用户名: 密码: 验证码:
AM30镁合金显微组织与热变形行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁及镁合金作为最轻的金属结构材料之一,具有阻尼减震性能好、导热性能优越,电磁屏蔽性能好,易于回收等特点,因而受到人们的极大关注,被誉为21世纪的“绿色金属结构材料”。但对于铸态镁合金来说,铸锭组织中不可避免会存在组织和成分的不均匀。这种不均匀性具体表现为:1、出现非平衡第二相和过多的剩余相,形成枝晶网状组织;2、合金元素在Mg基体中的溶解度超过饱和浓度,形成过饱和固溶体;3、Mg基固溶体成分不均匀,出现晶内偏析或枝晶偏析。为了消除这种不均匀性,本课题采用均匀化退火处理来改善铸锭的质量。
     本文研究了不同均匀化条件得到的AM30镁合金的显微组织,对所有金相试样进行了显微硬度实验,得出了各种工艺条件下材料的显微硬度值随时间和温度变化的关系曲线,对均匀化的两个重要参数温度和时间进行了详细的探讨,并尝试采用求显微硬度分布值方差大小的方法来判断热处理后合金的均匀化程度。通过扫描电镜和能谱实验,定性研究了AM30镁合金主要合金元素在合金中的分布规律;利用X射线衍射图谱获得合金在铸态和均匀化过程中物相的变化规律,同样也是一种判断镁合金第二相溶解及均匀化效果的有效手段;根据实验结果和实际生产的要求,得出AM30镁合金最佳均匀化退火工艺为430℃×8h。
     在Gleeble-1500D热模拟仪上,对AM30镁合金在变形温度为523k~673k和应变速率为0.001s-1~0.1s-1条件下进行热压缩实验,得到了不同条件下的真应力-应变曲线,根据这些曲线计算出该合金的应力硬化指数为6.2,热激活能为134 kJ/mol,并对流变应力与变形温度和应变速率的关系进行了分析。结果表明,该合金热压缩变形的流变应力受变形温度和应变速率的影响较大,流变应力随应变速率的增加而增加,随变形温度的增加而减小,同时得出该合金比较适合的热变形温度为573k~623k,应变速率为0.001s-1~0.1s-1,以低温及高应变速率为宜。
     根据AM30镁合金热模拟实验的结果及AZ31合金的成熟挤压工艺对AM30镁合金进行挤压实验,对其挤压管材进行固溶及时效热处理,得出挤压管材的显微硬度与固溶及时效时间的关系,根据挤压实验结果和显微硬度与固溶及时效时间的关系研究了该合金的强化效果。结果表明该合金经固溶及时效处理后,硬度增加不明显,不能通过固溶及时效热处理来显著提高其性能。
As one of the lightest metallic structural materials, magnesium and magnesium alloy have many advantages in practical application. Due to its damping capacity, good vibrational absorption, heat conductivity, electromagnetic shielding, easy to recycle and so on, it has attracted more and more attention from researchers all over the world, considered to be the ecological metallic structural materials of the 21st century. However, microstructure and composition inhomogeneity is inevitable in the as-cast magnesium ingots. The inhomogeneity of as-cast magnesium alloys goes as follows: 1. appearance of the non-equilibrium second phase and excessive excess-phase result in the formation of a dendritic network; 2. the solubility of alloy element in the base leads to supersaturation, forming the supersaturated solid solution; 3. the composition of solid solution in the Mg base distribute extensively, causing the dendritic or transgranular segregation. In order to eliminate the inhomogeneity existing in the Mg matrix, homogenizing treatment was used to improve the attributes of Mg alloys ingot.
     The microstructure of AM30 magnesium alloys obtained at different heat treatment parameters is researched and the results of metallographic experiment are also analyzed in detail. By researching the microhardness of all metallographic samples, the microhardness-time and microhardness-temperature curves are reached under varied processing conditions. The effects of annealing time and temperature on homogenization are discussed at length. The microhardness distribution variance is utilized to illustrate the homogenizing quality. Aided by the results of SEM and EDS, the distribution of main elements in AM30 magnesium alloys is discussed qualitatively. Meanwhile the phase changes between as-cast and homogenized samples can be got by ways of analyzing X-ray spectrum, which can be served as an effective tool determining the second-phase distribution and the quality of homogenization. According to the experimental results and practical production requirement, the optimal annealing parameter is obtained to be 430℃×8h.
     Hot compression experiment of AM30 magnesium alloys was carried out on Gleeble-1500 at different temperatures of 573k~673k and different strain rates of 0.001 s-1~0.1s-1. The flow stress-strain curve was obtained. The deformation activation energy and stress hardening exponent were calculated to be 134kJ/mol and 6.2, respectively. The relationship between flow stress and deformation temperature and strain rate is analyzed at length. The results show the flow stress strongly depends on the deformation temperature and strain rate. The flow stress increases with the increasing of strain rate and decreases with the increasing of temperature and the fit deformation temperature and strain rates are obtained to be 573k~623k and 0.001s-1~0.1s-1, respectively. High strain rate and low temperature will be better.
