumarin derivatives of [18]crown-6 and cation binding from fluorescence spectra, J. Inclusion Phenom. Mol. Recognit. Chem., 1998, 31(2), 319–331.
    [37] Habib-Jiwan. J. L.; Branger, C.; Soumillion J. P. et al. Ion-responsive fluorescent compounds V. Photophysical and complexing properties of coumarin 343 linked to monoaza-15crown-5, J. Photochem. Photobiol., A, 1998, 116, 127–133.
    [38] Leray, I. ; Habib-Jiwan, J. L.; Branger, C. et al. Ion-responsive fluorescent compounds VI. Coumarin 153 linked to rigid crowns for improvement of selectivity, J. Photochem. Photobiol., A, 2000, 135 , 163–169.
    [39] Erk, C.; Bulut, M.; G?cmen, A. The synthesis of novel crown ethers, Part VII [1]. Coumarin derivatives of benzocrowns and cation binding from fluorescence spectra, J. Inclusion Phenom. Mol. Recognit. Chem., 2000, 37 , 441–450.
    [40] Li, L. D.; Wei, Y.; Tong, A. J. Study on cation recognition properties of 4-methene-6,7-dimethoxycoumarin-monoaza-18-crown-6, Anal. Chim. Acta, 2001 , 427, 29–37.
    [41] Kele, P.; Orbulescu, J.; Calhoun, T.L. et al. Coumaryl crown ether based chemsensors: selective detection of saxitoxin in the presence of sodium and potassium ions, Tetrahedron Lett., 2002, 43, 4413–4416.
    [42] Chen, C. T.; Huang, W. P. A Highly selective fluorescent chemosensor for lead ions, J. Am. Chem. Soc. , 2002 , 124, 6246–6247.
    [43] Lim, N. C.; Yao, L. L.; Freake, H. C. et al. Synthesis of a fluorescent chemosensor suitable for the imaging of zinc(II) in live cells, Bioorg. Med. Chem. Lett., 2003, 13, 2251–2254.
    [44] Taziaux, D.; Soumillion, J. Ph.; Habib Jiwan, J. L. Photophysical and complexing properties of new fluoroionophores based on coumarin 343 linked to rigidified crown-ethers, J. Photochem. Photobiol., A, 2004, 162 , 599–607.
    [45] Hua, J.; Wang, Y. G. A highly selective and sensitive fluorescent chemosensor for Fe3+ in physiological aqueous solution, Chem. Lett., 2005, 34(1), 98– 99.
    [46] Crossley, R.; Goolamali, Z.; Sammes, P. G. Synthesis and properties of a potential extracellular fluorescent probe for potassium, J . Chem. Soc. , Perkin Trans. 2 ,1994 , 7 , 1615–623.
    [47] Doludda, M.; Kastenholz, F.; Lewitzki, E. et al. Time-resolved response of fluorescent alkali ion indicators and detection of short-lived intermediates upon binding to molecular cavities, J . Fluoresc. , 1996 , 6 (3) , 159–163.
    [48] Buet, P.; Gersch, B.; Grell, E. Spectral properties, cation selectivity, and dynamic efficiency of fluorescent alkali ion indicators in aqueous solution around neutral pH, J . Fluoresc., 2001 , 11 (2) , 79–87.
    [49] Chatterjee, M.; Chatterjee, S.; Roy, M. B. et al. Photophysical properties of tris-methoxycoumarin derivative of a cryptand, J. Lumin., 2002, 99, 175–183.
    [50] Leray, I.; Asfari, Z.; Vicens, J. et al. Photophysics of calix[4]biscrown-based ditopic receptors of caesium containing one or two dioxocoumarin fluorophores, J . Fluoresc., 2004, 14(4), 451–458.
    [51] Souchon, V.; Leray, I.; Valeur, B.; Selective detection of cesium by a water-soluble fluorescent molecular sensor based on a calix[4]arene -bis(crown-6-ether), Chem. Commun., 2006, 4224–4226.
