用户名: 密码: 验证码:
吲哚胺2,3-加氧酶在异基因造血干细胞移植后急性移植物抗宿主病中的免疫调节作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]研究IDO和IFNγ在异基因造血干细胞移植后病人中的表达情况,了解IDO活性与aGVHD的严重程度及IFN的关系,探讨IDO的活性检测在诊断aGHVD及aGHVD分级中的作用
     [方法]逆转录PCR法检测89例异基因造血干细胞患者和8个正常人单个核细胞中IDOmRNA的表达情况;反相高效液相色谱法检测血浆中IDO的活性;ELISA检测IFNγ的水平。
     [结果]在74个有aGVHD的患者中55个(74.32%)检测到IDOmRNA的表达,在26个无aGVHD患者仅有2个检测到IDOmRNA的表达,8个健康人中未检测到IDO表达;血浆IDO的活性在(?)GVHD病人远高于无aGVHD病人(4.74±3.35vs1.79±1.02;P<0.0001)或者健康人(4.74±3.35vs1.77±0.22;P<0.0001),重度aGVHD(Ⅲ/Ⅳ级)患者IDO活性高于轻度aGVHD(Ⅰ/Ⅱ级)患者(6.57±3.34vs2.46±1.41;P<0.0001).同时,在aGVHD病人血浆IFNγ的水平也是增高的(P=0.0043);aGVHD缓解后IDO的活性下降,当aGVHD复发时,IDO的活性又会升高;血浆IDO的活性与IFN的水平相关(r=0.8288;P<0.0001),利用ROC曲线分析,IDO活性的曲线下面积高于IFNγ(0.852vs0.694),IDO的灵敏度和特异度分别是81%和78%,而IFNγ的灵敏度和特异度分别是41%和93%。
     [结论]aGVHD病人外周血单个核细胞有IDOmRNA表达;血浆IDO的活性增高在aGVHD病人且与aGVHD的严重程度相关;结合血浆IFN水平,IDO活性可能作为诊断和评估异基因造血干细胞移植后aGVHD的生物标志;干预IDO途径可能是一个可用的方法去治疗激素无效的aGVHD。
     [目的]检测吲哚胺2,3加氧酶(IDO)在aGVHD小鼠各组织器官的表达情况,探究IDO与aGVHD靶器官损伤的关系,为调节色氨酸代谢途径抑制aGVHD反应甚至诱导免疫耐受做初步探索。
     [方法]以BALB/c (H-2b)雌性小鼠为受者,接受致死剂量的Y射线(8.0Gy)全身照射后,输注雄性C57BL/6(H-2d)供鼠的骨髓细胞和脾细胞,同时设立同基因移植对照组,观察受鼠的体征和存活时间,进行aGVHD临床评分,aGVHD评分≥7时,处死小鼠,应用反相高效液相色谱法(HPLC)检测血浆中色氨酸(Trp)和其代谢产物犬尿氨酸(Kyn)的浓度,以及IDO的活性,用RT-PCR和免疫组化方法检测各组织中IDOmRNA与蛋白的表达水平,流式细胞学检测外周血CD4+/CD25+Treg细胞比例。
     [结果]异基因移植组小鼠血浆中Trp浓度明显低于同基因移植小鼠(P<0.05),而Kyn浓度高于对照小鼠(P<0.05),IDO活性明显较对照组高(P<0.01)。结肠和肺IDO mRNA表达水平高于对照小鼠(P<0.01),两组小鼠小肠IDO表达水平很低对比无明显差异,皮肤和肝脏IDO mRNA表达不明显。免疫组化结果显示:aGVHD小鼠肺脏和结肠上皮细胞和血管内皮细胞高表达IDO;小肠组织IDO的表达差别不明显;皮肤血管内皮细胞检测到IDO的表达且组织中散在IDO阳性单个核细胞;肝脏血管内皮细胞表达IDO,且汇管区周围散在分布IDO阳性的单个核细胞;对照小鼠各组织IDO的表达低或不表达。
     [结论]IDO的表达在aGVHD靶器官组织水平的免疫调节中有重要作用,血管内皮细胞作为最先接触到异体反应T细胞的受体细胞,参与了这一作用;调节色氨酸代谢途径可能是治疗aGVHD一个有效对策。
     [目的]通过吲哚胺2,3加氧酶(IDO)代谢局部色氨酸被认为是调节T细胞免疫的一个重要机制。3,4-DAA是一个人工合成的有活性的邻氨基苯甲酸酸衍生物,已经被证实对治疗Thl介导的自身免疫性疾病例如多发性硬化是有效的。我们的目的是研究3,4-DAA在治疗aGVHD的效果及它可能的作用机制
     [方法]构建一个小鼠的aGVHD模型,在骨髓移植后立即或aGVHD启动时,腹腔注射3,4-DAA,每只小鼠200mg/kg/day,连续用14天;定期记录aGVHD的表现和小鼠的存活情况;HE染色评估靶器官的病理损伤;反相高效液相色谱法和Elisa检测血浆中IDO的活性及细胞因子的水平。
     [结果]骨髓移植后给药3,4-DAA明显的降低aGVHD的严重程度和组织学评分;与对照组相比,给予3,4-DAA预防和治疗组小鼠的生存期延长,在3,4-DAA治疗组小鼠,血浆IFNγ和IL-2的水平下降,而IDO的活性剂IL-10的水平提高。与体内实验一致,在体外,3,4-DAA也能够抑制脾脏T淋巴细胞分泌IFNγ和IL-2。
     [结论]3,4-DAA能够减轻小鼠实验性aGVHD通过调节辅助T淋巴细胞分化,这一特性使它成为一个可能备选的药物来用于临床预防和治疗GVHD。
     [目的]探讨干扰素-γ(IFNγ)诱导小鼠肺微血管内皮细胞吲哚胺2,3-双加氧酶(IDO)的表达情况,及体外对T细胞增殖的影响。
     [方法]组织块贴壁法培养小鼠肺微血管内皮细胞,进行形态特征观察,并进行系列鉴定,经过传代纯化后,分别用不同浓度的IFNy诱导作用微血管内皮细胞,Western blot和RT-PCR分别测定未经处理的内皮细胞以及IFNγ和或VP-16处理后内皮细胞IDO基因及蛋白表达水平。反相高效液相色谱法检测细胞培养上清中色氨酸、犬尿氨酸的水平,从而检测IDO活性的水平。在体外将肺微血管内皮细胞与小鼠脾脏T淋巴细胞共培养,T淋巴细胞用羧基荧光素乙酰乙酸琥珀酰亚胺酯(CFSE)标记,流式细胞仪测定T细胞的增殖情况,
     [结果]获得的内皮细胞具有规律的鹅卵石样形态,CD31相关抗原间接免疫荧光染色阳性而且在透射电镜观察到Weilel—palade小体。IFNy处理后的微血管内皮细胞IDOmRNA及蛋白表达增高,IDO活性水平随IFNy的浓度的增大逐渐提高。VP-16作用后,在IFNy刺激下,肺微血管内皮细胞表达IDO的能力减低,无IFNγ刺激,微血管内皮细胞不表达IDO。IFNγ处理后的微血管内皮细胞能够抑制T细胞的增殖(P<0.05)而未处理的内皮细胞对T细胞的增殖抑制作用不显著。
     [结论]IFNγ能够通过诱导IDO的表达增强内皮细胞在体外对T淋巴细胞增殖的抑制作用。
[Objective] To evaluate the expression levels of IDO and interferon (IFN)y in patients receiving allogeneic hematopoietic stem cell transplantation (allo-HSCT) and to identify the correlation between IDO activity, IFNy and acute graft-versus-host disease (aGVHD),
     [Methods] We measured IDO mRNA expression in peripheral blood mononuclear cells in89allo-HSCT patients by reverse transcriptionpolymerase chain reaction. The IDO activity in plasma was also performed by reverse-phase high-performance liquid chromatography (HPLC); plasma IFNy was detected by a standard enzyme-linked immunosorbent assay (Elisa)
