用户名: 密码: 验证码:
全光纤纳秒脉冲掺镱放大器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是在国家科技部973项目“基于微结构光纤的光电子功能器件的创新与基础研究”(2003CB314906)和固体激光技术国家重点实验室基金项目“短脉冲双包层光纤相干激光光源的研究”(51438020205JW1502)的支持下完成的。高功率脉冲光纤放大器具有高光束质量、结构紧凑、光纤输出、散热性能好等优势,正广泛运用于精密加工、材料处理、医疗、激光雷达、太空通信等领域。本文对高可靠性的全光纤脉冲放大器从理论和实验上进行了深入研究和探索;对复合腔光纤激光器进行理论与实验研究。得到的主要研究成果包括:
     1、从动态速率方程,分析得出了脉冲光纤放大器的光子流密度、反转粒子数密度沿信号传输方向的解析表达式。讨论了输入信号的强弱、增益光纤长度以及初始反转粒子数密度对脉冲放大输出的能量及能量增益的影响。分析了强弱不同的输入信号对功率增益及脉冲畸变问题的影响。
     2、将级联波分复用器的泵浦耦合系统用于单模放大系统中。在泵浦光耦合效率达70%的基础上,有效提高了对后向放大自发辐射光(ASE)的隔离,使泵浦激光器在长时间内正常工作。实验中对高掺杂光纤长度进行了优化;采用分段泵浦来增加增加隔离度,抑制自发辐射,从而增加放大输出的脉冲功率。通过对两级泵浦功率值进行优化来获得较高能量输出和较好的信噪比。将平均功率0.5mW、占空比1/1000的脉冲放大到26mW,信噪比25dB的脉冲输出。相应增益为17.1dB。实验证明了在小信号输入条件下,脉冲形状基本没有发生畸变,并保持了种子光的优良偏振特性。
     3、在一级包层泵浦放大方案中采用国产的不同掺杂浓度的掺Yb光纤,研究了初始反转粒子数密度的差异对输出功率和脉冲形状的影响。在同样的泵浦功率下,利用高掺杂浓度的掺镱光纤有利于增加放大输出功率,但输出脉冲形状的畸变现象加剧;脉冲放大过程中因自相位调制会引起频谱展宽。在耦合效率高的包层泵浦放大方案中,要防止反馈的光信号影响LD的正常工作;在放大器的泵浦阈值附近,信号光输入功率与输出功率相等,但输出脉冲幅度不稳定。通过一级包层泵浦放大,获得了平均功率1.05W的脉冲输出。
     4、通过级联两级包层泵浦放大器,实现平均功率2W、峰值功率2kW的全光纤脉冲输出。在较强信号输入的条件下,研究了放大器内的弱反馈对输出脉冲形状产生的影响。低占空比脉冲放大使脉冲间隔内的ASE功率积累,并引起寄生激射和自脉动现象。这两种现象严重影响输出脉冲的功率、形状和信噪比。自脉动引起的次脉冲相对主脉冲延迟时间与放大器的长度有关。提高输入脉冲信号功率能够有效抑制寄生激射和自脉动,还可以通过声光门来控制放大器内的ASE,或采用带通滤波器滤除ASE噪声,从而获得干净的脉冲输出。
     5、在单一光栅选频的复合腔光纤激光器里对自组织相干合成机理进行研究与讨论。相干耦合模式通过低反(4.5%)布拉格光栅输出。相干组合效率达到了94.3%。实验得到的泄露功率输出特性与理论模拟结果吻合较好。利用高反射率的布拉格光栅作腔镜,并将起偏器和偏振控制器联合使用,达到控制复合腔内偏振态的目的,实现了偏振锁定输出。在迈克尔孙复合腔里,通过选用中心波长不同的布拉格光栅选频,比较了在1557.830nm和1559.845nm处的子腔振荡、复合腔振荡的斜率效率和相干合成效率。实验结果表明选频在复合腔最佳波长范围(1559nm~1561nm),能够有效提高复合腔振荡的斜率效率和相干合成效率。实验中选频在1557.830nm时,子腔和复合腔的斜率效率分别为20%和18.2%。而选频在1559.845nm时,子腔和复合腔的斜率效率分别为27.5%和25.3%。相干合成效率分别为90%和93.5%。
This work is financially supported by the National Key Basic Research and Development Programme of China under Grant No. 2003CB314906 and the Project of the Key Laboratory Foundation of Solid Laser Technology under Grant No.51438020205JW1502.