    [52] Jang, Y.J.; Moon, B. S.; Park, M.S. et al. New cavitand derivatives bearing four coumarin groups as fluorescent chemosensors for Cu2+ and recognition of dicarboxylates utilizing Cu2+ complex, Tetrahedron Lett., 2006, 47, 2707–2710.
    [53] Lim, N. C.; Brückner, C. DPA-substituted coumarins as chemosensors for zinc(II): modulation of the chemosensory characteristics by variation of the position of the chelate on the coumarin, Chem. Commun., 2004 , 1094–1095.
    [54] Kulatilleke, C. P.; Silva, S. A.; Eliav, Y. A coumarin based fluorescent photoinduced electron transfercation sensor, Polyhedron, 2006, 25(13), 2593–2596.
    [55] Wang, M.X.; Huang, S.H.; Meng, X. M. et al. Coumarin-coupled receptor as a membrane-permeable, Cu2+-selective fluorescent chemosensor for imaging copper(II) in HEPG-2 Cell, Chem. Lett. , 2008, 37(4) , 462–463.
    [56] Dakanali, M.; Roussakis, E.; Kay, A. R. et al. Synthesis and photophysical properties of a fluorescent TREN-type ligand incorporating the coumarin chromophore and its zinc complex, Tetrahedron Lett., 2005, 46(24), 4193–4196.
    [57] Komatsu, H.; Miki, T.; Citterio, D. et al . Single molecular multianalyte (Ca2+, Mg2+) fluorescent probe and applications to bioimaging, J. Am. Chem. Soc., 2005 , 127 (31), 10798–10799.
    [58] Wang, J. B.; Qian, X. H.; Cui, J. N. Detecting Hg2+ ions with an ICT fluorescentsensor molecule: remarkable emission spectra shift and unique selectivity, J. Org. Chem., 2006 , 71, 4308–4311.
    [59] Wang, M. X.; Meng, X. M.; Zhu, M. Z. A novel selective fluorescent chemosensor for Cu(II), Chin. Chem. Lett., 2007, 18, 1403–1406.
    [60] Brunet, E.; Alonso, M. T.; Juannes, O. et al. Unusual behaviour of 7-diethylamino-3-(3,4-ethylendioxybenzoyl) coumarin towards group IIA cations: A potential photoactive probe for magnesium, Tetrahedron Lett., 1997, 38(25), 4459–462.
    [61] Suzuki ,Y.; Komatsu, H.; Iked, T. et al. Design and synthesis of Mg2+-selective fluoroionophores based on a coumarin derivative and application for Mg2+ measurement in a living cell, Anal. Chem., 2002, 74, 1423–428.
    [62] Wu, J. S.; Liu, W. M.; Zhuang, X. Q. et al. Fluorescence turn On of coumarin cerivatives by metal cations: A new signaling mechanism based on C=N isomerization, Org.Lett., 2007, 9(1), 33–36.
    [63] Sheng, R.; Wang, P. F.; Liu, W. M. A new colorimetric chemosensor for Hg2+ based on coumarin azine derivative, Sens. Actuators, B, 2008, 128, 507–511.
    [64] Jayaraman, S.; Verkman, A. S. Quenching mechanism of quinolinium-type chloride-sensitive fluorescent indicators, Biophys. Chem., 2000, 85, 49–57.
    [65] Geddes, C. D.; Apperson, K.; Karolin, J. et al. Chloride-sensitive fluorescent indicators, Anal. Biochem., 2001, 293, 60–66.
    [66] Amendola, V.; Fabbrizzi, L.; Monzani, E. A concave fluorescent sensor for anions based on 6-Methoxy-1-methylquinolinium, Chem. Eur. J., 2004, 10, 76–82.
    [67] Mizukami, S.; Nagano, T.; Urano, Y. et al. A fluorescent anion sensor that works in neutral aqueous solution for bioanalytical application, J. Am. Chem. Soc., 2002, 124, 3920–3925.
    [68] Ghosh, K.; Adhikari, S. A. Colorimetric and flurescence sensing if anions using thiourea based coumarin receptors,Tetrahedron Lett., 2006, 47, 8165–8169.
    [69] Lee, S. H.; Kim, H. J.; Lee,Y.O. et al. Fluoride sensing with a PCT-based calix[4]arene, Tetrahedron Lett., 2006, 47, 4373–4376.