     [Result] IDO mRNA was detected in55of74patients (74.32%) with aGVHD. Of patients without aGVHD, only2of26expressed IDO mRNA (7.69%); none of8healthy volunteers was positive for IDO expression. Plasma IDO activity was much higher in aGVHD patients than in those without aGVHD (4.74±3.35vs1.79±1.02, respectively; P <0.0001) or in healthy control subjects (4.74±3.35vs1.77±.22; P<0.0001). Patients with severe (grade Ⅲ/Ⅳ) aGVHD had much higher IDO activity than those with mild (grade Ⅰ/Ⅱ) aGVHD (6.57±3.34vs2.46±1.41; P<0.0001). Meanwhile, there was a significant increase in plasma IFNy level in aGVHD patients (P=0.0043). IDO activity decreased after alleviation of aGVHD, whereas fluctuation of plasma IDO was also observed upon the recurrence of aGVHD. Plasma IDO activity was correlated with the level of plasma IFNy(r=0.8288; P<0.0001). Using receiver-operating characteristic curves analysis, the sensitivity and specificity for evaluation of aGVHD were determined. The area under the curve of IDO activity was higher than that of IFNy(0.852vs0.694) with a sensitivity and specificity for IDO of81%and78%, respectively, whereas the sensitivity and specificity for IFNy were41%and93%, respectively.
     [Conclusion] IDO mRNA was expressed in blood mononuclear cells of patients with aGVHD. Plasma IDO activity was elevated in aGVHD patients and was correlated with the severity of aGVHD. In combination with plasma IFN-g, IDO activity may represent a potential biomarker for the diagnosis and evaluation of aGVHD after allo-HSCT. Intervention of the IDO pathway may also represent an alternative way to overcome steroid-resistant aGVHD.
     [Objective] To explore the relationship between IDO and the damage of aGVHD target organs,we detected the expression level of indoleamine2,3dioxygenase (IDO) in various organs of mice aGVHD models, Provide preliminary exploration for regulating IDO pathway may beneficial to the prevention of aGVHD and induction of tolerance.
     [Method] Lethally (8.0Gy) irradiated female BALB/c (H-2b) recipients were transplanted with bone marrow cells and splenic cells from male C57BL/6(H-2d) donors. The recipients were observed for the features of GVHD, established syngeneic transplant control group, observed the signs and the survival time of the mice, aGVHD clinical score, aGVHD score(?)7, the mice were sacrificed, reversed-phase high performance liquid chromatography (HPLC) measured the concentration of plasma tryptophan (Trp) and kynurenine (KYN);detected the IDOmRNA protein expression levels of the organ,by RT-PCR and immunohistochemical, flow cytometric was used to detect CD4+/CD25+T cells ratio. In peripheral blood
     [Results] Plasma Trp concentrationin in allogeneic transplant mouse was significantly lower than syngeneic transplant mice (P<0.05), the KYN concentration higher than that of control mice (P<0.05), IDO activity was significantly higher than control group (P<0.01). IDO mRNA expression levels of colon and lung higher than the control mice, small intestine IDO expression level in two groups mice is very low, the difference is no significant, in skin and liver, IDO mRNA expression was not obvious. Immunohistochemical results showed that:in aGVHD mice, lung and colon epithelial cells and endothelial cells highly expressed IDO; vascular endothelial cells of skin express IDO,meanwhile scattered IDO-positive mononuclear cells in skin; the scattered distribution of IDO-positive mononuclear cells in liver around blood vessels; in syngeneic transplant mice,IDO expression was very low or no expression.
