用户名: 密码: 验证码:
全脑定量结构MRI和DTI对阿尔茨海默病的实验和临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分APP/PS1转基因小鼠活体全脑DTI定量研究
     目的:以往的研究已将扩散张量成像(diffusion tensor imaging, DTI)应用于阿尔茨海默病(Alzheimer's disease, AD)动物模型的组织病理学研究中,但是少有关于结构特异性方面的报道。基于体素的分析方法(voxel-based analysis, VBA)和基于解剖图谱的分析方法(atlas-based analysis, ABA)是DTI全脑分析方法中两种互补的方法。本研究的目的在于采用全脑DTI的分析方法,明确AD动物模型病理变化的空间位置分布特征。
     材料与方法:同时采用VBA和ABA的方法,对APP/PS1转基因小鼠(n=9)和野生型对照(n=9)进行全脑的DTI对比分析。采用多种度量指标,如各向异性分数(fractional anisotropy, FA)、扩散轨迹(total diffusivity, trace)、轴向弥散(axial diffusivity, DA)和放射弥散(radial diffusivity, DR)对阿尔茨海默病小鼠不同类型的病理变化进行量化分析。采用Kappa分析的方法对手动描绘的感兴趣区(region of interest, ROI)和基于解剖图谱方法所勾画的ROI进行比较,以评估图像配准的准确性。MR检查之后,对APP/PS1转基因小鼠和野生型对照进行组织学检查分析。
     结果:结果显示,APP/PS1转基因小鼠存在广泛的脑结构异常,包括灰质区域如新皮层、海马、纹状体、丘脑、下丘脑、屏状核、杏仁核及梨状皮层,和白质区域如胼胝体/外囊、扣带束、隔、内囊、海马伞及视束,均表现为FA值或DA值升高,或者FA值和DA值同时升高(p<0.05,FDR校正)。手动描绘的ROI与ABA方法所描绘的ROI之间的平均Kappa值均接近0.8,且在APP/PS1转基因小鼠组和野生型对照组之间无显著性差异(p>0.05)。组织病理学分析证实了灰质区域如新皮层和海马区微结构的DTI变化。DTI同时也发现了广泛的白质区域的弥散改变,但这种差异仅靠单层的组织学定性观察难以准确评估。
     结论:本研究报道了APP/PS1转基因小鼠脑结构特异性的病理变化,同时也证实了全脑DTI定量分析方法在AD动物模型中的可行性。
     第二部分AD、MCI和健康人群脑白质差异的空间分布模式探讨
     目的:近年来大量研究均发现阿尔茨海默病(AD)患者、轻度认知障碍(MCI)患者和健康人群的脑白质完整性存在显著差异,然而AD和MCI患者脑白质损害的空间分布模式少有报道。本研究旨在通过全脑的DTI定量分析,探讨AD、MCI和健康人群脑白质差异的空间分布模式,找到疾病早期诊断和监测疾病进展的可靠指标。
     材料与方法:依据NINCDS-ADRDA可能AD的标准纳入AD患者21例(M/F=11/10,平均年龄66.8岁);依据Petersen的标准纳入MCI患者8例(M/F=3/5,平均年龄64.4岁);及无神经系统疾病的健康对照15例(M/F=8/7,平均年龄65.3岁)。采用GE公司signa HDxt3.0Tesla超导磁共振扫描仪行扩散张量成像(diffusion tensor imaging,DTI),扫描参数如下:TR/TE=10000/83ms, FA=90°, Matrix=256x256, FOV=240mmx240mm, Phase FOV=1,层厚3.0mm无间隔,NEX=1,42层覆盖全脑,b值为1000s/mm2,30个方向。得到DTI原始图像之后,利用DTIstudio软件进行FA图重建,利用DiffeoMap软件对图像进行基于解剖图谱的分析,测量深部灰质和深部白质共58个脑区结构的FA值。AD、MCI和健康对照组58个脑区结构的FA值首先采用单因素方差分析并进行事后检验,两两比较组间差异;然后对相关脑区FA值与简易精神状态量表(mini-mental state examination, MMSE)评分做相关分析。
     结果:与健康人群相比,AD患者深部灰质和深部白质结构存在广泛的FA值降低(p<0.05,FDR校正)。其中,胼胝体压部和丘脑的FA值在MCI组和健康对照组间存在显著差异(p<0.05,FDR校正),但在AD组和MCI组间无差异(p>0.05);扣带束和上纵束等8个结构的FA值在AD组和MCI组间有显著差异(p<0.05,FDR校正),但在MCI组和健康对照组间无差异(p>0.05)。相关分析显示,扣带束和上纵束的FA值与MMSE评分存在显著的正相关关系,以右侧扣带束的相关系数值最高(r=0.606,p=0.001);而胼胝体压部和丘脑区域FA值与MMSE不存在相关关系(p>0.05)。
     结论:AD和MCI患者脑白质损害的空间分布模式存在显著差异。胼胝体压部和丘脑显微结构病变是早期事件,与认知功能下降关系不大。而扣带束和上纵束白质病变与疾病进展有关,与认知功能下降显著相关。
     第三部分定量结构MRI对阿尔茨海默病的鉴别诊断研究
     目的:提出一种全新的方法,可将脑部T1加权磁共振(magnetic resonance, MR)图像转变为特征矢量,应用于基于内容的图像检索(content-based image retrieval, CBIR)。为了克服临床中同一人群的解剖学个体差异及成像参数的不一致性,我们提出了一种基于目标图像与解剖图谱之间差异的图像分析方法(Gap between an Atlas and a target Image Analysis, GAIA),利用基于解剖图谱的图像分割方法(atlas-based analysis, ABA),寻找目标图像与解剖图谱之间差异的大小,从中提取目标图像的解剖学特征,用于阿尔茨海默病的鉴别诊断研究。
     材料与方法:选取阿尔茨海默病(Alzheimer's disease, AD)、亨廷顿病(Huntington's disease, HD)、脊髓小脑性共济失调6型(Spinocerebral ataxia type6, SCA6)、原发性进行性失语症(primary progressive aphasia, PPA)患者及正常人的T1加权MR图像共102例,作为训练数据。另外随机选取AD、HD、SCA6、PPA患者及正常人的T1加权MR图像共170例作为测试数据。采用GAIA的方法对训练数据进行模式分类,分别提取AD、HD、SCA6、PPA患者及正常人的神经解剖学特征作为特征矢量;随后将这些特征矢量应用到测试数据中,每一个测试数据分别得到一个判别得分(discriminant score),利用判别得分对其进行病种的判别,并评估GAIA判别不同种类疾病的准确性。
     结果:从训练数据中提取出来的特征矢量,与我们所选取的各神经变性疾病所对应的病理学标志完全一致。大部分测试数据的判别得分能够准确的将其分类至各自对应的疾病种类中去。不具备该疾病典型相关解剖学特征的数据不能被准确分类。GAIA可将阿尔茨海默病从其它类型的神经变性疾病中区分开来。
     结论:我们提出的GAIA方法,是基于疾病相关的解剖学特征的提取方法,在图像的特征提取与模式识别中有着广阔的应用前景。在未来,可使得放射科医生只需要提交一名患者的图像,就能够将具有类似解剖学特征的相关临床病例全部检索出来,从而对某种疾病的诊断、治疗、预后及随访预测进行大样本的人口学普查及统计分析。
Part I In vivo Quantitative whole-brain Diffusion Tensor Imaging analysis of APP/PS1transgenic mice using Voxel-based and Atlas-based methods
     Purpose Diffusion tensor imaging (DTI) has been applied to characterize the pathological features of Alzheimer's disease (AD) in a mouse model, although little is known about the structural specificity. Voxel-based analysis (VBA) and atlas-based analysis (ABA) are good complementary tools for whole-brain DTI analysis. The purpose of this study is to identify the spatial localization of disease-related pathology of AD mouse model.