    [70] Lee, Y. O.; Lee, J. Y.; Quang, D. T. et al. Pyrene-coumarin Based Calix Fluorophore Emitting Exciplex, Bull. Korean Chem. Soc., 2006, 27(9), 1469–1472.
    [71] Lee, M. H.; Quang, D. T.; Jung, H. S. et al. Ion-induced FRET on-off in fluorescent calix[4]arene, J. Org. Chem., 2007, 72, 4242–4245.
    [72] Lee, K. S.; Kim, H. J.; Kim, G. H. et al. Fluorescent chemodosimeter for selective detection of cyanide in water, Org. Lett., 2008, 10(1),49–51.
    [73] Grady, T.; Harris, S. J.; Smyth, M. R. et al. Determination of the enantiomericcomposition of chiral amines based on the quenching of the fluorescence of a chiral calixarene, Anal. Chem., 1996, 68, 3775–3782.
    [74] Sandanayake, K. R. A. S.; Imazu, S.; James, T. D. Molecular fluoresence sensor for sacchrides based on amino coumarin, Chem. Lett.,1995,139–140.
    [75] Plater, M. J.; Greig, I.G.; Helfrich, M. H. The synthesis and evaluation of o-phenylenediamine derivatives as fluorescent probes for nitric oxide detection, J. Chem. Soc., Perkin Trans., 2001, 1, 2553–2559.
    [76] Feuster, E. K.;Glass, T. E. Detection of amines and unprotected amino acids in aqueous conditions by formation of highly fluorescent iminium ions, J. Am. Chem. Soc., 2003, 125, 16174–16175.
    [77] Soh, N.; Sakawaki, O.; Makihara, K. Design and development of a fluorescent probe for monitoring hydrogen peroxide using photoinduced electron transfer, Bioorg. Med. Chem., 2005, 13, 1131–1139.
    [78] Achim, M.; Hans, R.; Stephan, D. Supramolecular inorganic chemistry: small guests in small and large hosts, Angew. Chem. Int. Ed. Engl., 1995, 34, 2328–2361.
    [79] Balzani, V.; Supermolecular photochemistry-Forword, New J. Chem., 1996, 20, 723–724.
    [80]祁刚,溴甲基取代的香豆素的合成,安徽化工,2006,32,32–32.
    [81] Nam, N. H.; Kim, Y.; You, Y. J. et al. Preliminary Structure-Antiangiogenic Activity Relationships of 4-Senecioyloxymethyl-6,7-dimethoxycoumarin, Bioorg. Med. Chem. Lett., 2002, 12(17), 2345–2348.
    [82] Findlay, J. A.; Mebe, P.; Stern, M. D. et al. Total synthesis of 3,17-dihydroxy-6-oxaestra-1,3,5(10),7-tetraen and related miroestrol analogues, Can. J. Chem., 58(14), 1427–1434.
    [83] Silva, A. P. D.; Gunaratne, H. Q. N.; Lynch, P. L. M. et al. Luminescence and Charge Transfer. Part 3. The Use of Chromophores with ICT (Internal Charge Transfer) Excited States in the Construction of Fluorescent PET (Photoinduced Electron Transfer) pH Sensors and Related Absorption pH Sensors with Aminoalkyl Side Chains, J. Chem. Soc., Perkin Trans. 2: Physical Organic Chemistry (1972-1999), 1993, 9, 1611–1616.
    [84]祁刚,屠树滋,6-硝基香豆素的简便合成,生物质化学工程,2006,40,23–24.
    [85] Ganguly, N.; Sukai, A. K.; De, S., Cerium(IV) ammonium nitrate mediated nitration of coumarins, Synth. Commun., 2001, 31(2), 301–310.
    [86] Chakravarti, Journal of the Indian Chemical Society, 1931, 8, 503, 506.
    [87] Atkins, R. L.; Bliss, D. E., Substituted coumarins and azacoumarins. Synthesis and fluorescent properties, J. Org. Chem., 1978, 43, 1975– 1980.