     With high beam quality, compact configuration, fiber output and immunity from thermal lensing, fiber-based high power pulsed amplifiers attract great interest applications such as precision machining, material processing, medical treatment, lidar and outer space communications. In this dissertation, we mainly focus on the research and realization of all-fiber Watt-level pulsed amplifier, including the principles and experiments of output characteristics of nanosecond pulsed amplifier.
     The details are described as follows:
     1. Through the dynamic velocity rate equation, we got the explicit expressions of the density of photons flow and the density of reversed population along transmission direction of the signal. The influence to the output energy, gain of output power, gain of energy and pulse distortion by the intensity of the input signal, the length of active fiber and the initial density of reversed population were analyzed and discussed with solutions of the dynamic velocity rate equation.
     2. The cascaded wavelength-division-multiplexed (WDMs) with 70% coupled efficiency were used in cascaded single-mode amplifiers, which enhanced isolation to the backward ASE and protected the laser diode from destroyed during long period. Based on the optimization of active-fiber length, we pumped the active fiber in subsection. The pumping in subsection increased the isolation and suppressed the ASE, which improved the amplified output power greatly. To insure high signal to noise ratio, we further optimized the pump level of two laser diode. At repetition rate of 50kHz, pulse duration of 20ns, and 0.5mW average power of input signal, the amplified signal with 26mW output power and signal to noise ratio of 25dB was obtained. There was almost no pulse distortion with 84.5% polarization degree.
     3. Using double-cladded Yb-doped fiber with different doped concentration, we studied the influence to the output power and pulse shape by the initial reversed population. At the same pump level, using high-concentration Yb-doped fiber would improve the output power greatly, but the pulse shape was distorted. Spectral broadening due to self-phase modulation. In the method with high coupled efficiency, there need to avoid the backward signal destroying the laser diode. Around the pump threshold, output power of the signal was equal to input power with instable pulse shape. Almost 1.05W average power was obtained after the cladding-pump amplifier.
     4. Through the cladding-pump amplifier chains, up to 2W average power, 2kW peak power are realized. We further studied the influence to pulse shape by the faint feedback in amplifier on condition of strong input signal. The buildup of interpulse amplified spontaneous emission(ASE) lead to parasitic lasing or destructive self-pulsations, which decreased the output power and signal to nosie ratio. To avoid parasitic lasing and self-pulsations, one or two acousto-optic gates may be used to control the ASE buildup. Suppression of ASE injection between other stages can be ensured by using a bandpass filter centered at signal wavelength. All these method could provide clean, ASE-pedestal-free pulses at the output of the complete system.
     5. Characteristics of self-organization in compound cavity laser with one fiber bragg grating(FBG) to wavelength selection have been investigated and discussed. The coupled modes emitted from the FBG(4.5% reflectivity) and an coherent efficiency of 94.3% was obtained. The characteristics of leak power was good agreement with numerical simulation. A polarizer and the polarization controller were employed in composite cavity. Based on the combination of two elements controlling the polarization state, coherent polarization locking was realized. Choosing FBGs with different center wavelength to wavelength selection in Michelson compound cavity denoted that the selected wavelength locating the range from 1559nm to 1561nm would increase the coherent efficiency and slope efficiency.
引文
[1.1] Teodoro F D, Brooks C D, 1.1MW peak-power, 7W average-power, high-spectral-brightness, diffraction-limited pulses from a photonic crystal fiber amplifier. Optics Letters, 2005, 30 (20): 2694-2696.
    [1.2] A. Galvanauskas, G. C. Cho, et al. Generation of high-energy femtosecond pulses in multimode-core Yb-fiber chirped-pulse amplification systems. Optics Letters, 2001, 26 (12): 935-937.
    [1.3] Almantas Galvanauskas, Ming-Yuan Cheng, et al.High Peak Power Pulse Amplification in Large-Core Yb-Doped Fiber Amplifiers. QUANTUM ELECTRONICS, 2007, 13 (3):559-566.