     Materials and Methods VBA and ABA quantification were used for the whole-brain DTI analysis of nine APP/PS1mice and wild-type (WT) controls. Multiple scalar measurements, including fractional anisotropy (FA), trace, axial diffusivity (DA), and radial diffusivity (DR), were investigated to capture the various types of pathology. The accuracy of the image transformation applied for VBA and ABA was evaluated by comparing manual and atlas-based structure delineation using kappa statistics. Following the MR examination the brains of the animals were analyzed for microscopy.
     Results Extensive anatomical alterations in APP/PS1mice, including in both gray matter areas (neocortex, hippocampus, caudate putamen, thalamus, hypothalamus, claustrum, amygdala, and piriform cortex) and white matter areas (corpus callosum/external capsule, cingulum, septum, internal capsule, fimbria, and optic tract) have been identified by an increase in FA or DA, or both, compared to WT (p<0.05, corrected). The average kappa value between manual and atlas-based structure delineation was approximately0.8, and there was no significant difference between APP/PS1and WT mice (p>0.05). The histopathological changes in the gray matter areas were confirmed by microscopy studies. DTI did, however, demonstrate significant changes in white matter areas, where the difference was not apparent by qualitative observation of a single-slice histological specimen.
     Conclusion This study demonstrated the structure specificity of pathological changes in APP/PS1mouse model, and also showed the feasibility of applying whole-brain analysis methods for the investigation of AD mouse model.
     Part II The Pattern of White Matter changes among Alzheimer's Disease, Mild Cognitive Impairment and Healthy people
     Purpose Increasing evidence has demonstrated that white matter(WM) changes among Alzheimer's disease (AD), mild cognitive impairment (MCI) and healthy people are signficantly different. However, the pattern of WM changes are still under debate. The purpose of this study is to identify the spatial pattern of WM alterations among AD, MCI and healthy people, and to find reliable biomarkers for the early diagnosis and monitoring of the disease.
     Materials and Methods Twenty-one patients diagnosed as probable AD according to NINCDS-ADRDA(M/F=11/10, mean age66.8yrs.),8patients diagnosed as MCI according to Petersen's criteria (M/F=3/5, mean age64.4yrs.) and15healgy people (M/F=8/7, mean age65.3yrs.) were enrolled in this study. All subjects underwent diffusion tensor imaging (DTI) on a3.0T MR system with TR/TE of10000/83ms, FA of90°, matrix of256×256, FOV of240mm×240mm, Phase FOV of1, slice thickness of3.0mm with no space, NEX of1, total slice of42, b value of1000s/mm2along30directions. All the raw data was processed by using DTI studio software to get the fractional anisotropy (FA) images. Then atlas-based analysis (ABA) were used for whole-brain DTI anlysis including58deep gray matter (GM) and deep WM structures. The differences of FA value among AD, MCI and healthy people were compared by using ANOVA, with a post-hoc analysis. The correlation between FA value and MMSE scores were further investigated in the regions where significant differences were found.
     Results Compared with healthy controls, AD patients demonstrated wide-spread FA decrease in deep GM and deep WM structures (p<0.05, FDR corrected). Among all the structures, the FA value of the splenium of corpus callosum (SCC) and the thalamus were signficantly different between the MCI group and the healthy group (p<0.05, FDR corrected), but not between the AD group and the MCI group (p>0.05); the FA value of the cingulum and the superior longitudinal fasciculus (SLF) were significantly different between the AD group and the MCI group (p<0.05, FDR corrected), but not between the MCI group and the healthy group (p>0.05). The mean FA value of the cingulum and the SLF were positively correlated with MMSE scores, with the highest correlation coefficient in the right cingulum (r=0.606, p=0.001). No significant correlation was found between the FA value of SCC and MMSE score (p>0.05), or the thalamus and MMSE score (p>0.05).
     Conclusion The spatial pattern of WM alterations among AD, MCI and healthy people are significantly different. The microstructure changes in the SCC and the thalamus are early events, but have no significant correaltion with the cognition impairment. The WM disruption in the cingulum and the SLF are in correlation with cognition decline, suggesting that FA values in these areas could be used as a sentive biomarker for monitoring disease progression.
     Part Ⅲ Gap between an Atlas and a Target Image Analysis (GAIA):Use of a Degree of Local Atlas-Image Segmentation Disagreement to Capture the Features of Anatomic Brain MRI
     Purpose To develop a new method to convert T1-weighted brain MRIs to feature vectors, which could be used for content-based image retrieval (CBIR). To overcome the wide range of anatomical variability in clinical cases and the inconsistency of imaging protocols, we introduced the Gap between an Atlas and a target Image Analysis (GAIA), in which a degree of local atlas-image segmentation disagreement was used to capture the anatomical features of target images.
     Materials and Methods As a proof-of-concept, the GAIA was applied to a training dataset for pattern recognition of the neuroanatomical features of Alzheimer's disease, Huntington's disease, spinocerebellar ataxia type6, and four subtypes of primary progressive aphasia. These feature vectors were applied to the test dataset to evaluate the accuracy of the pattern recognition.
     Results The feature vectors extracted from the training dataset agreed well with the known pathological hallmarks of the selected neurodegenerative diseases. Overall, discriminant scores of the test images accurately categorized these test images to the correct disease categories. Images without typical disease-related anatomical features were misclassified.
     Conclusion The proposed method is a promising method for image feature extraction based on disease-related anatomical features, which will enable users to submit a patient image and search past clinical cases with similar anatomical phenotypes.
引文
1. Chevalier-Larsen E, Holzbaur ELF. Axonal transport and neurodegenerative disease. Bba-Mol Basis Dis.2006;1762(11-12):1094-108.
    2. Richner M, Bach G, West MJ. Over expression of amyloid beta-protein reduces the number of neurons in the striatum of APPswe/PSlDeltaE9. Brain research. 2009;1266:87-92.
    3. Wang Q, Xu Y, Chen JC, et al. Stromal cell-derived factor 1alpha decreases beta-amyloid deposition in Alzheimer's disease mouse model. Brain research. 2012;1459:15-26.
    4. Oishi K, Mielke MM, Albert M, et al. DTI analyses and clinical applications in Alzheimer's disease. Journal of Alzheimer's disease:JAD.2011;26 Suppl 3:287-96.
    5. Song SK, Kim JH, Lin SJ, et al. Diffusion tensor imaging detects age-dependent white matter changes in a transgenic mouse model with amyloid deposition. Neurobiol Dis. 2004;15(3):640-7.
    6. Sun SW, Song SK, Harms MP, et al. Detection of age-dependent brain injury in a mouse model of brain amyloidosis associated with Alzheimer's disease using magnetic resonance diffusion tensor imaging. Exp Neurol.2005;191(1):77-85.
    7. Davatzikos C. Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. Neurolmage.2004;23(1):17-20.
    8. Oishi K, Faria A, Jiang H, et al. Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping:application to normal elderly and Alzheimer's disease participants. NeuroImage.2009;46(2):486-99.