     [Conclusion] IDO expression play an important role in the immune regulation of tissue level in aGVHD target organs, vascular endothelial cells as a first recipient cells that contact to the allo-reactive T cell were involved in this role; regulate IDO pathway maybe a effective way for treating aGVHD
     [Background] Local catabolism of tryptophan (Trp) by indoleamine2,3-dioxygenase (IDO) is considered an important mechanism of regulating T cell immunity.N-(3,4-dimethoxycinnamonyl) anthranilic acid (3,4-DAA) is an active synthetic anthranilic acid derivative which was proved to be effective to treat type I helper T lymphocytes (Thl) mediated autoimmune diseases such as multiple sclerosis. In this report, we investigated the effects of3,4-DAA on the acute graft versus host disease (aGVHD) following allogeneic bone marrow transplantation (allo-BMT) and its potential mechanism of action.
     [Methods] Using a murine aGVHD model,3,4-DAA was injected intraperitoneally at200mg/kg/day per mouse immediately after allo-BMT or at the onset of aGVHD for14consecutive days; the signs of aGVHD and the survival were recorded periodically; the histological changes of target organs were evaluated with hematoxylin-eosin staining; the IDO activity and cytokine levels in plasma were measured by reverse-phase high-performance liquid chromatography (HPLC) and enzyme linked immunosorbent assay(ELISA), respectively.
     [Results] Administration of3,4-DAA after allo-BMT significantly reduced the severity and the histological score of aGVHD; The survival for mice receiving3,4-DAA prophylaxis and treatment were prolonged in comparison to the vehicle control mice. The plasma levels of IFN-y and IL-2in3,4-DAA treatment group were found to be decreased, while the IDO activity and the IL-10level elevated in these mice. In consistent with the in vivo results,3,4-DAA also inhibited IFN-y and IL-2production of spleen T lymphocytes in vitro.
     [Conclusions]3,4-DAA diminishes the murine experimental aGVHD through inhibiting Th1responses, this property makes it a potential alternative agent for prevention and treatment of GVHD in the clinic.
     [Objective] To investigate the indoleamine2,3-dioxygenase expression in pulmonary microvascular endothelial cells (PMVEC)induced by IFNy and its role in T cell proliferation
     [Method] Mouse PMVEC were cultivated by Tissue block method and observed of their morphological features. After series of identification and Passage purification, they were dealed with different concentrations of IFNy. Primary EC or the EC treated with IFNy or VP16was detected the IDO expression by RT-PCR and Western blot, reversed phase high-performance liquid chromatography (HPLC) was used to evaluate the the levels of tryptophan and kynurenine and the activity of IDO. after co-cultivating PMVEC and T lymphocyte derived from mice spleen, FMC was applied to detect the proliferation of T cell by labeled with carboxy fluorescein succinimidyl ester(CFSE).
     [Results] The EC acquired exposed the regular features of Cobblestone in morphology was positive in CD31expression with indirect immunofluorescence staining, and can be observed of the Weilel—palade globule by Transmission electron microscopy. There was higher level expression of IDOmRNA and protein in IFNy-treated PMVEC, and with the raising of the concentration of IFNy, the activity of IDO increased.After dealed with VP-16, with the stimulation of IFNy, a reduced IDO expression in PMVEC was evaluated, while no IDO expressed in without IFNy stimulation group, the PMVEC treated with IFNy inhibited the T cell proliferation, while the untreated showed no significant inhibition.
     [Conclusion] PMVEC could suppress T-lymphocyte responses via IDO enzyme activity in vitro.
引文
1. Reddy P, Ferrara JL. Immunobiology of acute graft-versus-host disease. Blood Reviews. 2003; 17:187-194.
    2. Pavan Reddy, Jame LM. Ferrare. Immunobiology of acute graft-versus-host disease. Blood Reviews.2003; 17:187-194
    3. Teshima T, Ferrara JL. Understanding the alloresponse:new approaches to graft-versus-host disease prevention. Semin Hematol.2002; 39:15-22.
    4. Yang YG, Wang H, Asavaroengchai W, Dey BR. Role of interferon-gamma in GVHD and GVL. Cell Mol Immunol.2005;2:323-329.
    5. Dickinson AM, Sviland L, Hamilton PJ, et al. Cytokine involvement in predicting clinical graft-versus-host disease in allogeneic bone marrow transplant recipients. Bone Marrow Transplant.1994;13:65-70.
    6. Takatsuka H, Yamada S, Okamoto T, et al. Predicting the severity of intestinal graft-versus-host disease from leukotriene B4 levels after bone marrow transplantation. Bone Marrow Transplant.2000;26:1313-1316.
    7. Brok HP, Vossen JM, Heidt PJ. IFN-gamma-mediated prevention of graft-versus-host disease:pharmacodynamic studies and influence on proliferative capacity of chimeric spleen cells. Bone Marrow Transplant.1998;22:1005-1010.
    8. Mellor AL, Munn DH. IDO expression by dendritic cells:tolerance and tryptophan catabolism. Nat Rev Immunol.2004;4:762-74.
    9. Daubener W, MacKenzie CR. IFN-gamma activated indoleamine 2,3-dioxygenase activity in human cells is an antiparasitic and an antibacterial effector mechanism. Adv Exp Med Biol.1999;467:517-24.
    10. Steckel NK, Kuhn U, Beelen DW, Elmaagacli AH. Indoleamine 2,3-dioxygenase expression in patients with acute graft-versus-host disease after allogeneic stem cell transplantation and in pregnant women:association with the induction of allogeneic immune tolerance? Scand J Immunol.2003;57:185-91.
    11.Uyttenhove C, Pilotte L, Theate I, et al. Evidence for tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 2003; 9:1269-74.
    12. Curti A, Aluigi M, Pandolfi S, et al. Acute myeloid leukemia cells constitutively express the immunoregulatory enzyme indoleamine 2,3-dioxygenase. Leukemia.2007; 21:353-5.
    13. Kwidzinski E, Bunse J, Aktas O, et al. Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation. FASEB J.2005; 19:1347-9.
    14. Szanto S, Koreny T, Mikecz K, Giant TT, Szekanecz Z, Varga J. Inhibition of indoleamine 2,3-dioxygenase-mediated tryptophan catabolism accelerates collagen-induced arthritis in mice. Arthritis Res Ther.2007;9:R50.