    [1.4] F. D. Teodoro and C. D. Brooks, Multistage Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses. Optics Letters, vol 30, 2005, 3299-3301.
    [1.5] V. Fomin, A. Mashkin, et al., 3kW Yb fibre lasers with a single-mode output, presented at the Int. Symp. High-Power Fiber Lasers Appl., St. Petersburg, Russia, Jun. 26–30,2006.
    [1.6] LIMPERT J, H¨OFER S, et al. 100-W average-power, high-energy nanosecond fiber amplifier. Applied Physics B, 2002, 75: 477-479.
    [1.7] K. T. Vu, A. Malinowski, et al., Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system. Optics Express, 2006, 14(23): 10996-11001.
    [1.7] HE F, PRICE J H V, et al. Optimisation of cascaded Yb fiber amplifier chains using numerical-modelling. Optics Express, 2006, 14(26): 12846-12858.
    [1.8] ADHIMOOLAM B, LINDSAY I D, et al., Spectral shaping of a 10W diode laser-Yb-fiber amplifier system. Review of Scientific Instruments, 2006,77: 093101-1-4.
    [1.9] CHENG Ming-yuan, ChANG Yu-chung, et al., High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-μm core highly multimode Yb-doped fiber amplifiers. Optics Letters, 2005, 30 (4): 358-360.
    [1.10] KONG Ling-feng, LOU Qi-hong, et al., Frequency Response and Transient Gain of Yb-doped Double Clad Fiber Amplifier. Acta Photonica Sinica, 2004, 33 (11): 1286-1289
    [1.11] GUO Zhan-cheng, FU Shen-gui, et al. Experimental Study Of Large-Mode-Area Fiber Amplifier Applied In Coherent Combination. Acta Photonica Sinica, 2007, 36 (9 ): 1660-1663.
    [1.12] ZHU Zong-jiu, XU Li-xin, et al., Photodarkening in Ytterbium-doped Fiber with High Doping Concentration. Acta Photonica Sinica, 2007, 36 (1): 26-29.
    [1.13] Leonid Kazovsky, Sergio Benedetto, Alan Willner, Optical Communication Systems (In Chinese) P249~286
    [1.14] 周炳琨. 激光原理. 北京:国防工业出版社.2000
    [1.15] R¨udiger Paschotta, et al., Ytterbium-doped fiber amplifiers. QUANTUM ELECTRONICS, 1997, 33(7):1049-1055.
    [1.16] F. Di Teodoro and C. D. Brooks, Very large-core, single-mode Yb-doped photonic-crystal rod for multi-MW peak power generation. Proc. of SPIE 6102, 2006, 61020D.
    [1.17] J. R. Marciante and J. D. Zuegel, High-gain, polarization-preserving, Yb-doped fiber amplifier for low-duty-cycle pulse amplification. APPLIED OPTICS, 2006, 45, (26):6798-6804.
    [1.18] Jens Limpert, Fabian R¨oser, Sandro Klingebiel, et al. The Rising Power of Fiber Lasers and Amplifiers. QUANTUM ELECTRONICS, 2007, 13(3): 537-545
    [1.19] 王安廷,许立新等,掺镱光纤放大器的实验研究,中国激光,2002, 29(9): 777-779.
    [1.20] Nathan A. Brilliant, Raymond J. Beach, et al., Narrow-line ytterbium fiber master-oscillator power amplifier. Opt. Soc. Am. B, 2002, 19(5):981-991.
    [1.21] 付圣贵,“高功率双包层光纤激光器的理论与实验研究”.博士论文,2005,南开大学,中国天津。
    [1.22] R. Maurer, “Optical waveguide light source,” U.S. Patent 3 808 549, Apr. 30, 1974.
    [1.23] E.Snitzer, H.P., F.Hiakima et al.,Proc Conf Optical Sensors, 1988, Postdeadline paper PD5.
    [1.24] Ning,D., et al., Yb3+-doped double-clad fibre laser pumped by rectangular inner cladding. Chinese Physics Letters, 2001.18(12):1592-1594
    [1.25] Lew Goldberg and Jeffrey P. Koplow,Highly efficient 4-W Yb-doped fiber amplifier pumped by a broad-stripe laser diode. OPTICS LETTERS, 1999, 24(10):673-675.