    9. Faria AV, Joel SE, Zhang Y, et al. Atlas-based analysis of resting-state functional connectivity:Evaluation for reproducibility and multi-modal anatomy-function correlation studies. NeuroImage.2012.
    10. Lebenberg J, Herard AS, Dubois A, et al. A combination of atlas-based and voxel-wise approaches to analyze metabolic changes in autoradiographic data from Alzheimer's mice. Neurolmage.2011;57(4):1447-57.
    11. Jiang H, van Zijl PC, Kim J, et al. DtiStudio:resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed. 2006;81(2):106-16.
    12. Andersson JL, Skare S. A model-based method for retrospective correction of geometric distortions in diffusion-weighted EPI. NeuroImage.2002;16(1):177-99.
    13. Woods RP, Grafton ST, Holmes CJ, et al. Automated image registration:Ⅰ. General methods and intrasubject, intramodality validation. Journal of computer assisted tomography.1998;22(1):139-52.
    14. Miller MI, Beg MF, Ceritoglu C, Stark C. Increasing the power of functional maps of the medial temporal lobe by using large deformation diffeomorphic metric mapping. Proc Natl Acad Sci U S A.2005;102(27):9685-90.
    15. Ceritoglu C, Oishi K, Li X, et al. Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging. NeuroImage.2009;47(2):618-27.
    16. Xu D, Mori S, Shen D, et al. Spatial normalization of diffusion tensor fields. Magnetic Resonance in Medicine.2003;50(1):175-82.
    17. Oishi K, Mori S, Donohue PK, et al. Multi-contrast human neonatal brain atlas: application to normal neonate development analysis. NeuroImage.2011;56(1):8-20.
    18. Faria AV, Hoon A, Stashinko E, et al. Quantitative analysis of brain pathology based on MRI and brain atlases--applications for cerebral palsy. NeuroImage.2011;54(3):1854-61.
    19. Faria AV, Landau B, O'Hearn KM, et al. Quantitative analysis of gray and white matter in Williams syndrome. Neuroreport.2012;23(5):283-9.
    20. Aggarwal M, Duan W, Hou Z, et al. Spatiotemporal mapping of brain atrophy in mouse models of Huntington's disease using longitudinal in vivo magnetic resonance imaging. NeuroImage.2012;60(4):2086-95.
    21. Jack CR, Jr., Marjanska M, Wengenack TM, et al. Magnetic resonance imaging of Alzheimer's pathology in the brains of living transgenic mice:a new tool in Alzheimer's disease research. The Neuroscientist:a review journal bringing neurobiology, neurology and psychiatry.2007;13(1):38-48.
    22. Teipel SJ, Wegrzyn M, Meindl T, et al. Anatomical MRI and DTI in the diagnosis of Alzheimer's disease:a European multicenter study. Journal of Alzheimer's disease:JAD. 2012;31 Supp13:S33-47.
    23. Kiuchi K, Morikawa M, Taoka T, et al. Abnormalities of the uncinate fasciculus and posterior cingulate fasciculus in mild cognitive impairment and early Alzheimer's disease:a diffusion tensor tractography study. Brain research.2009;1287:184-91.
    24. Kerbler GM, Hamlin AS, Pannek K, et al. Diffusion-weighted magnetic resonance imaging detection of basal forebrain cholinergic degeneration in a mouse model. NeuroImage.2012;66C:133-41.
    25. Sandson TA, Felician O, Edelman RR, Warach S. Diffusion-weighted magnetic resonance imaging in Alzheimer's disease. Dementia and geriatric cognitive disorders. 1999;10(2):166-71.
    26. Sundgren PC, Dong Q, Gomez-Hassan D, et al. Diffusion tensor imaging of the brain: review of clinical applications. Neuroradiology.2004;46(5):339-50.
    27. Kilborn SH, Trudel G, Uhthoff H. Review of growth plate closure compared with age at sexual maturity and lifespan in laboratory animals. Contemporary topics in laboratory animal science/American Association for Laboratory Animal Science.2002;41(5):21-6.
    28. Delatour B, Guegan M, Volk A, Dhenain M. In vivo MRI and histological evaluation of brain atrophy in APP/PS1 transgenic mice. Neurobiology of aging.2006;27(6):835-47.
    29. Melhem ER, Mori S, Mukundan G, et al. Diffusion tensor MR imaging of the brain and white matter tractography. AJR American journal of roentgenology.2002;178(l):3-16.
    30. Tuch DS, Salat DH, Wisco JJ, et al. Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. Proc Natl Acad Sci U S A.2005;102(34):12212-7.
    31. Thiessen JD, Glazner KA, Nafez S, et al. Histochemical visualization and diffusion MRI at 7 Tesla in the TgCRND8 transgenic model of Alzheimer's disease. Brain structure & function.2010;215(1):29-36.
    32. Maheswaran S, Barjat H, Rueckert D, et al. Longitudinal regional brain volume changes quantified in normal aging and Alzheimer's APP x PS1 mice using MRI. Brain research.2009; 1270:19-32.
    33. Mueggler T, Meyer-Luehmann M, Rausch M, et al. Restricted diffusion in the brain of transgenic mice with cerebral amyloidosis. The European journal of neuroscience. 2004;20(3):811-7.
    34. Neil J, Miller J, Mukherjee P, Huppi PS. Diffusion tensor imaging of normal and injured developing human brain-a technical review. NMR Biomed.2002;15(7-8):543-52.
    35. Schmitz C, Rutten BP, Pielen A, et al. Hippocampal neuron loss exceeds amyloid plaque load in a transgenic mouse model of Alzheimer's disease. The American journal of pathology.2004; 164(4):1495-502.
    36. Unrath A, Klose U, Grodd W, et al. Directional colour encoding of the human thalamus by diffusion tensor imaging. Neuroscience letters.2008;434(3):322-7.
    37. Duan Y, Li X, Xi Y. Thalamus segmentation from diffusion tensor magnetic resonance imaging. International journal of biomedical imaging.2007;2007:90216.
    38. Solano-Castiella E, Anwander A, Lohmann G, et al. Diffusion tensor imaging segments the human amygdala in vivo. NeuroImage.2010;49(4):2958-65.
    39. Ding AY, Li Q, Zhou IY, et al. MR Diffusion Tensor Imaging Detects Rapid Microstructural Changes in Amygdala and Hippocampus Following Fear Conditioning in Mice. PloS one.2013;8(1):e51704.
    40. Fellgiebel A, Wille P, Muller MJ, et al. Ultrastructural hippocampal and white matter alterations in mild cognitive impairment:a diffusion tensor imaging study. Dementia and geriatric cognitive disorders.2004; 18(1):101-8.
    41. Dai H, Yin D, Hu C, et al. Whole-brain voxel-based analysis of diffusion tensor MRI parameters in patients with primary open angle glaucoma and correlation with clinical glaucoma stage. Neuroradiology.2013;55(2):233-43.
    42. Yin D, Yan X, Fan M, et al. Secondary Degeneration Detected by Combining VBM and TBSS in Subcortical Strokes with Different Outcomes in Hand Function. AJNR American journal of neuroradiology.2013.
    43. Zerbi V, Kleinnijenhuis M, Fang X, et al. Gray and white matter degeneration revealed by diffusion in an Alzheimer mouse model. Neurobiology of aging.2013;34(5):1440-50.