    15. Ueno A, Cho S, Cheng L, et al. Transient upregulation of indoleamine 2,3-dioxygenase in dendritic cells by human chorionic gonadotropin downregulates autoimmune diabetes. Diabetes.2007;56:1686-93.
    16. Jasperson LK, Bucher C, Panoskaltsis-Mortari A, et al. Indoleamine 2,3-dioxygenase is a critical regulator of acute graft-versus-host disease lethality. Blood.2008; 111:3257-65.
    17. Ratajczak P, Janin A, de Larour RP, et al. IDO in Human Gut Graft-versus-Host Disease. Biol Blood Marrow Transplant.2012;18:150-155.
    18. Zhao X-S, Liu K-Y, Liu D-H, et al. Potential immunosuppressive function of plasma indoleamine 2,3-dioxygenase in patients with aGVHD after allo-HSCT. Clin Transplant. 2011;25:E304-E311.
    19. Landfried K, Zhu W, Waldhier MC, et al. Tryptophan catabolism is associated with acute GvHD following human allogeneic stem cell transplantation and indicates activation of indoleamine 2,3-dioxygenase. Blood.2011;118:6971-6974.
    20. Przepiorka D, Weisdorf D, Martin P, et al.1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant.1995;15:825-828.
    21. Widner B, Werner ER, Schennach H, Wachter H, Fuchs D. Simultaneous measurement of serum tryptophan and kynurenine by HPLC. Clin Chem.1997;43:2424-6.
    22. Guillonneau C, Hill M, Hubert FX, et al. CD40Ig treatment results in allograft acceptance mediated by CD8CD45RC T cells, IFN-gamma, and indoleamine 2,3-dioxygenase. J Clin Invest.2007; 117:1096-106.
    23. Beutelspacher SC, Pillai R, Watson MP, et al. Function of indoleamine 2,3-dioxygenase in corneal allograft rejection and prolongation of allograft survival by overexpression. Eur JImmunol.2006;36:690-700.
    24. Brandacher G, Cakar F, Winkler C, et al. Non-invasive monitoring of kidney allograft rejection through IDO metabolism evaluation. Kidney Int.2007;71:60-7.
    25. Moffett JR, Namboodiri MA. Tryptophan and the immune response. Immunol Cell Biol. 2003;81:247-65.
    26. Puliaev R, Nguyen P, Finkelman FD, Via CS. Differential requirement for IFN-y in CTL maturation in acute murine graft-versus-host disease. J Immunol.2004; 173:910-919.
    27. Christian M, Capitini, Sarah Herby, et al. Bone marrow deficient in IFN-y signaling selectively reverses GVHD-associated immunosuppression and enhances a tumor-specific GVT effect. Blood.2009; 113:5002-5009.
    1. Mellor AL, Munn DH. Tryptophan catabolism and T cell tolerance: immunosuppression by starvation?Immunol Today,1999,20(10):469-473.
    2.何贤辉,徐丽慧,刘毅,等.IDO-FGFP表达载体的构建及其在人软骨
    3.细胞中的表达.免疫学杂志,2004,20(3):172—176.
    4. Hairz U, Jurgens B, Heitger A. The role ofindoleamine 2,3-dioxygenase in transplantation. Transpl Int,2007,20(2):118-127.
    5. Temess P, Bauer TM, Rose L, et al. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase—expressing dendritic cells:mediation ofsuppression by tryptophan metabolites. J ExpMed,2002,196(4):447-457.
    6. Munn DH, Shafizadeh D, Attwood IT, et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med,1999,189(5):1363-1372.
    7. Hwu P, Du MX, Lapointe R, et al. Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol,2000,164(7): 3596-3599.
    8. Munn DH, Sharma MD, Lee JR, et al, Potential reguiatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science,2002,297(9): 1867-1870.
    9. Jasperson LK, Bucher C, Panoskaltsis-Mortari A, et al. Indoleamine 2,3-dioxygenase is a critical regulator of acute graft-versus-host disease lethality. Blood.2008; 111:3257-65.
    10. Jasperson LK, Bucher C, Panoskaltsis-Mortari A, Mellor AL, Munn DH, Blazar BR. Inducing the tryptophan catabolic pathway, indoleamine 2,3-dioxygenase (IDO), for suppression of graft-versus-host disease (GVHD) lethality. Blood.2009; 114:5062-5070.
    11. Cooke KR, Kobzik L, Martin TR, Brewer J, Delmonte J Jr, Crawford JM, Ferrara JL.1996.An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation:The roles of minor H antigens and endotoxin.Blood,1996; 88(8): 3230-3239.
    12. Widner B, Werner ER, Schennach H, Wachter H, Fuchs D. Simultaneous measurement of serum tryptophan and kynurenine by HPLC. Clin Chem.1997;43:2424-6.
    13. Guillonneau C, Hill M, Hubert FX, et al. CD40Ig treatment results in allograft acceptance mediated by CD8CD45RC T cells, IFN-gamma, and indoleamine 2,3-dioxygenase. J Clin Invest.2007; 117:1096-106.
    14. Beutelspacher SC, Pillai R, Watson MP, et al. Function of indoleamine 2,3-dioxygenase in corneal allograft rejection and prolongation of allograft survival by overexpression. Eur JImmunol.2006;36:690-700.
    15. Landfried K, Zhu W, Waldhier MC, et al. Tryptophan catabolism is associated with acute GvHD following human allogeneic stem cell transplantation and indicates activation of indoleamine 2,3-dioxygenase. Blood.2011;118:6971-6974.
    16.孙星,裘国强,徐军明,等.大鼠肝移植后的排斥反应与吲哚胺2,3双加氧酶基因的关系.中华器官移植杂志.2006;27:392-395.
    17. Ratajczak P, Janin A, de Larour RP, et al. IDO in Human Gut Graft-versus-Host Disease. Biol Blood Marrow Transplant.2012;18:150-155.