    [88] Besson, T.; Joseph, B.; Moreau, et al. Synthesis and fluorescence properties of anew heterobifunctional fluorescent probes, Heterocycles, 1992, 34(2), 273– 291.
    [89] Suzuki, M.; Yu, D. L.; Morris-Natschke, S.L. et al., Anti-AIDS agents 66: Syntheses and anti-HIV activity of phenolic and aza 3',4'-di-O-(-) -camphanoyl-(+)-cis-khellactone (DCK) derivatives, Bioorg. Med. Chem., 2007, 15(21), 6852– 6858.
    [90] Specht, D. P.; Martic, P. A.; Farid, S., Ketocomarins. A new class of triplet sensitizers, Tetrahedron, 1982, 38(9), 1203– 1211.
    [91] Takadate, A.; Yagashiro, I.; Irikura, M. et al. 3-(7-Methocycoumarin-3-cabonyl)- and 3-(7-dimethylaminocoumarin-3-carbonyl)-2-oxanolones as new fluorescent labeling reagents for high-performance liquid chromatography, Chem. Pharm. Bull., 1989, 37(2), 373– 376.
    [92] Gen, A.;Film, C. Patent, 1953, US 2789125.
    [93] Corrie, J. E. T., Thiol-reactive Fluorescent probes for Protein Labelling, J. Chem. Soc., Perkin Trans. 1, 1994, 20, 2975– 2982.
    [94] Valizadeh, H.; Shockravi, A.; Gholipur, H. Microwave assisted synthesis of coumarins via potassium carbonate catalyzed Knoevenagel condensation in 1-n-butyl-3-methylimidazolium bromide ionic liquid, J. Heterocycl. Chem., 2007 44(4), 867– 870.
    [95] Wenska, G.; Paszyc, S.Ground and excited-state interaction of coumarin and nucleotide base, Can.J.Chem.,1988, 66, 513– 516.
    [96] Jones, G.; Jackson, W. R.;Choi, C.Y. Solvent effects on emission yield and lifetime for coumarin laser dyes. Requirements for a rotatory decay mechanism, J. Phys. Chem., 1985, 89, 294– 300.
    [97] Fedorova, O. A.; Strokach, Y. P.; Gromov, S. P. et al. Effect of metal cations on the photochromic properties of spironaphthoxazines conjugated with aza-15(18)-crown-5(6) ethers, New J. Chem., 2002, 1137–1145.
    [98] Islam, M.; Khanin, M.; Sadik, O. A. Fluorescent Chelates for Monitoring Metal Binding with Macromolecules, Biomacromolecules, 2003, 4(1), 114–121.
    [99] Morozumi, T.; Anada, T.; Nakamura, H. New Fluorescent "Off-On" Behavior of 9-Anthryl Aromatic Amides through Controlling the Twisted Intramolecular Charge Transfer Relaxation Process by Complexation with Metal Ions, J. Phys. Chem. B., 2001, 105(15), 2923–2931.
    [100] Shen, Q.; Peng, Q.; Shao, J. L. et al. Synthesis and biological evaluation of functionalized coumarins as acetylcholinesterase inhibitors, Eur. J. Med. Chem., 2005, 40(12), 1307–1315.
    [101] Valizadeh, H.; Shockravi, A. An efficient procedure for the synthesis of coumarin derivatives using TiCl4 as catalyst under solvent-free conditions, Tetrahedron Lett.,. 2005, 46(20), 3501–3504.
    [102] Thakar, K. A.; Pathak, R. V.; Dumir, A. B. et al. Synthesis of unsymmetric bis-coumarinoxy-alkanes, J. Indian Chem. Soc., 1980, 57, 89– 91.
    [103] Abyshev, A. Z.; Alekseev, A. T.; Platonov, V. G. et al. Synthesis and antiviral activity of benzopyran-2-one derivatives, Pharm. Chem. J., 1996, 30(7), 441– 444.
    [104] Eisenstein, R. S. Iron regulatory proteins and the molecular control of mammalian iron metabolaism, Annu. Rev. Nutr., 2000, 20, 627– 662.
