用户名: 密码: 验证码:
基于局域表面等离激元共振的分子取向和分子光致异构效率调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米光子学研究纳米材料与物质的相互作用,是一门新兴学科。在纳米光子学中,金属纳米材料是最受研究关注的材料,利用金属纳米材料表面等离激元共振效应突破传统光学衍射极限,可以实现微电子与光子在同一芯片上的集成。此外,金属纳米材料表面等离激元共振效应可以增强荧光分子辐射效率,控制纳米颗粒取向和转动,是改变物质物理光学性质的理想选择。本博士论文围绕金纳米颗粒局域表面等离激元共振效应对偶氮分子光致异构量子效率的影响和对定向液晶盒中液晶分子光致取向增强效应进行了深入地探讨和研究。取得的成果包括:
     1.首次测量得到偶氮分子顺式异构体(cis)的二阶光学超极化率数值,将cis分子对偶氮薄膜光学非线性系数的贡献考虑在内,完善了光泵浦下偶氮染料三阶光学非线性系数的理论模型。实验上测量了偶氮薄膜三次谐波信号与泵浦光强的关系,利用推导的理论模型对实验数据进行拟合,最终推出cis分子的二阶光学超极化率数值为5.6×10-33esu。
     2.利用金纳米颗粒表面等离激元共振效应带来的局域场增强和能量转移成功调控偶氮染料分子的光致异构量子效率。可将该量子效率增大一倍,或显著降低。通过表面增强拉曼散射和荧光淬灭实验,证实了量子效率的提高或降低取决于金纳米颗粒局域场增强效应和能量共振转移作用的竞争。通过在金纳米颗粒薄膜和偶氮染料分子薄膜之间加入不同厚度的隔离层,实现量子效率的精确调控。
     3.发现经金纳米颗粒修饰的液晶盒定向层受到与局域等离激元共振的激光辐照时,会有效降低液晶的锚定能。利用这一新的效应,观察到对应液晶分子转动的光学Freedericksz相变阈值下降1-2个量级。该效应也使液晶分子响应的动力学过程发生改变,缩短了液晶盒的光响应时间。
Nanophotonics is a new branch of science which studies the interaction between matter and nanomaterials. Among kinds of nanomaterials, metal nanomaterials are research concern. Surface plasmon resonance (SPR) of metal materials can break the diffraction limit of conventional optics, leading to the integration of light and electron on the same chip. Meantime, SPR is able to enhance the radiation efficiency of fluorescence molecules and control the rotation and orientation of nanoparticles, making metal nanomaterials a good choice to change the physical-optical properties of matter. This Ph.D thesis focuses on the research topic "Controlling photoisomerization quantum efficiency (PQE) of azobenzene dye and enhancing optical-induced reorientation of liquid crystals (LC) by localized surface plasmon resonance (LSPR) of gold nanoparticle film". The influence of LSPR to PQE of azobenzene dye and optical nonlinear property of LC has been investigated. The main achievements are as follow:
     1. for first time we obtain the second order hyperpolarizability of cis isomer. Contribution of cis isomer to third-order nonlinear susceptibility of azobenzene film is brought in and the theory of optically induced anisotropy of third-order nonlinear susceptibility in azobenzene dye polymers is supplemented. Experimentally optical third harmonic generation (THG) of azobenzene dye polymer under various intensity of linearly polarized optical beam was recorded. Then experimental data was fitted by theory and finally the second order hyperpolarizability of cis isomer is deduced to be5.6×10-33esu.
     2. trans-to-cis photoisomerization quantum efficiency (PQE) of azobenzene dye is artificially modified by surface plasmon resonance (SPR) induced local field enhancement and energy transfer of Au nanoparticles film. PQE can either increase one time larger or decrease dramatically. Using surface enhanced raman scattering and fluorescence quenching experiments, it is found that SPR of Au nanoparticles film enhances PQE and energy transfer lows it. PQE is further accurately modified by controlling the distance between azobenzene dye and Au nanoparticles film.
     3. surface anchoring energy of Au nanoparticles coated liquid crystal cell can be effectively decreased when pumped by resonant optical beam. As a result, the threshold of optical Freedericksz phase transition is lowed by one to two orders of magnitude. Meanwhile, the response time of LC to optical pump is also shortened.