    44. Sturchler-Pierrat C, Abramowski D, Duke M, et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A. 1997;94(24):13287-92.
    45. Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL. Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. Science. 1984;225(4667):1168-70.
    46. Langston RF, Stevenson CH, Wilson CL, et al. The role of hippocampal subregions in memory for stimulus associations. Behavioural brain research.2010;215(2):275-91.
    47. Lim HK, Hong SC, Jung WS, et al. Automated hippocampal subfield segmentation in amnestic mild cognitive impairments. Dementia and geriatric cognitive disorders. 2012;33(5):327-33.
    48. Nagy Z, Jobst KA, Esiri MM, et al. Hippocampal pathology reflects memory deficit and brain imaging measurements in Alzheimer's disease:clinicopathologic correlations using three sets of pathologic diagnostic criteria. Dementia.1996;7(2):76-81.
    49. Canu E, McLaren DG, Fitzgerald ME, et al. Microstructural diffusion changes are independent of macrostructural volume loss in moderate to severe Alzheimer's disease. Journal of Alzheimer's disease:JAD.2010;19(3):963-76.
    50. Harms MP, Kotyk JJ, Merchant KM. Evaluation of white matter integrity in ex vivo brains of amyloid plaque-bearing APPsw transgenic mice using magnetic resonance diffusion tensor imaging. Exp Neurol.2006;199(2):408-15.
    51. Oishi K, Akhter K, Mielke M, et al. Multi-modal MRI analysis with disease-specific spatial filtering:initial testing to predict mild cognitive impairment patients who convert to Alzheimer's disease. Frontiers in neurology.2011;2:54.
    52. Pievani M, Agosta F, Pagani E, et al. Assessment of white matter tract damage in mild cognitive impairment and Alzheimer's disease. Human brain mapping. 2010;31(12):1862-75.
    53. Nowrangi MA, Lyketsos CG, Leoutsakos JM, et al. Longitudinal, region-specific course of diffusion tensor imaging measures in mild cognitive impairment and Alzheimer's disease. Alzheimer's & dementia:the journal of the Alzheimer's Association.2012.
    54. Tighe SK, Oishi K, Mori S, et al. Diffusion tensor imaging of neuropsychiatric symptoms in mild cognitive impairment and Alzheimer's dementia. The Journal of neuropsychiatry and clinical neurosciences.2012;24(4):484-8.
    55. Mielke MM, Okonkwo OC, Oishi K, et al. Fornix integrity and hippocampal volume predict memory decline and progression to Alzheimer's disease. Alzheimer's & dementia: the journal of the Alzheimer's Association.2012;8(2):105-13.
    56. Thillainadesan S, Wen W, Zhuang L, et al. Changes in mild cognitive impairment and its subtypes as seen on diffusion tensor imaging. International psychogeriatrics/IPA. 2012;24(9):1483-93.
    57. Song SK, Sun SW, Ramsbottom MJ, et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neurolmage. 2002;17(3):1429-36.
    58. Song SK, Yoshino J, Le TQ, et al. Demyelination increases radial diffusivity in corpus callosum of mouse brain. NeuroImage.2005;26(1):132-40.
    59. Sun SW, Liang HF, Le TQ, et al. Differential sensitivity of in vivo and ex vivo diffusion tensor imaging to evolving optic nerve injury in mice with retinal ischemia. NeuroImage.2006;32(3):1195-204.
    60. Pierpaoli C, Barnett A, Pajevic S, et al. Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. NeuroImage.2001;13(6 Pt 1):1174-85.
    61. Sotak CH. The role of diffusion tensor imaging in the evaluation of ischemic brain injury-a review. NMR Biomed.2002; 15(7-8):561-9.
    62. Fazekas F, Kleinert R, Offenbacher H, et al. The morphologic correlate of incidental punctate white matter hyperintensities on MR images. AJNR American journal of neuroradiology.1991;12(5):915-21.
    63. de la Torre JC. Alzheimer disease as a vascular disorder:nosological evidence. Stroke; a journal of cerebral circulation.2002;33(4):1152-62.
    64. Fox NC, Black RS, Gilman S, et al. Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology.2005;64(9):1563-72.
    65. Hawkes CA, Gatherer M, Sharp MM, et al. Regional differences in the morphological and functional effects of aging on cerebral basement membranes and perivascular drainage of amyloid-beta from the mouse brain. Aging cell.2013.
    66. Moretti DV, Pievani M, Fracassi C, et al. Increase of theta/gamma and alpha3/alpha2 ratio is associated with amygdalo-hippocampal complex atrophy. Journal of Alzheimer's disease:JAD.2009;17(2):349-57.
    67. Bueno-Junior LS, Lopes-Aguiar C, Ruggiero RN, et al. Muscarinic and nicotinic modulation of thalamo-prefrontal cortex synaptic plasticity [corrected] in vivo. PloS one. 2012;7(10):e47484.
    68. Amaral DG, Cowan WM. Subcortical afferents to the hippocampal formation in the monkey. The Journal of comparative neurology.1980;189(4):573-91.
    69. Andersen DL. Some striatal connections to the claustrum. Exp Neurol. 1968;20(2):261-7.
    70. Morys J, Bobinski M, Wegiel J, et al. Alzheimer's disease severely affects areas of the claustrum connected with the entorhinal cortex. Journal fur Hirnforschung. 1996;37(2):173-80.
    71. Wesson DW, Borkowski AH, Landreth GE, et al. Sensory network dysfunction, behavioral impairments, and their reversibility in an Alzheimer's beta-amyloidosis mouse model. The Journal of neuroscience:the official journal of the Society for Neuroscience. 2011;31(44):15962-71.
    72. Jiang Y, Johnson GA. Microscopic diffusion tensor imaging of the mouse brain. NeuroImage.2010;50(2):465-71.
    1.2010 Alzheimer's disease facts and figures. Alzheimer's & dementia:the journal of the Alzheimer's Association.2010;6(2):158-94.
    2. Braak H, Braak E. Staging of Alzheimer-related cortical destruction. International psychogeriatrics/IPA.1997;9 Suppl 1:257-61; discussion 69-72.
    3. Braak H, Alafuzoff I, Arzberger T, et al. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta neuropathologica.2006;112(4):389-404.
    4. Petersen RC. Mild cognitive impairment as a diagnostic entity. Journal of internal medicine.2004;256(3):183-94.
    5. Zhang Y, Schuff N, Du AT, et al. White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI. Brain:a journal of neurology. 2009;132(Pt 9):2579-92.
    6. Chen TF, Lin CC, Chen YF, et al. Diffusion tensor changes in patients with amnesic mild cognitive impairment and various dementias. Psychiatry research.2009; 173(1):15-21.
    7. Damoiseaux JS, Smith SM, Witter MP, et al. White matter tract integrity in aging and Alzheimer's disease. Human brain mapping.2009;30(4):1051-9.
    8. Mielke MM, Kozauer NA, Chan KC, et al. Regionally-specific diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease. Neurolmage. 2009;46(1):47-55.
    9. Honea RA, Vidoni E, Harsha A, Burns JM. Impact of APOE on the healthy aging brain: a voxel-based MRI and DTI study. Journal of Alzheimer's disease:JAD. 2009;18(3):553-64.
    10. Oishi K, Faria A, Jiang H, et al. Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping:application to normal elderly and Alzheimer's disease participants. NeuroImage.2009;46(2):486-99.