    [1.26] Dennis Hammons, Jesse Anderegg, et al., High Power Fiber Amplifiers for Kilowatt Fiber Arrays. Lasers and Electro-Optics, 2003. CLEO’03. Conference on 1-6 June 2003 Page(s):3
    [1.27] Carter, A.; Corbin, F.;et al., High-power narrow-linewidth all-fibre amplifiers for power scaling applications. Lasers and Electro-Optics Society, 2005. The 18th Annual Meeting of the IEEE, Page(s):927 – 928.
    [1.28] 郭占城,付圣贵等,用于相干合成的大模面积光纤放大器的研究。光子学报,2007,36(9):1660-1663.
    [1.29] Ming-Jun Li, Xin Chen, et al., Al/Ge co-doped large mode area fiber with high SBS threshold. OPTICS EXPRESS, 2007, 15(13): 8290-8299.
    [1.30] Stuart Gray, Anping Liu, et al., 502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier. OPTICS EXPRESS, 2007, 15(25): 17044-17050
    [1.31] Thomas H. Loftus, Anping Liu, et al., 522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality. OPTICS LETTERS, 2007, 32(4):349-351.
    [1.32] Sandro Klingebiel, Fabian R?ser, et al., Spectral beam combining of Yb-doped fiber lasers with high efficiency. Opt. Soc. Am. B, 2007, 24(8):1716-1720.
    [1.33] A. Galvanauskas, Mode-scalable fiber-based chirped pulse amplification systems, IEEE J. Sel. Topics Quantum Electron., 2001, 7(4):504–517.
    [1.34] Christopher D. Brooks and Fabio Di Teodoro, 1-mJ energy, 1-MW peak-power, 10-W averagepower, spectrally narrow, diffraction-limited pulses from a photonic-crystal fiber amplifier. OPTICS EXPRESS, 2005, 13 (22):8999-9002.
    [1.35] Almantas Galvanauskas, Ming-Yuan Cheng, et al., High Peak Power Pulse Amplification in Large-Core Yb-Doped Fiber Amplifiers, QUANTUM ELECTRONICS, 2007, 13(3):559-566.
    [1.36] 郭占城,“掺镱双包层光纤放大器和激光束相干合成的基础研究”.博士论文,2007,南开大学,中国天津。
    [1.37] Yang X D, Bo Y, et al., High-beam-quality, 5.1 J, 108 Hz diode-pumped Nd:YAG rod oscillator–amplifier laser system. Optics Communications 2006,266 (1):39–43.
    [1.38] Minassian A, Thompson B A, et al., High-power scaling (>100 W) of a diode-pumped TEM/sub 00/ Nd:GdVO/sub 4/ laser system. Quantum Electron. 2005, 11(3):621-625.
    [1.39] 肖瑞, 周朴等,激光器的部分相干性对光纤激光器阵列相干合成远场图样的影响 2007, 物理学报, 56(2):0819-0823.
    [1.40] 肖瑞,侯静等, 三路光纤放大器相干合成技术的实验研究, 物理学报, 2006, 55(12): 6464-6469.
    [1.41] 肖瑞,侯静,姜宗福, 光纤激光器阵列相干合成中的位相探测与校正方法研究, 物理学报, 2006, 55(1):0184-0187.
    [1.42] H. Bruesselbach, D. C. Jones,et al., Self-organized coherence in fiber laser arrays, Opt. Lett. 2005, 30(11):1339-1341.
    [1.43] Kozlov V A, Hern′andez-Cordero J, Morse T F, All-fiber coherent beam combining of fiber lasers.Optics Letters,1999, 24(24):1814-1816.
    [1.44] Simpson T B, Gavrielides A, et al., Extraction characteristics of a dual fiber compound cavity, Opt. Exp., 2002, 10(20):1060-1073.
    [1.45] Shirakawa A, Saitou T, et al., Coherent addition of fiber lasers by use of a fiber coupler, Opt. Exp., 2002,10(21):1167-1172.
    [1.46] Sabourdy D, Kermène V, et.al.,Efficient coherent combining of widely tunable fiber lasers, Opt. Exp., 2003, 11(2):87-97.