引文
[1]J. H. Davies, The Physics of Low-dimensional Semiconductors, Cambridge University Press,1998
    [2]C. Klingshirn. Semiconductor Optics, Springer,1955
    [3]S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals, Cambridge Unicersity Press,1998
    [4]M. Born and E. Wolf, Principles of Optics, Macmilan,1964
    [5]A. Yariv and P. Yeh, Optical Waves in Crystals, John Wiley and Sons,1984
    [6]J. D. Joannopoulos, R. D. Meade and J. N. Winn. Photonic Crystals:Molding the Flow of Light, Princeton University Press,1955
    [7]L. Novotny and B. Hecht. Principles of Nano-Optics, Cambridge University Press,2007
    [8]A. M. Zheltikov. Optics of Microstructured Fibers, Moscow Nauka,2004
    [9]Y. Yamamoto, F. Tassone and H. Cao. Semiconductor Cavity Quantum Electrodynamics, Springer-Verlag,2000
    [10]V. P. Bykov. Radiation of Atoms in a Resonant Environment, World Scientific, 1993
    [11]D. S. Mogilevtsev and S. Y. Kilin. Quantum Optics Methods of Structured Reservoirs, Belorusskaya Nauka,2007
    [12]U. Kreibig and M. Vollmer. Optical Properties of Metal Clusters, Springer,1995
    [13]S. A. Maier. Plasmonics:Fundamentals and Applications, Springer Verlag,2007.
    [14]J. Zhang, L. Zhang and W. Xu, Surface Plasmon Polaritons:physics and applications, J. Phys. D:Appl. Phys.45 113001 (2012)
    [15]W. L. Barnes, A. Dereux, T. W. Ebbesen:Surface plasmon subwavelength optics, Nature 424,824 (2003).
    [16]J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi:Guiding of a one-dimensional optical beam with nanometer diameter, Opt. Lett.22,475 (1997).
    [17]M. Quinten, A. Leitner, J. R. Krenn, F. R. Aussenegg:Electromagnetic energy transport via linear chains of silver nanoparticles, Opt. Lett.23,1331 (1998).
    [18]S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha:Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmonwaveguides, Nature Mater.2,229 (2003).
    [19]J. R. Krenn, J. C. Weeber:Surface plasmon polaritons in metal stripes and wires, Philos. Trans. Roy. Soc. A 326,739 (2004).
    [20]A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M.S. Larsen, and S.I. Bozhevolnyi:Integrated optical components utilizing long-range surface plasmon polaritons, J. Lightwave Technol.23,413 (2005).
    [21]N. Fang, X. Zhang:Imaging properties of a metamaterial superlens, Appl. Phys. Lett.82(2),161-163(2003).
    [22]Z. Liu, N. Fang, T.J. Yen, X. Zhang:Rapid growth of evanescent wave by a silver superlens, Appl. Phys. Lett.83 (25) 5184-5186 (2003).
    [23]P.V. Parimi, W.T. Lu, P. Vodo, S. Sridhar:Photonic crystals—Imaging by flat lens using negative refraction, Nature 426 (4965),404 (2003).
    [24]S. Anantha Ramakrishna:Physics of negative refractive index materials, Rep. Prog. Phys.68 (2),449-521 (2005).
    [25]S.A. Maier, P.G Kik, H.A. Atwater:Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths:Estimation of waveguide loss, Appl. Phys. Lett.81,1714 (2002)
    [26]Y. J. Kim, R. C. Johnson and J. T. Hupp, Gold nanoparticle-based sensing of "spectroscopically silent" heavy metal ions, Nano Lett.1,165 (2001)
    [27]A. R. Tao, S. Habas and P. D. Yang, Shape control of colloidal metal nanocrystals, Small,4,310(2008)
    [28]K.R.Brown and M.Natan, Hydroxylamine Seeding of Colloidal Au Nanoparticles in Solution and on Surfaces, Langmuir,14,726 (1998)
    [29]Y. L. Wang, H. J. Chen and E. Wang, Facile fabrication of gold nanoparticle arrays for efficient surface-enhanced Raman scattering, Nanotech.19,105604 (2008)
    [30]A. Bek et al, Fluorescence Enhancement in Hot Spots of AFM-Designed Gold Nanoparticle Sandwiches, Nano. Lett.8,485 (2008)
    [31]S. K. Ghosh and T. Pal, Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles:From Theory to Applications, Chem. Rev.107, 4797 (2007)
    [32]S. R. Emory and S. Nie, Near-field surface-enhanced Raman spectroscopy on single silver nanoparticles, Anal. Chem.1997,69,2631.