    11. McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology.1984;34(7):939-44.
    12. Jiang H, van Zijl PC, Kim J, et al. DtiStudio:resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed. 2006;81(2):106-16.
    13. Ceritoglu C, Oishi K, Li X, et al. Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging. NeuroImage.2009;47(2):618-27.
    14. Unrath A, Klose U, Grodd W, et al. Directional colour encoding of the human thalamus by diffusion tensor imaging. Neuroscience letters.2008;434(3):322-7.
    15. Duan Y, Li X, Xi Y. Thalamus segmentation from diffusion tensor magnetic resonance imaging. International journal of biomedical imaging.2007;2007:90216.
    16. Bartzokis G. Age-related myelin breakdown:a developmental model of cognitive decline and Alzheimer's disease. Neurobiology of aging.2004;25(1):5-18; author reply 49-62.
    17. Stricker NH, Schweinsburg BC, Delano-Wood L, et al. Decreased white matter integrity in late-myelinating fiber pathways in Alzheimer's disease supports retrogenesis. NeuroImage.2009;45(1):10-6.
    18. Choi SJ, Lim KO, Monteiro I, Reisberg B. Diffusion tensor imaging of frontal white matter microstructure in early Alzheimer's disease:a preliminary study. Journal of geriatric psychiatry and neurology.2005;18(1):12-9.
    19. Sexton CE, Kalu UG, Filippini N, et al. A meta-analysis of diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease. Neurobiology of aging. 2011;32(12):2322 e5-18.
    20. Naggara O, Oppenheim C, Rieu D, et al. Diffusion tensor imaging in early Alzheimer's disease. Psychiatry research.2006;146(3):243-9.
    21. Bozzali M, Falini A, Franceschi M, et al. White matter damage in Alzheimer's disease assessed in vivo using diffusion tensor magnetic resonance imaging. Journal of neurology, neurosurgery, and psychiatry.2002;72(6):742-6.
    22. Duan JH, Wang HQ, Xu J, et al. White matter damage of patients with Alzheimer's disease correlated with the decreased cognitive function. Surgical and radiologic anatomy: SRA.2006;28(2):150-6.
    23. Lee DY, Fletcher E, Martinez O, et al. Vascular and degenerative processes differentially affect regional interhemispheric connections in normal aging, mild cognitive impairment, and Alzheimer disease. Stroke; a journal of cerebral circulation. 2010;41(8):1791-7.
    24. Cho H, Yang DW, Shon YM, et al. Abnormal integrity of corticocortical tracts in mild cognitive impairment:a diffusion tensor imaging study. Journal of Korean medical science. 2008;23(3):477-83.
    25. Chen TF, Chen YF, Cheng TW, et al. Executive dysfunction and periventricular diffusion tensor changes in amnesic mild cognitive impairment and early Alzheimer's disease. Human brain mapping.2009;30(11):3826-36.
    26. Kantarci K, Avula R, Senjem ML, et al. Dementia with Lewy bodies and Alzheimer disease:neurodegenerative patterns characterized by DTI. Neurology. 2010;74(22):1814-21.
    27. Zarei M, Patenaude B, Damoiseaux J, et al. Combining shape and connectivity analysis: an MRI study of thalamic degeneration in Alzheimer's disease. Neurolmage. 2010;49(1):1-8.
    28. Stahl R, Dietrich O, Teipel SJ, et al. White matter damage in Alzheimer disease and mild cognitive impairment:assessment with diffusion-tensor MR imaging and parallel imaging techniques. Radiology.2007;243(2):483-92.
    29. Medina D, DeToledo-Morrell L, Urresta F, et al. White matter changes in mild cognitive impairment and AD:A diffusion tensor imaging study. Neurobiology of aging. 2006;27(5):663-72.
    30. Zhang Y, Schuff N, Jahng GH, et al. Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology.2007;68(1):13-9.
    31. Fellgiebel A, Wille P, Muller MJ, et al. Ultrastructural hippocampal and white matter alterations in mild cognitive impairment:a diffusion tensor imaging study. Dementia and geriatric cognitive disorders.2004;18(1):101-8.
    32. Ryan NS, Keihaninejad S, Shakespeare TJ, et al. Magnetic resonance imaging evidence for presymptomatic change in thalamus and caudate in familial Alzheimer's disease. Brain: a journal of neurology.2013.
    33. Coleman M. Axon degeneration mechanisms:commonality amid diversity. Nature reviews Neuroscience.2005;6(11):889-98.
    1. Muller H, Michoux N, Bandon D, Geissbuhler A. A review of content-based image retrieval systems in medical applications-clinical benefits and future directions. International journal of medical informatics.2004;73(1):1-23.
    2. Robinson GP, Tagare HD, Duncan JS, Jaffe CC. Medical image collection indexing: shape-based retrieval using KD-trees. Comput Med Imaging Graph.1996;20(4):209-17.
    3. Greenspan H, Pinhas AT. Medical image categorization and retrieval for PACS using the GMM-KL framework. IEEE Trans Inf Technol Biomed.2007; 11 (2):190-202.
    4. Rahman MM, Bhattacharya P, Desai BC. A framework for medical image retrieval using machine learning and statistical similarity matching techniques with relevance feedback. IEEE Trans Inf Technol Biomed.2007;11(1):58-69.
    5. El-Kwae EA, Xu H, Kabuka MR. Content-based retrieval in picture archiving and communication systems. J Digit Imaging.2000;13(2):70-81.
    6. Orphanoudakis SC, Chronaki CE, Vamvaka D. I2Cnet:Content-based similarity search in geographically distributed repositories of medical images. Comput Med Imaging Graph. 1996;20(4):193-207.
    7. Sinha U, Ton A, Yaghmai A, et al. Image content extraction:application to MR images of the brain. Radiographics.2001;21(2):535-47.
    8. Unay D, Ekin A, Jasinschi RS. Local Structure-Based Region-of-Interest Retrieval in Brain MR Images. IEEE T Inf Technol Biomed.2010;14(4):897-903.
    9. Muller H, Rosset A, Garcia A, et al. Informatics in radiology (infoRAD):benefits of content-based visual data access in radiology. Radiographics.2005;25(3):849-58.
    10. Ashburner J, Friston KJ. Nonlinear spatial normalization using basis functions. Hum Brain Mapp.1999;7(4):254-66.
    11. Good CD, Johnsrude IS, Ashburner J, et al. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage.2001;14(1 Pt 1):21-36.
    12. Smith SM, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage.2006;31(4):1487-505.
    13. Zhang H, Yushkevich PA, Alexander DC, Gee JC. Deformable registration of diffusion tensor MR images with explicit orientation optimization. Medical image analysis. 2006;10(5):764-85.
    14. Verma R, Mori S, Shen D, et al. Spatiotemporal maturation patterns of murine brain quantified by diffusion tensor MRI and deformation-based morphometry. Proceedings of the National Academy of Sciences of the United States of America.2005;102(19):6978-83.
    15. Chiang MC, Leow AD, Klunder AD, et al. Fluid registration of diffusion tensor images using information theory. IEEE Trans Med Imaging.2008;27(4):442-56.
    16. Yushkevich PA, Zhang H, Simon TJ, Gee JC. Structure-specific statistical mapping of white matter tracts. Neuroimage.2008;41(2):448-61.