    [1.47] Chen S P, Li Y G, et al., Branch arm filtered coherent combining of tunable fiber lasers, Opt. Exp.,2005, 13(20):7879-7884.
    [1.48] Bochove E J, Cheo P K, Self-organization in a multicore fiber laser array. Opt. Lett., 2003, 28(14):1200~1202.
    [1.49] Morel J, Woodtli A, et al., Coherent coupling of an array of Nd3+-doped single-mode fiber lasers by use of an intracavity phase gratin. Opt. Lett., 1993, 18(18):1520~1522.
    [1.50] Corcoran C J, Durville F, Experimental demonstration of a phase-locked laser array using a self-Fourier cavity. Appl. Phys. Lett., 2005, 86(20):201118-1~201118-3.
    [1.51] He B, Lou Q H, et al., High power coherent beam combination from two fiber laser
    [J]. Opt. Exp., 2006, 14(7): 2721~2726
    [1.52] Wilfrid B. Veldkamp, James R. LegerGary J. Swanson, Coherent summation of laser beams using binary phase gratings. OPTICS LETTERS, 1986. 11(5): p. 303-305.
    [1.53] M. Brunel, A. Le Floch, et al., "Coherent addition of adjacent lasers by forked eigenstate operation". Applied Optics, 1998. 37(12): p. 2402-2406.
    [1.54] P. B. Phua, Y. L. Lim, Coherent polarization locking with near-perfect combining efficiency. Optics Letters, 2006. 31(14): p. 2148-2150.
    [1.55] Jacques Morel, Alain Woodtli, Rene Dandliker, Coherent coupling of an array of Nd3+-doped single-mode fiber lasers by use of an intracavity phase grating. OPTICS LETTERS, 1993. 18(18): p. 1520-1522.
    [1.56] T. Y. Fan, S.J. Augst, A. Sanchez. Coherent beam combining of ytterbium fiber laser amplifiers. in Conference on Lasers and Electro-Optics CLEO 2002. 2002. Long Beach,California, USA: Optical Society of America: p. 2211-2212.
    [1.57] J. Boullet, D. Sabourdy, A. Desfarges-Berthelemot, et al., Coherent combining in an Yb-doped double-core fiber laser. Optics Letters, 2005. 30(15): p. 1962-1964.
    [1.58] Jia X J, Liu F N, et al., A novel all-fiber self-organization coherent erbium-doped fiber laser, in Fundamental Problems of Optoelectronics and Microelectronics III. 2007: SPIE: p.6595.
    [1.59] Jia X J, Liu F N, et al., Novel intra-cavity self-organization coherent Erbium-doped fiber laser, Optoelectronics Letters, 2007, 3(2):0106-0108.
    [2.1] H. M. Pask, R. J. Carman, et al., Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2μm region. IEEE J. Select. Topics Quantum Electronics, 1995, 1(1):2–13,
    [2.2] R¨udiger Paschotta, Johan Nilsson,et al., Ytterbium-doped fiber amplifiers. QUANTUM ELECTRONICS, 1997, 33(7):1049-1055.
    [2.3] R. Paschotta, J. Nilsson, P. R. Barber, et al., Lifetime quenching in Yb-doped fibres. Optics Communications, 1997. 136(5-6):375-378.
    [2.4] 付圣贵,高功率双包层光纤激光器的理论与实验研究,博士论文,2005,南开大学,中国天津.
    [2.5] 郭占城,掺镱双包层光纤放大器和激光束相干合成的基础研究,博士论文,2007,南开大学,中国天津.
    [2.6] J. T. Kringlebotn, J.-L. A., L.Reekie, et al., Highly-efficient low-noise grating-feedback Er3+/ Yb3+ codoped fibre laser. Electronics Letters, 1994.30(12):972-973.
    [2.7] 周炳琨. 激光原理. 北京:国防工业出版社.2000.
    [2.8] Y. Wang and H. Po, Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification, Lightwave Technol. 2003, 21(10):2262–2270.
    [2.9] J. R. Marciante and J. D. Zuegel, High-gain, polarization-preserving, Yb-doped fiber amplifier for low-duty-cycle pulse amplification, APPLIED OPTICS, 2006, 45(26):6798-6804.