    [33]E. Katz and I. Willner, Integrated Nanoparticle-Biomolecule Hybrid Systems: Synthesis, Properties, and Applications, Angew. Chem. Int. Ed.43,6042 (2004)
    [34]S. Link and M. A. El-Sayed, Optical Properties and Ultrafast Dynamics of Metallic Nanocrystals, Annu. Rev. Phys. Chem.54,331 (2003)
    [35]S. Guo and E. Wang, Synthesis and electrochemical applications of gold nanoparticles, Anal. Chim. Acta.598,181 (2007)
    [36]Z. Deng, S. H. Lee and C. Mao, DNA as nanoscale building blocks. J. Nanosci. Nanotechnol.5,1954(2005)
    [37]Y. Lu, and J. Liu, Functional DNA nanotechnology:emerging applications of DNA zymes and aptamers, Curr. Opin. Biotechnol.17,580 (2006)
    [38]W. Zhao, M. A. Brook and Y. Li, Design of Gold Nanoparticle-Based Colorimetric Biosensing Assays, Chembiochem.9,2363 (2008)
    [39]K. K. Chan, et al. Gold-nanoparticle-based miniaturized laser-induced fluorescence probe for specific DNA hybridization detection:studies on size-dependent optical properties, Nanotechnology,17,3085 (2006)
    [40]K. Jongwook, et al, Plasmon-Induced Modification of Fluorescent Thin Film Emission Nearby, Gold Nanoparticle Monolayers, Langmuir,26,8842 (2010)
    [41]F. Xie, M. S. Baker and E. M. Goldys, Enhanced Fluorescence Detection on Homogeneous Gold Colloid, Self-Assembled Monolayer Substrates, Chem. Mater.20,1788(2008)
    [42]K. Vasiliev, W. Knoll, M. Kreiter:Fluorescence intensities of chromophores in front of a thin metal film, J. Chem. Phys.120,3439 (2004).
    [43]R.M Amos, W.L Barnes:Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror, Phys. Rev. B.55,7249 (1997).
    [44]K. Wang, E. Schonbrun, P. Steinvurzel and K. Crozier, Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink, Nature Communication,2,469 (2011)
    [1]S. Loudwig and H. Bayley, Photoisomerization of an Individual Azobenzene Molecule in Water:An On-Off Switch Triggered by Light at a Fixed Wavelength, J. Am. Chem. Soc.128,12404 (2006)
    [2]T. Ikeda and O. Tsutsumi, Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films, Science.268,1873 (1995)
    [3]D. C. Burns, F. Z. Zhang and G. A. Woolley, Synthesis of 3,3'-bis (sulfonato)-4,4'-bis (chloroacetamido) azobenzene and cysteine cross-linking for photo-control of protein conformation and activity, Nat Protoc.2,251 (2007)
    [4]B. Y. Choi, et al, Conformational molecular switch of the azobenzene molecule:A scanning tunneling microscopy study, Phys. Rev. Lett.96,156106 (2006)
    [5]B. L. Feringa, R. A. Delden, N. Koumura and E. M. Geertsema, Chiroptical molecular switches, Chem. Rev.100,1789 (2000)
    [6]X. Pan, C. S. Wang, C. Y. Wang and X. Q. Zhang, Image storage based on circular-polarization holography in an azobenzene side-chain liquid-crystalline polymer, Appl. Optics.47,93 (2008)
    [7]A. Shishido, et al, Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by reflection-mode analysis, J. Am. Chem. Soc.119,7791 (1997)
    [8]A. S. Kumar, et al, Reversible photo-switching of single azobenzene molecules in controlled nanoscale environments, Nano. Lett.8,1644 (2008)
    [9]Z. F. Liu, K. Hashimoto and A. Fujishima, Photoelectrochemical Information-Storage Using an Azobenzene Derivative, Nature.347,6294 (1990)
    [10]S. Hvilsted, et al, Novel Side-Chain Liquid-Crustalline Polyester Architecture for Reversible Optical Storage, Macromolecules,28,2172 (1995)
    [11]R. Hagen and T. Bieringer, Photoaddressable polymers for optical data storage, Adv. Mater.13,1805(2001)
    [12]N. K. Mal, M, Fujiwara, Y. Tanaka, T. Taguchi and M. Matsukata, Photo-switched storage and release of guest molecules in the pore void of coumarin-modified MCM-41, Chem. Mater.15,3385 (2003)