    17. Wright IC, McGuire PK, Poline JB, et al. A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia. Neuroimage. 1995;2(4):244-52.
    18. Mazziotta J, Toga A, Evans A, et al. A probabilistic atlas and reference system for the human brain:International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci.2001;356(1412):1293-322.
    19. Ripolles P, Marco-Pallares J, de Diego-Balaguer R, et al. Analysis of automated methods for spatial normalization of lesioned brains. Neuroimage.2012;60(2):1296-306.
    20. Andersen SM, Rapcsak SZ, Beeson PM. Cost function masking during normalization of brains with focal lesions:still a necessity? Neuroimage.2010;53(1):78-84.
    21. Mandal PK, Mahajan R, Dinov ID. Structural Brain Atlases:Design, Rationale, and Applications in Normal and Pathological Cohorts. J Alzheimers Dis.2012.
    22. Wang H, Ren Y, Bai L, et al. Morphometry based on effective and accurate correspondences of localized patterns (MEACOLP). PloS one.2012;7(4):e35745.
    23. Liao S, Jia H, Wu G, Shen D. A novel framework for longitudinal atlas construction with groupwise registration of subject image sequences. Neuroimage.2012;59(2):1275-89.
    24. Du AT, Schuff N, Kramer JH, et al. Different regional patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia. Brain:a journal of neurology. 2007;130(Pt 4):1159-66.
    25. Lerch JP, Pruessner JC, Zijdenbos A, et al. Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy. Cereb Cortex. 2005;15(7):995-1001.
    26. Dickerson BC, Bakkour A, Salat DH, et al. The cortical signature of Alzheimer's disease:regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb Cortex.2009;19(3):497-510.
    27. van den Bogaard S, Dumas E, van der Grond J, et al. MRI biomarkers in Huntington's disease. Front Biosci (Elite Ed).2012;4:1910-25.
    28. Eichler L, Bellenberg B, Hahn HK, et al. Quantitative assessment of brain stem and cerebellar atrophy in spinocerebellar ataxia types 3 and 6:impact on clinical status. AJNR American journal of neuroradiology.2011;32(5):890-7.
    29. Mesulam MM, Wieneke C, Thompson C, et al. Quantitative classification of primary progressive aphasia at early and mild impairment stages. Brain:a journal of neurology. 2012;135(Pt 5):1537-53.
    30. McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology.1984;34(7):939-44.
    31. Petersen RC. Mild cognitive impairment as a diagnostic entity. Journal of internal medicine.2004;256(3):183-94.
    32. Mielke MM, Kozauer NA, Chan KC, et al. Regionally-specific diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease. NeuroImage. 2009;46(1):47-55.
    33. Langbehn DR, Brinkman RR, Falush D, et al. A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length. Clinical genetics. 2004;65(4):267-77.
    34. Mesulam MM. Slowly progressive aphasia without generalized dementia. Annals of neurology.1982;11(6):592-8.
    35. Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology.2011;76(11):1006-14.
    36. Shewan CM, Kertesz A. Reliability and validity characteristics of the Western Aphasia Battery (WAB). The Journal of speech and hearing disorders.1980;45(3):308-24.
    37. Woods RP, Grafton ST, Holmes CJ, et al. Automated image registration:Ⅰfu. General methods and intrasubject, intramodality validation. Journal of computer assisted tomography.1998;22(1):139-52.
    38. Kloppel S, Abdulkadir A, Hadjidemetriou S, et al. A comparison of different automated methods for the detection of white matter lesions in MRI data. Neuroimage. 2011;57(2):416-22.
    39. Antel SB, Collins DL, Bernasconi N, et al. Automated detection of focal cortical dysplasia lesions using computational models of their MRI characteristics and texture analysis. Neuroimage.2003;19(4):1748-59.
    40. Huang M, Yang W, Yu M, et al. Retrieval of Brain Tumors with Region-Specific Bag-of-Visual-Words Representations in Contrast-Enhanced MRI Images. Computational and mathematical methods in medicine.2012;2012:280538.
    41. Juva K, Sulkava R, Erkinjuntti T, et al. Prevalence of dementia in the city of Helsinki. Acta neurologica Scandinavica.1993;87(2):106-10.
    42. Wang HL, Yu R, Wu YT, et al. The changes of cerebral morphology related to aging in taiwanese population. PloS one.2013;8(1):e55241.
    43. Chen X, Sachdev PS, Wen W, Anstey KJ. Sex differences in regional gray matter in healthy individuals aged 44-48 years:a voxel-based morphometric study. Neuroimage. 2007;36(3):691-9.
    44. Thambisetty M, Wan J, Carass A, et al. Longitudinal changes in cortical thickness associated with normal aging. Neuroimage.2010;52(4):1215-23.
    45. Coffey CE, Lucke JF, Saxton JA, et al. Sex differences in brain aging:a quantitative magnetic resonance imaging study. Archives of neurology.1998;55(2):169-79.
    46. Laakso MP, Soininen H, Partanen K, et al. MRI of the hippocampus in Alzheimer's disease:sensitivity, specificity, and analysis of the incorrectly classified subjects. Neurobiology of aging.1998;19(1):23-31.
    47. Marigliano V, Gualdi G, Servello A, et al. Olfactory Deficit and Hippocampal Volume Loss for Early Diagnosis of Alzheimer Disease:A Pilot Study. Alzheimer disease and associated disorders.2013.
    48. Dolek N, Saylisoy S, Ozbabalik D, Adapinar B. Comparison of hippocampal volume measured using magnetic resonance imaging in Alzheimer's disease, vascular dementia, mild cognitive impairment and pseudodementia. The Journal of international medical research.2012;40(2):717-25.
    49. Xu Y, Jack CR, Jr., O'Brien PC, et al. Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology.2000;54(9):1760-7.
    50. Troyer AK, Murphy KJ, Anderson ND, et al. Associative recognition in mild cognitive impairment:relationship to hippocampal volume and apolipoprotein E. Neuropsychologia. 2012;50(14):3721-8.
    51. Arlt S, Buchert R, Spies L, et al. Association between fully automated MRI-based volumetry of different brain regions and neuropsychological test performance in patients with amnestic mild cognitive impairment and Alzheimer's disease. European archives of psychiatry and clinical neuroscience.2012.
    52. Jung BC, Choi SI, Du AX, et al. Principal component analysis of cerebellar shape on MRI separates SCA types 2 and 6 into two archetypal modes of degeneration. Cerebellum. 2012;11(4):887-95.
    53. Jacobi H, Hauser TK, Giunti P, et al. Spinocerebellar ataxia types 1,2,3 and 6:the clinical spectrum of ataxia and morphometric brainstem and cerebellar findings. Cerebellum.2012:11(1):155-66.
    54. Amici S, Ogar J, Brambati SM, et al. Performance in specific language tasks correlates with regional volume changes in progressive aphasia. Cognitive and behavioral neurology: official journal of the Society for Behavioral and Cognitive Neurology.2007;20(4):203-11.
    55. Albert MS. Changes in cognition. Neurobiology of aging.2011;32 Suppl 1:S58-63.
    56. Kirshner HS. Primary progressive aphasia and Alzheimer's disease:brief history, recent evidence. Current neurology and neuroscience reports.2012;12(6):709-14.
    57. Rabinovici GD, Jagust WJ, Furst AJ, et al. Abeta amyloid and glucose metabolism in three variants of primary progressive aphasia. Annals of neurology.2008;64(4):388-401.