    [2.10] F. He, J.H.V. Price et al., Optimisation of cascaded Yb fiber amplifier chains using numerical-modelling, OPTICS EXPRESS, 2006, 14(26):12846-12858.
    [2.11] 金艳丽,L波段掺铒光纤放大器增益控制技术研究,博士论文,2007,南开大学,中国天津.
    [2.12] 安伟,明海等,1053nm掺Yb光纤放大器脉冲放大实验研究,量子电子学报,2002,19(3):254-257.
    [2.13] 黄晶,吕新杰等,1053nm掺Yb3+双包层光纤放大器脉冲放大特性研究,中国激光,2005,32(8):1022-1026.
    [2.14] N. A. Brilliant, R. J. Beach et al., Narrow-line ytterbium fiber master-oscillator power amplifier, Opt. Soc. Am. B 2002, 19(5):981–991.
    [2.15] LEE M. FRANTZ, JOHN S. NODVIK, Theory of Pulse Propagation in a Laser Amplifier, JOURNAL OF APPLIED PHYSICS, 1963, 34(8):2346-2349.
    [2.16] LIMPERT J, H¨OFER S, LIEM.A, et al., 100-W average-power, high-energy nanosecond fiber amplifier, Applied Physics B, 2002, 75: 477-479.
    [2.17] Teodoro F D, Brooks C D, 1.1MW peak-power, 7W average-power, high-spectral-brightness, diffraction-limited pulses from a photonic crystal fiber amplifier. Optics Letters, 2005, 30 (20): 2694-2696.
    [2.18] Almantas Galvanauskas, Ming-Yuan Cheng, et al.High Peak Power Pulse Amplification in Large-Core Yb-Doped Fiber Amplifiers. QUANTUM ELECTRONICS, 2007, 13 (3):559-566.
    [2.19] Christopher D. Brooks and Fabio Di Teodoro, 1-mJ energy, 1-MW peak-power, 10-W averagepower, spectrally narrow, diffraction-limited pulses from a photonic-crystal fiber amplifier. OPTICS EXPRESS, 2005, 13 (22):8999-9002.
    [2.20] Leonid Kazovsky, Sergio Benedetto, Alan Willner, Optical Communication Systems (In Chinese) P259~286.
    [2.21] S. Hwang, K. W. Song, et al., Broad-band erbium-doped fiber amplifier with double pass configuration, IEEE Photon. Technol. Lett. 2001, 13(12), 1289–1291.
    [2.22] F. D. Teodoro and C. D. Brooks, Multistage Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses. Optics Letters, vol 30, 2005, 3299-3301.
    [3.1] D. Taverner, D. J. Richardson, et al., 158-mJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier, OPTICS LETTERS, 1997, 22(6):378-380.
    [3.2] C. J. S. de Matos and J. R. Taylor, Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 40× pulse compression using air-core fiber and conventional erbium-doped fiber amplifier, OPTICS EXPRESS, 2004, 12(3):405-4.9.
    [3.3] P. Dupriez, A. Piper, et al., 321 W average power, 1 GHz, 20 ps, 1060 nm pulsed fiber MOPA source , OFC 2005, PDP3.
    [3.4] P. Dupriez, A. Piper, et al., High Average Power, High Repetition Rate, Picosecond Pulsed Fiber Master Oscillator Power Amplifier Source Seeded by a Gain-Switched Laser Diode at 1060 nm, IEEE PHOTONICS TECHNOLOGY LETTERS, 2006, 18(9):1013-1015.
    [3.5] Christophe Codemard, Carl Farrell, et al., Millijoule, high-peak power, narrow-linewidth, sub-hundred nanosecond pulsed fibre Master-Oscillator Power-Amplifier at 1.55 μm, C. R. Physique, 2006, 7:170–176.
    [3.6] R. E. Kennedy, A. B. Rulkov, et al., High-peak-power femtosecond pulse compression with polarization-maintaining ytterbiumdoped fiber amplification, OPTICS LETTERS, 2007, 32(10):1199-1201.
    [3.7] CHENG Ming-yuan, ChANG Yu-chung, GALVANAUSKAS A, High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-μm core highly multimode Yb-doped fiber amplifiers. Optics Letters, 2005, 30 (4): 358-360.