     In light of data acquired from thermal deformation test and matured technology parameter of AZ31, the extrusion experiment was carried on AM30 magnesium alloys. Following the solution and aging treatment on extrusion tubings of AM30 magnesium alloys, the relation between microhardness and solution and aging time is reached. and the strengthening effects is also studied according to the relation and results of extrusion test. The results show the microhardness didn’t increase apparently and the way to obviously heighten the properties of AM30 using solution and aging treatment is not feasible.
引文
[1]曾小勤,王渠东,吕宜振等.镁合金应用进展[J].铸造,1998(11):3943.
    [2]张诗昌,段汉桥,蔡启舟,魏伯康,林汉同等.主要合金元素对镁合金组织和性能的影响.铸造. 2001(6):310-315.
    [3]余琨,黎文献,王日初,马正青.变形镁合金的研究、开发及应用[J].中国有色金属学报. 2003(2):278.
    [4]王文先,张金山,许并社.镁合金材料的应用及其加工成型技术[J].太原理工大学学报. 2001(6):602.
    [5]陈远望.国外镁金属研究现状[J].世界有色金属. 2003(2):46.
    [6]王有铭.钢材的控制轧制和控制冷却.北京:冶金工业出版社,1995.
    [7]王国军.变形镁合金挤压材生产技术及其产品标准[J].冶金标准化与质量. 2001(40):50.
    [8]黄光杰,赵国丹. AZ31镁合金热变形规律的研究[J].重庆工学院学报. 2006, 20(2):60-64.
    [9]张士宏,许,王忠堂等.镁合金加工技术[J].世界科技研究与发展. 2001, 23(6):18.
    [10]向群,屈伟平.镁合金的发展趋势.冶金丛书. 2004(5):35.
    [11]雷永泉.新能源材料[M].天津:天津出版社,2000.
    [12]孙国元,陈光. Mg基大块金属玻璃的形成与形成机制[J].有色金属. 2004, 56(2):23-27.
    [13]杨明波,潘复生,白亮等. Mg-xZn-4Al-0.5Mn镁合金的DSC分析[J].材料导报. 2007, 21(5A):392-394.
    [14]曾荣昌,韩恩厚,柯伟等.挤压镁合金AM60的腐蚀疲劳[J].材料研究学报.2005, 19(1):4-8.
    [15]张诗昌,段汉桥,蔡启舟,魏伯康,林汉同等.主要合金元素对镁合金组织和性能的影响[J].铸造, 2001, 50(6):310.
    [16]陈振华,许芳艳等.镁合金的动态再结晶[J].化工进展. 2006, 25(2):140-146.
    [17]黄晓燕,周宏.镁合金的研究应用及最新进展[J].材料与冶金学报. 2003, 2 (4):301-306.
    [18]张艳姝,曾志朋,金泉林.镁合金AZ31D的热变形力学行为与微观组织演化规律的试验研究[J].金属热处理,2007, 32(7):21-26.
    [19]金泉林.一个新的动态再结晶过程的分析模型[J].塑性工程学报, 1994, 1(1):3-14.
    [20]曹荣昌,柯伟,徐永波等.镁合金的最新进展及应用前景[J].金属学报,2001,37(7):673-685.
    [21]江五贵,王高潮,孙前江,汤井伦,黎军顽等.金属成形过程再结晶与晶体长大演化数值模拟.锻压技术. 2005, 4:90-91.
    [22]向冬霞,曹建勇,王军.镁合金配件在汽车、摩托车上的应用[J].汽车工艺与材料, 2002 (8-9):41 - 43.
    [23]刘楚明,刘子娟,朱秀荣,周海涛.镁及镁合金动态再结晶研究进展[J].中国有色金属学报, 2006, 16(1):1?12.
    [24]张静,潘复生,郭政晓. 2003.含铝和含锰镁合金系中的合金相[J]. 2002年中国材料研讨会论文集,北京:冶金工业出版社, 5:332~336.
    [25]崔忠圻,哈尔滨工业大学等.金属学与热处理[M].机械工业出版社. 1991.10:208-215.
    [26]俞汗清,陈金德等.金属塑性成形原理[M].北京:机械工业出版社, 1999.
    [27]沈健,糠京辉,谢水生. Al-Zn-Mg合金的热变形组织演化[J].金属学报. 2000, 36(10):1033-1036.
    [28]郭强,张辉,陈振华等. AZ31镁合金的高温热压缩流变应力行为的研究[J].湘潭大学自然科学学报, 2004 (26) :108 -111.