    18. Thebault P, Condamine T, Heslan M,et al. Role of IFNc in Allograft Tolerance Mediated by CD4+CD25+ Regulatory T Cells by Induction of IDO in Endothelial Cells. American Journal of Transplantation 2007; 7:2472-2482.
    19. Albert MH, Liu Y, Anasetti C, Yu XZ. Antigen-dependent suppression of alloresponses by Foxp3-induced regulatory T cells in transplantation. Eur. J. Immunol. 2005;35:2598-2607.
    20. Cohen JL, Boyer O. The role of CD41CD25hi regulatory T cells in the physiopathogeny of graft-versus-host disease. Curr. Opin. Immunol.2006;l 8:580-585.
    21. Nguyen VH, Zeiser R, Dasilva DL, et al. In vivo dynamics of regulatory T-cell trafficking and survival predict effective strategies to control graft-versus host disease following allogeneic transplantation. Blood.2007; 109:2649-2656.
    22. Fallarino F, Grohmann U, YOH S, et al. The combined effects of tryptophan starvation and tryptophan eatabolites down—regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive Tcells[J]. J Immunol,2006,176(11):6752-6761.
    23. Uyttenhove C, Pilotte L, Theate I, et al. Evidence for a tumoral immane resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase[J]. Nat Med,2003,9(10):1269-1274.
    1. Mellor AL, Munn DH. IDO expression by dendritic cells:tolerance and tryptophan catabolism. Nat Rev Immunol.2004;4:762-774.
    2. Uyttenhove C, Pilotte L, Theate I, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med.2003; 9:1269-1274.
    3. Guillonneau C, Hill M, Hubert FX, et al. CD40Ig treatment results in allograft acceptance mediated by CD8CD45RC T cells, IFN-gamma, and indoleamine 2,3-dioxygenase. J Clin Invest.2007;117:1096-1106.
    4. Beutelspacher SC, Pillai R, Watson MP, et al. Function of indoleamine 2,3-dioxygenase in corneal allograft rejection and prolongation of allograft survival by overexpression. Eur J Immunol.2006;36:690-700.
    5. Brandacher G, Cakar F, Winkler C, et al. Non-invasive monitoring of kidney allograft rejection through IDO metabolism evaluation. Kidney Int.2007;71:60-67.
    6. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med.2002; 196:459-468.
    7. Jasperson LK, Bucher C, Panoskaltsis-Mortari A, Mellor AL, Munn DH, Blazar BR. Inducing the tryptophan catabolic pathway, indoleamine 2,3-dioxygenase (IDO), for suppression of graft-versus-host disease (GVHD) lethality. Blood.2009;114:5062-5070.
    8. Platten M, Ho PP, Youssef S et al. Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science.2005;310:850-855.
    9. Inglis JJ, Criado G, Andrews M, Feldmann M, Williams RO,Selley ML. The anti-allergic drug, N-(3,4-dimethoxycinnamonyl) anthranilic acid, exhibits potent anti-inflammatory and analgesic properties in arthritis. Rheumatology.2007; 46:1428-1432.
    10. Hara M, Ono K, Hwang MW, et al. Evidence for a role of mast cells in the evolution to congestive heart failure. J Exp Med.2002; 195:375-381.
    11. Nagate T, Tamura T, Sato F, Kuroda J, Nakayama J, Shibata N. Tranilast suppresses the disease development of the adjuvant- and streptococcal cell wall-induced arthritis in rats. J Pharmacol Sci.2007; 105:48-56.
    12. Shiota N, Kovanen PT, Eklund KK, et al. The anti-allergic compound tranilast attenuates inflammation and inhibits bone destruction in collagen-induced arthritis in mice. Br J Pharmacol.2010; 159:626-635.
    13. Sun QF, Ding JG, Sheng JF, et al. Novel action of 3,4-DAA ameliorating acute liver allograft injury. Cell Biochem Funct.2011; 29:673-678.
    14. Reddy P, Ferrara LM. Immunobiology of acute graft-versus-host disease. Blood Reviews.2003;17:187-194.
    15. Teshima T, Ferrara JL. Understanding the alloresponse:new approaches to graft-versus-host disease prevention.Semin Hematol.2002; 39:15-22.
    16. Krenger W, Snyder KM, Byon CH, Falzarano G, Ferrara JL. Polarized type 2 alloreactive CD4+and CD8+donor T cells fail to induce experimental acute graft-versus-host disease. J Immunol.1995;155:585-593.
    17. Hill GR, Crawford JM, Cooke KR, Brinson YS, Pan L,Ferrare JL. Total body irradiation and acute graft-versus-host disease:the role of gastrointestinal damage and inflammatory cytokines. Blood.1997; 90:3204-3213.
    18. Gerbitz A, Ewing P, Wilke A, et al. Induction of heme oxygenase-1 before conditioning results in improved survival and reduced graft-versus-host disease after experimental allogeneic bone marrow transplantation. Biol. Blood Marrow Transplant.2004; 10:461-472.
    19.19 Hill GR, Cooke KR, Teshima T, et al.Interleukin-11 promotes T cell polarization and prevents acute graft-versus-host disease after allogeneic bone marrow transplantation. J. Clin. Invest 1998;102:115-123.
    20. Cooke KR, Kobzik L, Martin TR, et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation, I. the roles of minor H antigens and endotoxin. Blood.1996;88:3230-3239.
    21. Widner B, Werner ER, Schennach H, Wachter H, Fuchs D. Simultaneous measurement of serum tryptophan and kynurenine by HPLC. Clin Chem.1997; 43:2424-2426.
    22. Romani L, Fallarino F, De Luca A, et al. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature.2008;451:211-215.
    23. Holmes DR Jr, Savage M, LaBlanche JM. Results of prevention of REStenosis with tranilast and its outcomes (PRESTO) trial. Circulation.2002;106:1243-1250.
    24. Komatsu H, Kojima M, Tsutsumi N et al. Study of the mechanism of inhibitory action of tranilast on chemical mediator release. Jpn J Pharmacol.1988;46:43-51.