    [3.8] Almantas Galvanauskas, Ming-Yuan Cheng, et al.High Peak Power Pulse Amplification in Large-Core Yb-Doped Fiber Amplifiers. QUANTUM ELECTRONICS, 2007, 13 (3):559-566.
    [3.9] W Torruellas, Y Chen,High peak power ytterbium-doped fiber amplifiers SPIE, Fiber Lasers III: Technology, Systems, and Applications, 2006, 6102(1)
    [3.10] 刘丰年 徐玲玲等,全光纤瓦级纳秒脉冲掺 Yb 放大器,光子学报,2008,(已接收)
    [3.11] ZHU Zong-jiu, XU Li-xin, MAO Qing-he, et al. Photodarkening in Ytterbium-doped Fiber with High Doping Concentration. Acta Photonica Sinica, 2007, 36 (1): 26-29.
    [3.12] 付圣贵,高功率双包层光纤激光器的理论与实验研究,博士学位论文,2005,南开大学,中国天津。
    [3.13] 刘丰年 徐玲玲,等,1064nm小信号纳秒脉冲掺Yb光纤放大器的实验研究,2007 OFC (已接收)
    [3.14] 张立文,郑义,掺镱光纤放大器(YDFA)特性的研究,激光杂志,2003,24(6):11-13.
    [3.15] Peroni M,Tamburrini M. Gain in erbium - doped fiber amplifiers : a simple analytical solution for the rate equations. Opt . lett . ,1990 ,15(15) :842~844.
    [3.16] J. R. Marciante and J. D. Zuegel, High-gain, polarization-preserving, Yb-doped fiber amplifier for low-duty-cycle pulse amplification, APPLIED OPTICS, 2006, 45(26):6798-6804.
    [3.17] 郭占城,掺镱双包层光纤放大器和激光束相干合成的基础研究,博士学位论文,2007,南开大学,中国天津。
    [4.1] J. D. Minelly,A. Galvanauskas, et al., Femtosecond pulse amplification in cladding-pumped fibers, OPTICS LETTERS, 1995, 20(17):1797-1799.
    [4.2] A. Galvanauskas, G. C. Cho, et al. Generation of high-energy femtosecond pulses in multimode-core Yb-fiber chirped-pulse amplification systems. Optics Letters, 2001, 26 (12): 935-937.
    [4.3] LIMPERT J, H¨OFER S, LIEM.A, et al. 100-W average-power, high-energy nanosecond fiber amplifier. Applied Physics B, 2002, 75: 477-479.
    [4.4] C. J. S. de Matos and J. R. Taylor,Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 40× pulse compression using air-core fiber and conventional erbium-doped fiber amplifier OPTICS EXPRESS, 2004,12(3):405-409.
    [4.5] Teodoro F D, Brooks C D, 1.1MW peak-power, 7W average-power, high-spectral-brightness, diffraction-limited pulses from a photonic crystal fiber amplifier. Optics Letters, 2005, 30 (20): 2694-2696.
    [4.6] F. D. Teodoro and C. D. Brooks, Multistage Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses. Optics Letters, vol 30, 2005, 3299-3301.
    [4.7] Vu K T, MALINOWSKIA,et al., Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system. Optics Express, 2006, 14(23): 10996-11001.
    [4.8] Almantas Galvanauskas, Ming-Yuan Cheng, et al.High Peak Power Pulse Amplification in Large-Core Yb-Doped Fiber Amplifiers. QUANTUM ELECTRONICS, 2007, 13 (3):559-566.
    [4.9] 段云锋,黄榜才,张鹏等,全光纤结构脉冲光纤放大器的实验研究. 中国激光,2007, 34(10):1379-1382.
    [4.10] Leonid Kazovsky, Sergio Benedetto, Alan Willner, Optical Communication Systems 1999, (In Chinese) P249~286.
    [4.11] D. Taverner, D. J. Richardson, 158-mJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier,OPTICS LETTERS, 1997, 22(6): 378-380.
    [4.12] 周炳琨. 激光原理. 北京:国防工业出版社.2000
    [4.13] 张立文, 郑义, 掺镱光纤放大器(YDFA) 特性的研究,激光杂志,2003,24(6):11-13.