    [13]Z. Deng, S. H. Lee and C. Mao, DNA as nanoscale building blocks. J. Nanosci. Nanotechnol.5,1954 (2005)
    [14]M. J. Comstock, et al, Reversible Photomechanical Switching of Individual Engineered Molecules at a Metallic Surface, Phys. Rev. Lett.99,038301 (2007)
    [15]C. R. Mendonca, et al, Optical storage and surface-relief gratings in azobenzene-containing nanostructured films, Adv Colloid Interfac,116,179 (2005)
    [16]D. Gindre, A. Boeglin, A. Fort, L. Mager, and K. D. Dorkenoo, Rewritable optical data storage in azobenzene copolymers. Opt. Express.14,9896 (2006)
    [17]V. M. Churikov and C. C. Hsu, Optically induced anisotropy of third-order susceptibility in azo-dye polymers, J. Opt. Soc. Am. B.18,1722 (2001)
    [18]H. Rau, G. Greiner, G. Gauglitz, H. Meier, Photochemical quantum yields in the A (+hv)(?)B(+hv,△) system when only the spectrum of A is known, J. Phys. Chem. 94,6523(1990)
    [19]E. Fisher, Calculation of photostationary states in systems A(?)B when only A is known, J. Phys. Chem.71,3704 (1967)
    [1]. Benjamin Dietzek, Ben Bruggemann, Torbjorn Pascher, and Arkady Yartsev. Mechanisms of Molecular Response in the Optimal Control of Photoisomerization, Phys. Rev. Lett.97,258301 (2005)
    [2]. Kunihito Hoki and Paul Brumer. Mechanisms in Adaptive Feedback Control Photoisomerization in a Liquid, Phys. Rev. Lett.95,168305 (2005)
    [3].G.Vogt, G.Krampert, P. Niklaus, P. Nuernberger and G. Gerber. Optimal Control of Photoisomerization, Phys. Rev. Lett.94,068305 (2005)
    [4]. V. A. Prokhorenko, et al. Coherent Control of Retinal Isomerization in Bacteriorhodopsin, Science,313,1257 (2006)
    [5]. S. C. Flores, V. S. Batista, Model Study of Coherent-Control of the Femtosecond Primary Event of Vision J. Phys. Chem. B 108,6745 (2004).
    [6]. Y. Ohtsuki, K. Ohara, M. Abe, K. Nakagami, Y. Fujimura, New Quantum Control Pathway for a Coupled-Potential System, Chem. Phys. Lett.369,525 (2003).
    [7]. M. J. Comstock, N. Levy, A. Kirakosian, J. Cho, F. Lauterwasser, J. H. Harvey, D. A. Strubbe, J. M. Frechet, D. Trauner, S. G.Louie, and M. F. Crommie, Reversible photomechanical switching of individual engineered molecules at a metallic surface, Phys. Rev. Lett.99,038301 (2007).
    [8]. A. S. Kumar, et al, Reversible photomechanical switching of individual engineered molecules at a metallic surface, Nano. Lett.8,1644 (2008)
    [9]. W. R. Browne and B. L. Feringa, Light Switching of Molecules on Surfaces, Annu. Rev. Phys. Chem.60,407 (2009)
    [10]. A. Micol, et al, Adsorption and switching properties of azobenzene derivatives on different noble metal surfaces:Au(111), Cu(111), and Au(100), J. Phys. Chem. C.112,10509(2008)
    [11]. H. Sebastian, et al, Excitation mechanism in the photoisomerization of a surface-bound azobenzene derivative:Role of the metallic substrate, J. Phys. Chem.129,164102(2008)
    [12]. K. Shin, et al. Bull. Photoresponsive Azobenzene-modified Gold Nanoparticle, Korean Chem. Soc.29,1259 (2008)
    [13]. H. Y. Jung, Y. K. Park, S. Park and S. K. Kim. Surface enhanced Raman scattering from layered assemblies of close-packed gold nanoparticles, Anal. Chim. Acta.602,236 (2007)
    [1]P G de Gennes液晶物理学.上海:上海翻译出版公司,1990:7.
    [2]H. L. ONG, Optically Induced Freedericksz Transition and Bistability in a Nematic Liquid Crystal, Phys. Rev. A,33,3550 (1981)
    [3]I. Janossy, A. D. Lloyd and B. S. Wherret. Anomalous Optical Freedericksz transition in an Absorbing Liquid-Crystal. Mol. Cryst. Liq. Cryst.179,1 (1990)
    [4]I. Janossy, Molecular interpretation of the absorption-induced optical reorientation of nematic liquid crystals, Phys. Rev. E.49,2957 (1994).