    1.2010 Alzheimer's disease facts and figures. Alzheimer's & dementia:the journal of the Alzheimer's Association.2010;6(2):158-94.
    2. Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer's disease:occurrence, determinants, and strategies toward intervention. Dialogues in clinical neuroscience. 2009;11(2):111-28.
    3. Ferri CP, Prince M, Brayne C, et al. Global prevalence of dementia:a Delphi consensus study. Lancet.2005;366(9503):2112-7.
    4. George AE, de Leon MJ, Stylopoulos LA, et al. CT diagnostic features of Alzheimer disease:importance of the choroidal/hippocampal fissure complex. AJNR American journal of neuroradiology.1990;11(1):101-7.
    5. de Leon MJ, George AE, Reisberg B, et al. Alzheimer's disease:longitudinal CT studies of ventricular change. AJR American journal of roentgenology.1989; 152(6):1257-62.
    6. Braak H, Braak E. Staging of Alzheimer-related cortical destruction. International psychogeriatrics/IPA.1997;9 Suppl 1:257-61; discussion 69-72.
    7. Braak H, Alafuzoff I, Arzberger T, et al. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta neuropathologica.2006; 112(4):389-404.
    8. Fennema-Notestine C, Hagler DJ, Jr., McEvoy LK, et al. Structural MRI biomarkers for preclinical and mild Alzheimer's disease. Human brain mapping.2009;30(10):3238-53.
    9. Fischl B, Salat DH, Busa E, et al. Whole brain segmentation:automated labeling of neuroanatomical structures in the human brain. Neuron.2002;33(3):341-55.
    10. Whitwell JL, Josephs KA, Murray ME, et al. MRI correlates of neurofibrillary tangle pathology at autopsy:a voxel-based morphometry study. Neurology.2008;71(10):743-9.
    11. Singh V, Chertkow H, Lerch JP, et al. Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's disease. Brain:a journal of neurology.2006;129(Pt 11):2885-93.
    12. Saykin AJ, Wishart HA, Rabin LA, et al. Older adults with cognitive complaints show brain atrophy similar to that of amnestic MCI. Neurology.2006;67(5):834-42.
    13. McEvoy LK, Fennema-Notestine C, Roddey JC, et al. Alzheimer disease:quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment. Radiology.2009;251(1):195-205.
    14. Yuan Y, Gu ZX, Wei WS. Fluorodeoxyglucose-positron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment:a meta-analysis. AJNR American journal of neuroradiology.2009;30(2):404-10.
    15. Ridha BH, Anderson VM, Barnes J, et al. Volumetric MRI and cognitive measures in Alzheimer disease:comparison of markers of progression. Journal of neurology. 2008;255(4):567-74.
    16. Jack CR, Jr., Shiung MM, Weigand SD, et al. Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology.2005;65(8):1227-31.
    17. McDonald CR, McEvoy LK, Gharapetian L, et al. Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology.2009;73(6):457-65.
    18. Villain N, Fouquet M, Baron JC, et al. Sequential relationships between grey matter and white matter atrophy and brain metabolic abnormalities in early Alzheimer's disease. Brain:a journal of neurology.2010;133(11):3301-14.
    19. Frisoni GB, Fox NC, Jack CR, Jr., et al. The clinical use of structural MRI in Alzheimer disease. Nature reviews Neurology.2010;6(2):67-77.
    20. Jack CR, Jr., Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet neurology.2010;9(1):119-28.
    21. Herukka SK, Pennanen C, Soininen H, Pirttila T. CSF Abeta42, tau and phosphorylated tau correlate with medial temporal lobe atrophy. Journal of Alzheimer's disease:JAD. 2008;14(1):51-7.
    22. Oishi K, Akhter K, Mielke M, et al. Multi-modal MRI analysis with disease-specific spatial filtering:initial testing to predict mild cognitive impairment patients who convert to Alzheimer's disease. Frontiers in neurology.2011;2:54.
    23. Brewer JB, Magda S, Airriess C, Smith ME. Fully-automated quantification of regional brain volumes for improved detection of focal atrophy in Alzheimer disease. AJNR American journal of neuroradiology.2009;30(3):578-80.
    1. Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. Journal of magnetic resonance Series B.1994;103(3):247-54.
    2. Niendorf T, Dijkhuizen RM, Norris DQ et al. Biexponential diffusion attenuation in various states of brain tissue:implications for diffusion-weighted imaging. Magnetic resonance in medicine:official journal of the Society of Magnetic Resonance in Medicine/ Society of Magnetic Resonance in Medicine.1996;36(6):847-57.
    3. Inglis BA, Bossart EL, Buckley DL, et al. Visualization of neural tissue water compartments using biexponential diffusion tensor MRI. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine.2001;45(4):580-7.
    4. Assaf Y, Mayk A, Cohen Y. Displacement imaging of spinal cord using q-space diffusion-weighted MRI. Magnetic resonance in medicine:official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine. 2000;44(5):713-22.
    5. Basser PJ. Relationships between diffusion tensor and q-space MRI. Magnetic resonance in medicine:official journal of the Society of Magnetic Resonance in Medicine/ Society of Magnetic Resonance in Medicine.2002;47(2):392-7.
    6. Wakana S, Nagae-Poetscher LM, Jiang H, et al. Macroscopic orientation component analysis of brain white matter and thalamus based on diffusion tensor imaging. Magnetic resonance in medicine:official journal of the Society of Magnetic Resonance in Medicine/ Society of Magnetic Resonance in Medicine.2005;53(3):649-57.
    7. Song SK, Sun SW, Ramsbottom MJ, et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage.2002;17(3):1429-36.
    8. Song SK, Yoshino J, Le TQ, et al. Demyelination increases radial diffusivity in corpus callosum of mouse brain. NeuroImage.2005;26(1):132-40.
    9. Song SK, Sun SW, Ju WK, et al. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage. 2003;20(3):1714-22.
    10. Mueller HP, Unrath A, Sperfeld AD, et al. Diffusion tensor imaging and tractwise fractional anisotropy statistics:quantitative analysis in white matter pathology. Biomedical engineering online.2007;6:42.
    11. Basser PJ, Pajevic S, Pierpaoli C, et al. In vivo fiber tractography using DT-MRI data. Magnetic resonance in medicine:official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine.2000;44(4):625-32.
    12. Xue R, van Zijl PC, Crain BJ, et al. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine.1999;42(6):1123-7.
    13. Goodlett CB, Fletcher PT, Gilmore JH, Gerig G Group analysis of DTI fiber tract statistics with application to neurodevelopment. NeuroImage.2009;45(1 Suppl):S133-42.
    14. Coleman M. Axon degeneration mechanisms:commonality amid diversity. Nature reviews Neuroscience.2005;6(11):889-98.
    15. Chen TF, Chen YF, Cheng TW, et al. Executive dysfunction and periventricular diffusion tensor changes in amnesic mild cognitive impairment and early Alzheimer's disease. Human brain mapping.2009;30(11):3826-36.
    16. Kavcic V, Ni H, Zhu T, et al. White matter integrity linked to functional impairments in aging and early Alzheimer's disease. Alzheimer's & dementia:the journal of the Alzheimer's Association.2008;4(6):381-9.
    17. Pierpaoli C, Barnett A, Pajevic S, et al. Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. NeuroImage.2001; 13(6 Pt 1):1174-85.