    [4.14] J. R. Marciante and J. D. Zuegel, High-gain, polarization-preserving, Yb-doped fiber amplifier for low-duty-cycle pulse amplification, APPLIED OPTICS, 2006, 45(26):6798-6804.
    [4.15] Ming-Yuan Cheng, Yu-Chung Chang et al., High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-mm core highly multimode Yb-doped fiber amplifiers, OPTICS LETTERS, 2005,30(4):358-360.
    [4.16] A. Galvanauskas, G. C. Cho, A. Hariharan et al., Generation of high-energy femtosecond pulses in multimode-core Yb-fiber chirped-pulse amplification systems, OPTICS LETTERS, 2001,26(12):935-937.
    [5.1] Akira Shirakawa, Tomoharu Saitou, et al., Coherent addition of fiber lasers by use of a fiber coupler, OPTICS EXPRESS, 2002,10(21):1167-1172.
    [5.2] D. Sabourdy, Y Kermene, et al., Power scaling of fibre lasers with all-fibre interferometric cavity, ELECTRONICS LETTERS, 2002, 38(14):692-693.
    [5.3] David Sabourdy, Vincent Kermène, et al., Efficient coherent combining of widely tunable fiber lasers, OPTICS EXPRESS, 2003, 11(2):87-97.
    [5.4] D. Sabourdy, A. Desfarges-Berthelemot, et al., Coherent combining of Q-switched fibre lasers, ELECTRONICS LETTERS, 2004, 40(20).
    [5.5] Simpson T B, Gavrielides A, et al., Extraction characteristics of a dual fiber compound cavity, Opt. Exp., 2002, 10(20):1060-1073.
    [5.6] Qinjun Peng, Zhipei Sun, et al., Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity, OPTICS LETTERS, 2005, 30(12):1485-1487.
    [5.7] Chen S P, Li Y G, et al., Branch arm filtered coherent combining of tunable fiber lasers, Opt. Exp.,2005, 13(20):7879-7884.
    [5.8] Fengnian Liu, Bo Liu,et al., Investigation on characteristics of self-organization in Mach-Zehnder Erbium-doped fibre laser cavity, CHINESE OPTICS LETTERS, 2008, 6(3):
    [5.9] Jia X J, Liu F N, et al., A novel all-fiber self-organization coherent erbium-doped fiber laser, in Fundamental Problems of Optoelectronics and Microelectronics III. 2007: SPIE: p.6595.
    [5.10] Jia X J, Liu F N, et al., Novel intra-cavity self-organization coherent Erbium-doped fiber laser, Optoelectronics Letters, 2007, 3(2):0106-0108.
    [5.11] Didomenico M, Characteristics of a Single-Frequency Michelson-Type He-Ne Gas Laser Quantum. Electron. 1966, 2(8):311-322.
    [5.12] William W Rigrod, Selectivity of Open-Ended Interferometric Resonators, Quantum. Electron. 1970 6(1) 9-14.
    [5.13] Fengnian Liu, Xiujie Jia,et al., Realization of coherent polarization locking of two orthogonal-polarization beams in a Mach-Zehnder compound cavity based on the polarization-dependence losses of a polarizer” Proc. SPIE Vol. 6781, 678125 (Nov. 21, 2007) 武汉 (EI:)
    [5.14]. Jia Xiu-Jie, Liu Feng-Nian, et al., Realization of an efficient coherent combination via Michelson cavity, CHINESE PHYSICS, 2007, 16 (10): 2993-2997.
    [5.15] P. B. Phua, Y. L. Lim, Coherent polarization locking with near-perfect combining efficiency. Optics Letters, 2006. 31(14):2148-2150.
    [5.16] Liu Feng-nian, Jia Xiu-jie, et al.,“Enhancing coherent combining efficiency via choosing appropriate lasing wavelength in a Michelson compound cavity based on two 3dB fiber loop mirrors and one fiber Bragg grating”Chinese Physics Letters, 2007, 24(4):929-932.
    [5.17] LIU Y-G, FENG X-H, et al. High-Power Er3+/Yb3+ codoped double-cladding fibre amplifier with more than 2W output power, Chin. Phys. Lett. 2005, 22(2):343-345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700