    [29]张昊,张辉,陈振华等. AM60镁合金的高温热压缩流变应力行为的研究[J].矿冶工程. 2006, 26(6):92-94.
    [30]肖盼,刘天模. AZ61B镁合金热模拟挤压变形的研究[J].兵器材料科学与工程. 2006, 29(4):22-25.
    [31]黄光胜.镁合金成形性能的改善及热变形行为研究[D].重庆:重庆大学材料科学与工程学院, 2003. 19-40.
    [32]刘满平等.工业态AZ31镁合金的超塑性变形行为[J].中国有色金属学报. 2002, 12(4):797-801.
    [33]黄光胜,汪凌云,黄光杰等.均匀化退火对AZ31B镁合金组织与性能的影响.重庆大学学报(自然科学版). 2004, 27(11):18-21.
    [34]张先宏,崔振山,阮雪榆.镁合金塑性成形技术--AZ31B成形性能及流变应力[J].上海交通大学学报, 2003, 37(12):1874-1877.
    [35]张静,潘复生,汪凌云,丁培道.变形镁合金研究最新进展及应用前景[J].镁合金材料及应用. 2002年中国材料研讨会论文集,北京:冶金工业出版社, 5:332~336.
    [36]余琨,黎文献.变形镁合金研究进展[J].轻合金加工技术, 2001 , 39 (7):6-11.
    [37]刘生发,范小明,王仲范.钙在铸造镁合金中的作用.铸造. 2003, 52:246-249.
    [38]刘英,李正元,张卫文.镁合金的研究进展和应用前景[J].轻金属, 2002, 08:20-25.
    [39]房灿峰,张兴国等.镁合金的性能、成形技术及应用研究.金属热处理, 2006, 31:12-16.
    [40]耿义海,李保成,张晓芳,张治民. AZ80变形镁合金高温变形流变应力分析.材料热处理技术. 2008.1:46-49.
    [41]孙付涛,陈拂晓,杨永顺?陈欢.铸态AZ31B镁合金热压缩实验研究.金属铸锻焊技术. 2008, 3:26-28.
    [42]杨亚琴,李保成.变形镁合金热压缩变形流变应力研究.中北大学学报. 2007, 28:145-148.
    [43]栾娜,李落星,李光耀,钟志华. AZ80镁合金的高温热压缩变形行为.中国有色金属学报. 2007,17(10):1678-1684.
    [44]刘六法,丁汉林,缣土重晴,丁文江,小岛阳. AZ91镁合金的热压缩行为(II)—元胞自动机模拟.中国有色金属学报. 2008, 18(2):243-249.
    [45]胡丽萍, Hans Peter Degische,郭领,王鹏,侯圣英. AZ31B镁合金的热压缩变形研究.材料热处理技术. 2008, 6:23-25.
    [46]王忠军,郭世杰,崔健忠等.低频电磁铸造AZ41镁合金的热压缩流变与组织.中国有色金属学报. 2006, 16(1):123-129.
    [47]刘六法,丁汉林,缣土重晴,丁文江,小岛阳. AZ91镁合金的热压缩行为(III)—基于元胞自动机模拟的再结晶动力学.中国有色金属学报. 2008, 18(2):250-253.
    [48] Yingxin Wang, Xiaoqin Zeng, Wenjiang Ding, Alan A. Luo and Anil K.Sachdev. Development and validation of Extrusion limit Diagram for AZ31 and AM30 Magnesium alloys.Materials Science Forum vols. 546-549(2007):327-332.
    [49] Sung S. Park, Yoon S. Oh, Dae H. Kang, Nack J. Kim. Microstructure evolution in twin-roll strip cast Mg-Zn-Mn-Al alloy. Materials Science and Engineering A 449-451(2007):352-355.
    [50] Alan A. Luo and Anil K. Sachdev. Development of a New Wrought Magnesium-Aluminum-Manganese Alloy AM30. Metallurgical and Materials Transactions A. vol.38A, June 2007 p.1187
    [51] Wenyun Wu, Ping Zhang, Xiaoqin Zeng, Li Jin, Shoushan Yao, Alan A. Luo. Bendability of the wrought magnesium alloy AM30 tubes using a rotary draw bender. Materials Science and Engineering A.486 (2008) p.596–601.
    [52] Qun-Feng Chang, Da-Yong Li, Ying-Hong Peng, Xiao-Qin Zeng。Experimental and numerical study of warm deep drawing of AZ31 magnesium alloy sheet. International Journal of Machine Tools & Manufacture. 47 (2007):436–443.
    [53] C. Bruni, A. Forcellese, F. Gabrielli, M. Simoncini. Air bending of AZ31 magnesium alloy in warm and hot forming conditions. Journal of Materials Processing Technology. 177 (2006):373–376.