    [5]R. Muenster, M. Jarasch, X. Zhuang and Y. R. Shen, Dye-Induced Enhancement of Optical Nonlinearity in Liquids and Liquid Crystals, Phys. Rev. Lett.78,42 (1997)
    [6]T. V. Truong, L. Xu, and Y. R. Shen, Early Dynamics of Guest-Host Interaction in Dye-Doped Liquid Crystalline Materials, Phys. Rev. Lett.90,193902 (2003)
    [7]L. Marrucci, D. Paparo, G.Abbate, E. Santamato, M. Kreuzer, P. Lehnert and T. Vogeler. Enhanced optical nonlinearity by photoinduced orientation in absorbing liquids. Phys. Rev. A,58,4926 (1998)
    [8]I. Janossy and L. Szabados, Optical reorientation of nematic liquid crystals in the presence of photoisomerization, Phys. Rev. E,58,4598 (1998)
    [9]I. Janossy and L. Szabados, Photoisomerization of Azo-dyes in Nematic Liquid Crystal, J. Nonlinear Opt. Phys. Mater.7,539 (1998)
    [10]T. V. Truong and Y. R. Shen, Resonance-Enhanced Optical Reorientation of Molecules in Liquids via Intermolecular Interaction, Phys. Rev. Lett.99,187802 (2007).
    [11]P. Yang, L. Liu, L. Xu and Y. R. Shen, Excitation-enhanced optical reorientation in nematic liquid crystals, Opt. Lett.34,2252 (2009)
    [12]O. Francescangeli, S. Slussarenko, and F. Simoni, Light-Induced Surface Sliding of the Nematic Director in Liquid Crystals, Phys. Rev. Lett.82,1855 (1999)
    [13]L. T. Thieghi, R. Barberi, J. J. Bonvent, E. A. Oliveira, J. A. Giacometti and D. T. Balogh, Manipulation of anchoring strength in an azo-dye side chain polymer by photoisomerization, Phys. Rev. E.67,041701 (2003)
    [14]G. Barbero, L. R. Evangelista and L. Komitov, Photomanipulation of the anchoring strength of a photochromic nematic liquid crystal, Phys. Rev. E.65, 041719(2002)
    [15]D. Dumont, et al, Liquid crystal photoalignment using new photoisomerisable Langmuir-Blodgett films, Mol. Cryst. Liq. Cryst.375,341 (2002)
    [16]H. Yokohama and H. A. Sprang, A novel method for determining the anchoring energy function at a nematic liquid crystal interface from director distortions at high fields. J. Appl. Phys.57,4520 (1985).
    [17]A. Faetti, M. Gatti, V. Palleschi and T. J. Sluckin, Almost critical behaviour of the anchoring energy at the interface between a nematic liquid crystal and a SiO surface. Phys. Rev. Lett.55,1681 (1985)
    [18]S. J. Barrow, A. M. Funston, D. E. Gomez, T. J.David and P. Mulvaney, Surface Plasmon Resonances in Strongly Coupled Gold Nanosphere Chains from Monomer to Hexamer, Nano. Lett.11,4180 (2011)
    [19]S. D. Durbin, S. M. Arakelian and Y. R. Shen, Optical-Field-Induced Birefringence and Freedericksz Transition in a Nematic Liquid Crystal, Phys. Rev. Lett.47,1411 (1981)
    [20]K. Sharp, S. Lagerwall and B. Stebler, Measurements of Hydrodynamic Parameters for Nematic 5CB, Mol. Cryst. Liq. Cryst.60,215 (1980)
    [21]A. M. Parshin, and A. V. Barannik, Optical response of nematic droplets in a polymer matrix to a strong pulsed magnetic field, Tech. Phys. Lett.35,1166 (2009)
    [22]J. Jiang, K. Bosnick, M. Maillard and L. Brus, Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals, J. Phys. Chem. B,107, 9964 (2000)
    [23]P. B. Johnson and R. W. Christy, Optical Constants of the Noble Metals, Phys. Rev. B,6,4370(1972)
    [24]J. Nehring, A. R. Kmetz and T. J. Scheffer, Analysis of weak boundary coupling effects in liquid crystal displays, J. App. Phys.47,850 (1974)
    [25]G.P. Bryan-Brown, E. L. Wood and I.C.Sage, Weak Surface Anchoring of Liquid Crystal, Nature,399,338 (1999)
    [26]X. Nie, R. Lu, H. Xianyu, T. X. Wu and S. T. Wu, Anchoring energy and cell gap effects on liquid crystal response time, J. Appl. Phys.101,103110 (2007)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700