    25. Mulley WR, Nikolic-Paterson DJ.Indoleamine 2,3-dioxygenase in transplantation. Nephrology.2008; 13:204-211.
    26. Francesca Fallarino, Ursula Grohmann, Kwang Woo Hwang, et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol.2003;4:1206-1212.
    27. Fallarino F, Grohmann U, You S, et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J. Immunol.2006; 176:6752-6761.
    28. Albert MH, Liu Y, Anasetti C, Yu XZ. Antigen-dependent suppression of alloresponses by Foxp3-induced regulatory T cells in transplantation. Eur. J. Immunol.2005;35: 2598-2607.
    29. Cohen JL, Boyer O. The role of CD41CD25hi regulatory T cells in the physiopathogeny of graft-versus-host disease. Curr. Opin. Immunol.2006;18:580-585.
    30. Nguyen VH, Zeiser R, Dasilva DL, et al. In vivo dynamics of regulatory T-cell trafficking and survival predict effective strategies to control graft-versus host disease following allogeneic transplantation. Blood.2007; 109:2649-2656.
    1. Mellor AL, Munn DH. IDO expression by dendritic cells:Tolerance and tryptophan catabolism. Nat Rev Immunol 2004; 4:162-114.
    2. Munn DH, SharmaMD, Lee JR et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 2002; 297:1867-1870
    3. Sadehi MM, Collinge M, Pardi R, et al. SimvaStatin modulates cytokine-mediated endothelial cell adhesion molecule induction:involvemoot of an inhibitory G protein [J]. J Imunol 2000,165(5):2712-2718.
    4. Savage CO, Hughes CC, Mclntyre BW, Picard JK, Pober JS. Human CD4+ T cells proliferate to HLA-DR+ allogeneic vascular endothelium. Identification of accessory interactions. Transplantation 1993; 56:128-134.
    5. Page CS, Holloway N, Smith H, Yacoub M, Rose ML. Alloproliferative responses of purified CD4+ and CD8+ T cells to endothelial cells in the absence of contaminating accessory cells. Transplantation 1994; 57:1628-1637.
    6. McDouall RM, Page CS, Hafizi S, Yacoub MH, Rose ML. Alloproliferation of purified CD4+ T cells to adult human heart endothelial cells, and study of second-signal requirements. Immunology 1996; 89:220-226.
    7. Ma W, Pober JS. Human endothelial cells effectively costimulate cytokine production by, but not differentiation of, naive CD4+Tcells. J Immunol 1998; 161:2158-2167.
    8.8. Marelli-Berg FM, Hargreaves RE, Carmichael P, Dorling A, Lombardi G, Lechler RI. Major histocompatibility complex class II-expressing endothelial cells induce allospecific nonresponsiveness in naive T cells. J Exp Med 1996; 183:1603-1612.
    9. Pavan Reddy, Jame LM. Ferrare. Immunobiology of acute graft-versus-host disease. Blood Reviews.2003;17:187-194
    10. Takatsuka H, Yamada S, Okamoto T, et al. Predicting the severity of intestinal graft-versus-host disease from leukotriene B4 levels after bone marrow transplantation. Bone Marrow Transplant.2000;26:1313-1316.
    11. Huang SH, Jong AY. Cellular mechanisms of microbial proteins contributing to invasion of the blood-brain barrier. Cell Microbiol 2001; 3:277-287.
    12. Thebault P, Condamine T, Heslan M,et al. Role of IFNc in Allograft Tolerance Mediated by CD4+CD25+ Regulatory T Cells by Induction of IDO in Endothelial Cells. American Journal of Transplantation 2007; 7:2472-2482.
    13. Daubener W, Spors B, Hucke C et al. Restriction of Toxoplasma gondii growth in human brain microvascularendothelial cells by activation of indoleamine 2,3-dioxygenase. Infect Immun 2001; 69:6527-31.
    14.14 Rudiger Adam, Daniel Riissing, Ortwin Adams,et al. Role of human brain microvascular endothelial cells during central nervous system infection. Thromb Haemost 2005; 94:341-346.
    15. Beutelspacher SC, Tan PH,McClure MO,et al. Expression of Indoleamine 2,3-Dioxygenase (IDO) by Endothelial Cells:Implications for the Control of Alloresponses. American Journal of Transplantation 2006; 6:1320-1330.
    16. Min C, Kim SY, Lee MJ, et al. Vascular endothelial growth factor(VEGF) is associated with reduced severity of acute graft-versus-host disease and nonrelapse mortality after allogeneic stem cell transplantation. Bone Marrow Transplantation 2006;38:149-156
    17.唐晓琼,赵智刚,邹萍.骨髓间充质干细胞的吲哚胺2,3一双加酶 活性抑制T淋巴细胞的增殖.Chin J Organ Transplant.2005,26:672-675.
    18. Nanden D, Reiner NE. TGF-β attenuates the class Ⅱ transactivator and reveals an accessary pathway of IFN-y action [j]. J Immlmol 1997,158:1095-1101.
    19. Bjork ST, Harrit m, Goran BJ, et al. Endothelial injury in vivo:Atechnical and statistical approach to the study of arotic integrity [J]. Am JJ Physiol 1996,39:1841-1849.
    20. Mellor AL, Munn DH. Tryptophan catabolism and T cell tolerance:irmunosuppression by stavation. Immunol Today,1999,20:469-473.