    18. Cho H, Yang DW, Shon YM, et al. Abnormal integrity of corticocortical tracts in mild cognitive impairment:a diffusion tensor imaging study. Journal of Korean medical science. 2008;23(3):477-83.
    19. Huang J, Friedland RP, Auchus AP. Diffusion tensor imaging of normal-appearing white matter in mild cognitive impairment and early Alzheimer disease:preliminary evidence of axonal degeneration in the temporal lobe. AJNR American journal of neuroradiology.2007;28(10):1943-8.
    20. Bartzokis G. Age-related myelin breakdown:a developmental model of cognitive decline and Alzheimer's disease. Neurobiology of aging.2004;25(1):5-18; author reply 49-62.
    21. Reisberg B, Franssen EH, Souren LE, et al. Evidence and mechanisms of retrogenesis in Alzheimer's and other dementias:management and treatment import. American journal of Alzheimer's disease and other dementias.2002;17(4):202-12.
    22. Zhang Y, Schuff N, Du AT, et al. White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI. Brain:a journal of neurology. 2009;132(Pt 9):2579-92.
    23. Stricker NH, Schweinsburg BC, Delano-Wood L, et al. Decreased white matter integrity in late-myelinating fiber pathways in Alzheimer's disease supports retrogenesis. NeuroImage.2009;45(1):10-6.
    24. Choi SJ, Lim KO, Monteiro I, Reisberg B. Diffusion tensor imaging of frontal white matter microstructure in early Alzheimer's disease:a preliminary study. Journal of geriatric psychiatry and neurology.2005;18(1):12-9.
    25. Sexton CE, Kalu UG, Filippini N, et al. A meta-analysis of diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease. Neurobiology of aging. 2011;32(12):2322 e5-18.
    26. Chen TF, Lin CC, Chen YF, et al. Diffusion tensor changes in patients with amnesic mild cognitive impairment and various dementias. Psychiatry research.2009;173(1):15-21.
    27. Taoka T, Iwasaki S, Sakamoto M, et al. Diffusion anisotropy and diffusivity of white matter tracts within the temporal stem in Alzheimer disease:evaluation of the "tract of interest" by diffusion tensor tractography. AJNR American journal of neuroradiology. 2006;27(5):1040-5.
    28. Teipel SJ, Stahl R, Dietrich O, et al. Multivariate network analysis of fiber tract integrity in Alzheimer's disease. NeuroImage.2007;34(3):985-95.
    29. Stahl R, Dietrich O, Teipel SJ, et al. White matter damage in Alzheimer disease and mild cognitive impairment:assessment with diffusion-tensor MR imaging and parallel imaging techniques. Radiology.2007;243(2):483-92.
    30. Medina D, DeToledo-Morrell L, Urresta F, et al. White matter changes in mild cognitive impairment and AD:A diffusion tensor imaging study. Neurobiology of aging. 2006;27(5):663-72.
    31. Xie S, Xiao JX, Gong GL, et al. Voxel-based detection of white matter abnormalities in mild Alzheimer disease. Neurology.2006;66(12):1845-9.
    32. Naggara O, Oppenheim C, Rieu D, et al. Diffusion tensor imaging in early Alzheimer's disease. Psychiatry research.2006;146(3):243-9.
    33. Zhang Y, Schuff N, Jahng GH, et al. Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology.2007;68(1):13-9.
    34. Lee DY, Fletcher E, Martinez O, et al. Vascular and degenerative processes differentially affect regional interhemispheric connections in normal aging, mild cognitive impairment, and Alzheimer disease. Stroke; a journal of cerebral circulation. 2010;41(8):1791-7.
    35. Sullivan EV, Pfefferbaum A. Diffusion tensor imaging and aging. Neuroscience and biobehavioral reviews.2006;30(6):749-61.
    36. Kuczynski B, Targan E, Madison C, et al. White matter integrity and cortical metabolic associations in aging and dementia. Alzheimer's & dementia:the journal of the Alzheimer's Association.2010;6(1):54-62.
    37. Salat DH, Tuch DS, Greve DN, et al. Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiology of aging. 2005;26(8):1215-27.
    38. Head D, Buckner RL, Shimony JS, et al. Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging. Cereb Cortex.2004;14(4):410-23.
    39. Lehmbeck JT, Brassen S, Weber-Fahr W, Braus DF. Combining voxel-based morphometry and diffusion tensor imaging to detect age-related brain changes. Neuroreport. 2006;17(5):467-70.
    40. Damoiseaux JS, Smith SM, Witter MP, et al. White matter tract integrity in aging and Alzheimer's disease. Human brain mapping.2009;30(4):1051-9.
    41. Mielke MM, Kozauer NA, Chan KC, et al. Regionally-specific diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease. Neurolmage. 2009;46(1):47-55.
    42. Honea RA, Vidoni E, Harsha A, Burns JM. Impact of APOE on the healthy aging brain: a voxel-based MRI and DTI study. Journal of Alzheimer's disease:JAD. 2009;18(3):553-64.
    43. Bozzali M, Falini A, Franceschi M, et al. White matter damage in Alzheimer's disease assessed in vivo using diffusion tensor magnetic resonance imaging. Journal of neurology, neurosurgery, and psychiatry.2002;72(6):742-6.
    44. Duan JH, Wang HQ, Xu J, et al. White matter damage of patients with Alzheimer's disease correlated with the decreased cognitive function. Surgical and radiologic anatomy: SRA.2006;28(2):150-6.
    45. Nakata Y, Sato N, Nemoto K, et al. Diffusion abnormality in the posterior cingulum and hippocampal volume:correlation with disease progression in Alzheimer's disease. Magnetic resonance imaging.2009;27(3):347-54.
    46. Kiuchi K, Morikawa M, Taoka T, et al. Abnormalities of the uncinate fasciculus and posterior cingulate fasciculus in mild cognitive impairment and early Alzheimer's disease:a diffusion tensor tractography study. Brain research.2009; 1287:184-91.
    47. Rose SE, McMahon KL, Janke AL, et al. Diffusion indices on magnetic resonance imaging and neuropsychological performance in amnestic mild cognitive impairment. Journal of neurology, neurosurgery, and psychiatry.2006;77(10):1122-8.
    48. Wang L, Goldstein FC, Veledar E, et al. Alterations in cortical thickness and white matter integrity in mild cognitive impairment measured by whole-brain cortical thickness mapping and diffusion tensor imaging. AJNR American journal of neuroradiology. 2009;30(5):893-9.
    49. Kantarci K, Avula R, Senjem ML, et al. Dementia with Lewy bodies and Alzheimer disease:neurodegenerative patterns characterized by DTI. Neurology. 2010;74(22):1814-21.
    50. Fellgiebel A, Wille P, Muller MJ, et al. Ultrastructural hippocampal and white matter alterations in mild cognitive impairment:a diffusion tensor imaging study. Dementia and geriatric cognitive disorders.2004;18(1):101-8.
    51. Zarei M, Patenaude B, Damoiseaux J, et al. Combining shape and connectivity analysis: an MRI study of thalamic degeneration in Alzheimer's disease. Neurolmage. 2010;49(1):1-8.
    52. Di Paola M, Macaluso E, Carlesimo GA, et al. Episodic memory impairment in patients with Alzheimer's disease is correlated with entorhinal cortex atrophy. A voxel-based morphometry study. Journal of neurology.2007;254(6):774-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700