    [54] S.S. Park, G.T. Bae, D.H. Kang, In-Ho Jung, K.S. Shind and Nack J. Kimb. Microstructure and tensile properties of twin-roll cast Mg–Zn–Mn–Al alloys. Scripta Materialia, 57 (2007):793–796.
    [55] Lan Jiang, John J. Jonas, Alan A. Luo, Anil K. Sachdev, Ste′phane Godet. Twinning-induced softening in polycrystalline AM30 Mg alloys at moderate temperatures. Scripta Materialia, 54 (2006):771–775.
    [56] Yang X, Miura H, Sakai T. Dynamic evolution of new grains in magnesium alloy AZ31 during hot deformation [J]. Materials Transactions, 2003, 44 (1):197-203.
    [57] LiborHelis, Kazuto Okayasu, Hiroshi Fukutomi. Microstructure evolution and texture development during high-temperature uniaxial compression of magnesium alloy AZ31. Materials Science and Engineering A , 430 (2006) 98–103.
    [58] T. Al-Samman, G. Gottstein. Dynamic recrystallization during high temperature deformation of magnesium Materials Science and Engineering A, 490 (2008)411–420.
    [59] YANG Xu-yue, H. Miura, T. Sakai. Recrystallization behaviour of fine-grained magnesium alloy after hot deformation. Transactions of Nonferrous metals Society of China. 2007, 17:1139-1142.
    [60] Mc Queen H J, My shlaev M, Sauerbom M, et al. Magnesium technology[M]. TMMMS: War rendale, 2000.
    [61] STUW E H P, ORTNER B. Recrystallization in hot working and creep[J]. Metals Sci, 1974, 8:16l一167.
    [62] T. Mukai, H. Watanabe and K. Higashi, Mater Sci. Technol, 16(2000), p.1314.
    [63] Y.V.R.K. Prasad, K.P.Pao, Mater.Sci.Engineer. A, 391(2005), p.141.
    [64] F.Seitz and D.Turnbull, Advance in research and applications, Solid state physics, 16(1966):51-55.
    [65] SK Das, GF Chang. Rapidly solidified alloys.Warrendale:AIME,1985
    [66] A Calka, M Madhava, DE Polk, BC Giessen, H Matyja, JV Sande, Transition-metal-free amorphous alloy Mg70Zn30 . Metall, 1977, 111:65-70.
    [67] F Sommer, G Bucher, B Fredel. Thermodynamic investigation of liquid Ag-Bi alloys. J Zeitschrift Fur Metal.1980,714:249-252
    [68] A Inoue, K Ohtera, K Kita, T Masumoto. New amorphous Mg-Ce-Ni alloys with high strength and good Ductility. Jpn, J, Appl, Phys.1998, 27(12):2248-2251
    [69] Inoue A,Masumoto T. Mg-based amorphous alloys. Materials Science and Engineering, 1993,A173,1-8.
    [70] Inoue A. Amorphous, quasicrystalline and nano-crystalline alloys in Al-and Mg-based systems. Handbook on the physics and chemistry of rare earths. Vol.24, Chaper 161.Elsevier Science B.V, 1997.
    [71] Inoue A, Kohinata M et al. Mg-Ni-La Amorphous Alloys with Wide supercooled Liquid Region. Mater. Trans. JIM,1989,30(5)378-381.
    [72] Inoue A, Nakamura T et al. Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method.Mater. Trans. JIM,1992,33(10)937-945.
    [73] Yi M Z,Kun W, Hancen L. Microstructure and Mechanical Properties of Aluminum Borate Whisker-Reinforced Magnesium Matrix Compositea. Material Letters, 2002,57(3):558-564
    [74] HENMANN F and Jones H, Magnesium Technology. In:Baker C.ed. The Institute of Metals. London:1986.83-96.
    [75] ASM International. Magnesium and magnesium alloy[M]. Ohio: Metal Park, 1999. 1-130.
    [76] Li Wenxian. Magnesium and Magnesium alloy[M]. Changsha: Central South University Press, 2005, 338-380.
    [77] R.W.Chan, Microstructures and Properties of Nonferrous Alloys[M], Beijing Science Press, 1999:460
    [78] LUO A. Magnesium castings for automotive applications [J]. JOM, 1995 47:28-31
    [79] Ji Zezheng, Research process and new technology of magnesium alloy in Japan [J], The Chinese Journal of nonferrous Metals, 2004, 14(12):1977~1984.
    [80] G.S.Cole, Material Science Forum, Vol. 419-422(2003), p.43.
    [81] C.H.J. Davies and M.R. Barnett, JOM, 56(5)(2004), p.22.
    [82] M.J.Luton and C.M. Sellars, Acta Metallur.et Mater, 17(1969), p.1033.
    [83] Sellar.C.M, Davies G.J. Hot Working and Forming Process. London: The Metals Society, 1980,3-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700