    [105] Bricks, J. L.; Kovalchuk, C.; Trieflinger, C. et al. On the development of sensor molecules that display FeIII-amplified Fluorescence, J. Am. Chem. Soc., 2005, 127, 13522– 13529.
    [106] Saravanakumar, D.; Devaraj, S.; Iyyampillai, S. et al. Schiff’s base phenol–hydrazone derivatives as colorimetric chemosensors for fluoride ions. Tetrahedron Lett., 2008, 49 ,127– 132.
    [107]朱维平,徐玉芳,钱旭红,具有重要生物学意义的重金属及过渡金属离子荧光分子探针,化学进展,2007,19(9),1229– 1238.
    [108] Tkach, I. I.; Mikhailova, T. A.; Savvina, L. P. et al. Synthesis, luminescence, and spectral characteristics of 7-diethylamino-3-(2-arylethenyl)coumarins, Chem. Heterocycl. Compd. 1992, 28(9), 985– 989.
    [109] Cho, Y. H.; Park, J. C. A Vety Convenient Dimethylamination of Activated Aromatic Halides Using N,N-Dimethylformamide and Ethanolamines. Tetrahedron Lett., 1997, 38(48), 8331– 8334.
    [110] Meo, P. L.; D'Anna, F.; Riela, S. et al. Host-guest interactions involving cyclodextrins: useful complementary insights achieved by polarimetry. Tetrahedron, 2007, 63(37), 9163– 9171.
    [111] Tong, L. K. J.;Glesmann, M. C.; Bent, R. L. The mechanism of dye formation in color photography. VII. Intermediate bases in the deamination of quinonediimines. J. Am. Chem. Soc., 1960, 82(8), 1988– 1996.
    [112] Kim, D.; Wang, L.; Beconi, M. et al. (2R)-4-Oxo-4- [3-(Trifluoromethyl) -5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: A Potent, Orally Active Dipeptidyl Peptidase IV Inhibitor for the Treatment of Type 2 Diabetes, J. Med. Chem., 2005, 48(1),141– 151.
    [113] Spingarn, N. E.; Sartorelli,A. C. Synthesis and evaluation of the thiosemicarbazone, dithiocarbazonate, and 2'-pyrazinylhydrazone of pyrazinecarboxaldehyde as agents for the treatment of iron overload. J. Med. Chem., 1979; 22(11), 1314– 1316.
    [114] Alhaider, A. A.; Abbdelkader, M. A.; Lien, E. J. Design, synthesis, and pharmacological activities of 2-substituted 4-phenylquinolines as potential antidepressant drugs, J. Med. Chem, 1985, 28 (10), 1394– 1398.
    [115] Khan, K. M.; Rasheed, M.; Zia-Ullah. et al. Synthesis and in vitro leishmanicidal activity of some hydrazides and their analogues, Bioorg. Med. Chem., 2003, 11(7), 1381– 1388.
    [116] Chang, H. T.; Chiang, K. C.; Wong, F. F. et al. Synthesis and charaterization of 1,3,4-oxadiazoles carrying triazolopyridinone and carbazole as the potential bluish-green electroluminescent materials for the single layer device, Heterocycles, 2006, 68(8), 1585– 1594.
    [117] Reich, M. F.; Fabio, P. F.; Lee, V. J. et al. Pyrido(3,4-e)-1,2,4-triazines and Related Heterocycles as Potential Antifungal Agents, J. Med. Chem., 1989, 32; (11), 2474– 2485.
    [118] Browne, W. R.; O'Connor, C. M.; Hughes, H. P. et al. Ruthenium(II) and osmium(II) polypyridyl complexes of an asymmetric pyrazinyl- and pyridinyl-containing 1,2,4-triazole based ligand. Connectivity and physical properties of mononuclear complexes, J. Chem. Soc., Dalton Trans., 2002, 21, 4048– 4054.
    [119] Macaev, F.; Rusu, G.; Pogrebnoi, S. et al. Synthesis of novel 5-aryl-2-thio-1,3,4-oxadiazoles and the study of their structure-anti- mycobacterial activities, Bioorg. Med. Chem., 2005, 13(16), 4842– 4850.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700