    1. Jones, R.G. and Thompson, C.B. Revving the engine:signal transduction fuels T cell activation. Immunity.2007.27,173-178
    2. Gerriets, V.A. and Rathmell, J.C. Metabolic pathways in T cell fate and function. Trends Immunol.2012.33,168-173
    3. Pallotta, M.T. et al. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat. Immunol.2011.12,870-878
    4. Orabona, C. et al. Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood.2006.107,2846-2854
    5. Orabona, C. et al. SOCS3 drives proteasomal degradation of indoleamine 2,3-dioxygenase (IDO) and antagonizes IDO-dependent tolerogenesis. Proc. Natl. Acad. Sci. U.S.A.2008.105,20828-20833
    6. Opitz, C.A. et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 2011.478,197-203
    7. Pilotte, L. et al. Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc. Natl. Acad. Sci. U.S.A.2012 109,2497-2502
    8. Ball, H.J. et al. Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene.2007.396,203-213
    9. Metz, R. et al. Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan. Cancer Res.2007.67,7082-7087
    10. Taylor, M.W. and Feng, G. Relationship between interferon-g,indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J.1991.5,2516-2522
    11. Lob, S. et al. IDO1 and IDO2 are expressed in human tumors:levo-but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol. Immunother.2009.58,153-157
    12. Mezrich, J.D. et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol.2010185,3190-3198
    13. Kandanearatchi, A. and Brew, B.J. The kynurenine pathway and quinolinic acid:pivotal roles in HIV associated neurocognitive disorders. FEBS J.2012.279,1366-1374
    14. Stockinger, B. et al. External influences on the immune system via activation of the aryl hydrocarbon receptor. Semin. Immunol.2011.23,99-10;
    15. Nguyen, N.T. et al. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc. Natl. Acad. Sci. U.S.A. 2010.107,19961-19966
    16. Zaher, S.S. et al.3-hydroxykynurenine suppresses CD4+ T-cell proliferation, induces T-regulatory-cell development, and prolongs corneal allograft survival. Invest. Ophthalmol. Vis. Sci.2011.52,2640-2648
    17. Bauer, T.M. et al. Studying the immunosuppressive role of indoleamine 2,3-dioxygenase:tryptophan metabolites suppress rat allogeneic T-cell responses in vitro and in vivo. Transpl. Int.2005.18,95-100
    18. Romani, L. et al. IL-17 and therapeutic kynurenines in pathogenic inflammation to fungi. J. Immunol.2008.180,5157-5162
    19. Wek, R.C. et al. Coping with stress:eIF2 kinases and translational control. Biochem. Soc. Trans.2006.34,7-11
    20. Kilberg, M.S. et al. ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol. Metab..2009.20,436-443
    21. Munn, D.H. et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3- dioxygenase. Immunity.2005.22,633-642
    22. Sundrud, M.S. et al. Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response. Science.2009.324,1334-1338
    23. Keller, T.L. et al. Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase. Nat. Chem. Biol.2012.8,311-317
    24. Fallarino, F. et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J. Immunol.2006.176,6752-6761
    25. Sharma, M.D. et al. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J. Clin. Invest. 2007.117,2570-2582
    26. Manlapat, A.K. et al. Cell-autonomous control of interferon type Ⅰ expression by indoleamine 2,3-dioxygenase in regulatory CD19(+) dendritic cells. Eur. J. Immunol. 2007.37,1064-1071
    27. Rodriguez, P.C. et al. L-arginine availability regulates Tlymphocyte cell-cycle progression. Blood.2007.109,1568-1573
    28. Powell, J.D. et al. Regulation of immune responses by mTOR. Annu. Rev. Immunol. 2012.30,39-68
    29. Dalton, D.K. and Noelle, R.J. The roles of mast cells in anticancer immunity. Cancer Immunol. Immunother.2012.61,1511-1520
    30. Cobbold, S.P. et al. Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc.Natl. Acad. Sci.U.S.A.2009.106,12055-12060
    31. Chen, W. et al. The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J. Immunol. 2008.181,5396-5404
    32. Manches, O. et al. HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase-dependent mechanism. J. Clin. Invest.2008.118, 3431-3439
    33. van der Marel, A.P. et al. Blockade of IDO inhibits nasal tolerance induction. J. Immunol.2007.179,894-900
    34. Matteoli, G. et al. Gut CD 103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut 2010.59,595-604
    35. Sharma, M.D. et al. Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood.2009 113,6102-6111
    36. Sharma, M.D. et al. Reprogrammed Foxp3(+) regulatory T cells provide essential help to support cross-presentation and CD8(+) T cell priming in naive mice. Immunity.2010. 33,942-954
    37. Baban, B. et al. (2011) Physiologic control of IDO competence in splenic dendritic cells. J. Immunol.187,2329-2335
    38. Desvignes, L. and Ernst, J.D. Interferon-gamma-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis. Immunity.2009.31, 974-985
    39. Romani, L. et al. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature.2008.451,211-215
    40. Favre, D. et al. Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease. Sci. Transl. Med.20102,32-37
    41. Guillonneau, C. et al. CD40Ig treatment results in allograft acceptance mediated by CD8CD45RC T cells, IFN-gamma, and indoleamine 2,3-dioxygenase. J. Clin. Invest. 2007.117,1096-1106
    42. Sucher, R. et al. IDO and regulatory T cell support are critical for cytotoxic T lymphocyte-associated Ag-4 Ig-mediated long-term solid organ allograft survival. J. Immunol.2012.188,37-46
    43. Ravishankar, B. et al. Tolerance to apoptotic cells is regulated by indoleamine 2,3-dioxygenase. Proc. Natl. Acad. Sci. U.S.A.2012)109,3909-3914
    44. Swanson, K.A. et al. CDIIc+ cells modulate pulmonary immune responses by production of indoleamine 2,3-dioxygenase. Am. J. Respir. Cell Mol. Biol.2004 30, 311-318
    45. Liu, H. et al. Sleeping Beauty-based gene therapy with indoleamine 2,3-dioxygenase inhibits lung allograft fibrosis. FASEB J.2006.20,2384-2386
    46. Liu, H. et al. Reduced cytotoxic function of effector CD8+T cells is responsible for indoleamine 2,3-dioxygenase-dependent immune suppression. J. Immunol.2009.183, 1022-1031
    47. Jasperson, L.K. et al. Indoleamine 2,3-dioxygenase is a critical regulator of acute GVHD lethality. Blood.2008.111,3257-3265
    48. Johnson, B.A.,3rd et al. B-lymphoid cells with attributes of dendritic cells regulate T cells via indoleamine 2,3-dioxygenase. Proc. Natl. Acad. Sci. U.S.A.2010.107, 10644-10648
    49. Munn, D.H. et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J. Clin. Invest.2004.114,280-290
    50. Jorgensen, T.N. et al. Development of murine lupus involves the combined genetic contribution of the SLAM and FcgammaR intervals within the Nba2 autoimmune susceptibility locus. J. Immunol.2010.184,775-786
    51. Li, X.L. et al. Mechanism and localization of CD8 regulatory T cells in a heart transplant model of tolerance. J. Immunol.2010.185,823-833
    52. Boasso, A. et al. Regulation of indoleamine 2,3-dioxygenase and tryptophanyl-tRNA-synthetase by CTLA-4-Fc in human CD4+ T cells. Blood.2005.105,1574-1581
    53. Munn, D.H. Blocking IDO activity to enhance anti-tumor immunity. Front. Biosci. 2012.4,734-745
    54. Gerlini, G. et al. Indoleamine 2,3-dioxygenase+ cells correspond to the BDCA2+ plasmacytoid dendritic cells in human melanoma sentinel nodes. J. Invest. Dermatol. 2010.130,898-901
    55. Uyttenhove, C. et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med.2003.9,1269-1274
    56. Balachandran, V.P. et al. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat. Med.2011.17, 1094-1100
    57. Shields, J.D. et al. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21.Science.2010.328,749-752
    58. Watkins, S.K. et al. FOXO3 programs tumor-associated DCs to become tolerogenic in human and murine prostate cancer. J. Clin. Invest.2011.121,1361-1372
    59. Fallarino, F. et al. Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol.2003.4,1206-1212
    60. Dejean, A.S. et al. Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells. Nat. Immunol.2009.10, 504-513
    61.Jia, L. et al. Toxicology and pharmacokinetics of 1-methyl-dtryptophan:absence of toxicity due to saturating absorption. Food Chem. Toxicol.2008.46,203-211
    62. Liu, X. et al. Selective inhibition of indoleamine 2,3-dioxygenase (IDO1) effectively regulates mediators of anti-tumor immunity. Blood.2010.115,3520-3530
    63. Muller, A.J. et al. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Binl, potentiates cancer chemotherapy. Nat. Med. 2005.11,312-319
    64. Hamid, O. et al. A prospective phase Ⅱ trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J. Transl. Med.2011.9,204
    65. Divanovic, S. et al. Opposing biological functions of tryptophan catabolizing enzymes during intracellular infection. J. Infect. Dis.2012.205,152-161
    66. Leonhardt, R.M. et al. Severe tryptophan starvation blocks onset of conventional persistence and reduces reactivation of Chlamydia trachomatis. Infect. Immun.2007.75, 5105-5117
    67. Yeung, A.W. et al. Flavivirus infection induces indoleamine 2,3-dioxygenase in human monocyte-derived macrophages via tumor necrosis factor and NF-kappaB. J. Leukoc. Biol.2012.91,657-666
    68. Makala, L.H. et al. Leishmania major attenuates host immunity by stimulating local indoleamine 2,3-dioxygenase expression. J. Infect. Dis.2011.203,715-725
    69. Hoshi, M. et al. The absence of IDO upregulates type I IFN production, resulting in suppression of viral replication in the retrovirus-infected mouse. J. Immunol.2010.185, 3305-3312
    70. van der Sluijs, K.F. et al. Influenza-induced expression of indoleamine 2,3-dioxygenase enhances interleukin-10 productionand bacterial outgrowth during secondary pneumococcal pneumonia J. Infect. Dis.2006.193,214-222
    71. Kassianos, A.J. et al. Human CDlc (BDCA-1)(+) myeloid dendritic cells secrete IL-10 and display an immuno-regulatory phenotype and function in response to Escherichia coli. Eur. J.Immunol.2012.42,1512-1522
    72. Suffia, I.J. et al. Infected site-restricted Foxp3+ natural regulatory T cells are specific for microbial antigens. J. Exp. Med.2006.203,777-788
    73. Wang, Y. et al. Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nat. Med.2010.16,279-285
    74. Jung, I.D. et al. Blockade of indoleamine 2,3-dioxygenase protects mice against lipopolysaccharide-induced endotoxin shock. J. Immunol.2009.182,3146-3154
    75. Poirier, N. et al. Inducing CTLA-4-dependent immune regulation by selective CD28 blockade promotes regulatory T cells in organ transplantation. Sci. Transl. Med.2010,2, 17-20
    76. Niinisalo, P. et al. Activation of indoleamine 2,3-dioxygenaseinduced tryptophan degradation in advanced atherosclerotic plaques:Tampere vascular study. Ann. Med. 2010.42,55-63
    77. Nakajima, K. et al. Orally administered eicosapentaenoic acid induces rapid regression of atherosclerosis via modulating the phenotype of dendritic cells in LDL receptor-deficient mice. Arterioscler. Thromb. Vase. Biol.2011.31,1963-1972
    78. Dantzer, R. et al. From inflammation to sickness and depression:when the immune system subjugates the brain. Nat. Rev. Neurosci.2008.9,46-56
    79. Kim, H. et al. Brain indoleamine 2,3-dioxygenase contributes to the comorbidity of pain and depression. J. Clin. Invest.2012.122,2940-2954
    80. O'Connor, J.C. et al. Induction of IDO by bacille Calmette-Guerin is responsible for development of murine depressive-like behavior. J. Immunol.2009.182,3202-3212
    81. Chen, Y. and Guillemin, G.J. Kynurenine pathway metabolites in humans:disease and healthy States. Int. J. Tryptophan Res.2009.2,1-19
    82. Hochstrasser, T. et al. Inflammatory stimuli reduce survival of serotonergic neurons and induce neuronal expression of indoleamine 2,3-dioxygenase in rat dorsal raphe nucleus organotypic brain slices. Neuroscience.2011.184,128-138

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700