用户名: 密码: 验证码:
Pr~(3+):Y_2SiO_5晶体的上转换特性及红外偏振光谱法探测OH和CH_3
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,一种可产生短波长可调谐激光的技术-稀土离子掺杂晶体中的频率上转换技术越来越受到关注。频率上转换的主要特点是:不需要像倍频晶体那样严格的位相匹配条件;结构简单,可以全固体化;价格低廉。上转换激光材料以稀土离子掺杂的光学晶体或非晶体为主。目前国内外报道的上转换激光的研究主要集中在红外、可见波段,对紫外上转换激光报道很少。本论文主要阐述了Pr~(3+):Y_2SiO_5晶体的光学性质和上转换特性。首先测量了该晶体的吸收谱、荧光谱、激发谱、不同能级不同浓度的荧光寿命,并计算了4f~2组态内各能级间的跃迁几率、自然辐射寿命。然后对几种可能的上转换过程及其机理进行了实验和理论研究。
     激光光谱技术在分子水平上对剧烈化学反应如燃烧过程的研究起着重要作用。而现有的工作主要集中在紫外和可见波段,这就只局限于有限的分子和原子。大量重要的小分子碳氢化合物,因为没有合适于此波段的可探测电子跃迁而得不到定量研究。本论文利用激光偏振光谱学方法,通过探测分子的振动和转动能级,在中红外波段检测燃烧化学反应中的重要中间产物,羟基和甲基自由基分子,从而实现了对它们的在线定量分析。
Investigation on up-conversion characteristic of the Pr~(3+) : Y_2SiO_5 crystal and on the detection of OH & CH_3 radicals with IRPS
     In recent years, investigations on the process of frequency up-conversion in rare earth ions doped laser crystals, including fluorescence emission, stimulated emission, and the governing mechanism of the process of frequency up-conversion, have become hot research subjects. One important reason is due to the fact that frequency up-conversion lasers have broadly applicable prospects in the infrared display, laser display, the memory of high-density data and the others. Its favored characters lie in the phase-matched-free condition, the simple structure, the entire solidification and the relatively low cost. Rare earth ions doped laser crystal or non-crystal is the main material for up-conversions. This thesis investigated experimentally the optical characteristics of the Pr~(3+):Y_2SiO_5 crystal and also the mechanism of the process of the visible-ultraviolet up-conversion. The aim of the thesis work has been three parts.
     The first part of the thesis, introduction and fundamental principle.
     The second part of the thesis, the investigation was focused on the absorption spectrum, fluorescent emission spectrum, excitation spectrum and the fluorescent lifetimes of the samples with different doped concentrations in each energy level. Regarding the fluorescent emission spectrum, we have measured that at the energylevel of 4f5d, ~3P_0, and ~1D_2, respectively, and studied the corresponding transitions.Laser radiations at wavelengths of 260 nm, 460 nm, and 600 nm were used to excite the Pr~(3+):Y_2SiO_5 crystal and the fluorescent emission spectrum of three samples with different doped concentrations were detected and recorded in the range from 270 nm to 770 nm under room temperature. The peak values of the fluorescence emission spectrum while exciting the Pr~(3+):Y_2SiO_5 crystal at the energy level of 4f5d are 276 nm, 279 nm, 303 nm, 543 nm, 570 nm, 602 nm, 632 nm and the corresponding transitions are 4f5d→~3H_5, 4f5d→~3H_6, 4f5d→~3F_2, ~3P_0→~3H_4, ~3P_0→~3H_5, ~3P_0→~3H_6,~3P_0→~3F_2. The peak values of the fluorescence emission spectrum by exciting the level ~3P_0 are 280 nm,311 nm, 326 nm, 493 nm, 552 nm, 621 nm, 652 nm, 658 nm, 663 nm while the corresponding transitions are 4f5d→~3H_5, 4f5d→~3H_6, 4f5d→~3F_4,~3P_0→~3H_4, ~3P_0→~3H_5, ~3P_0→~3H_6,~3P_0→~3F_2, ~3P_0→~3F_3,~3P_0→~3F_4. Similarly atthe energy level of ~1D_2 we get 607 nm as the peak value of the fluorescent spectrum and ~1D_2→~1H_4 .as the corresponding transition. Moreover, we have also measuredτ_(if) which is the fluorescent lifetime of the energy level of 4f5d,~3P_0 and ~1D-2 with different doping concentrations.
     We calculates the fluorescence lifetimeτ_(is), fluorescence quantum efficiencyη_i and the transition rate between different levels of 4f2 based on the Judd-Ofelt theory. Table 1
     From Table 1, we can see that the level lifetime value increases with the decreasing density of doping ion. The reason is that with the decreasing density, mutual action between the granule weakens, the cross decay weakens, and the lifetime therefore increases. The fluorescence quantum efficiency of 4f5d is approximate 90%, which is useful to produce the tunable ultraviolet laser.
     We studies the upconversion of Pr~(3+):Y_2SiO_5 crystal, including the ultraviolet up-conversion in the excitation of continual wave and pulse wave and the upconversions from infrared to visible light and from visible light to visible light.
     The upconversion phenomenon under the excitation of continual frequency: The ultraviolet fluorescence band between 280nm - 350nm is found with the stimulation of Ar~+ ion laser (488nm). The upconversion mechanism is studied based on the velocity equation theory and experimental results. ETU is the main upconversion mechanism for high density samples (1at % and 0.5at %); ESA is the main upconversion mechanism for low density samples (0.02at %).
     The upconversion phenomenon was measured under the excitation of pulse light. The ultraviolet fluorescence band between 280nm - 350nm is found with the stimulation of 488nm pulse laser. It is proved that ESA process is the main up-conversion mechanism based on the relations measure between the fluorescence intensity and the pump power and the time resolution spectrum measure of ultraviolet fluorescence.
     The fluorescence band between 480nm - 515nm is found with the stimulation of 579nm laser. It is proved that ETU process is the main upconversion mechanism based on the relations measure between the fluorescence intensity and the pump power and the time resolution spectrum measure of up-conversion fluorescence.
     The fluorescence bands between 470nm - 530nm and 620nm - 630nm are found with the stimulation of 930nm laser. It is proved that ESA process is the main upconversion mechanism based on the relations measure between the fluorescence intensity and the pump power and the time resolution spectrum measure of upconversion fluorescence.
     The third part of the thesis demonstrated the application of mid-infrared polarization spectroscopy (mid-IRPS) in detecting and analyzing OH and CH_3 radicals which are the combustion intermediates in flames.
     Laser spectroscopy played crucial roles in the study of molecular species in harsh reactive environments like chemical reaction in combustion process. However, most of the existing works are done within the UV/visible spectral range, requiring atoms and molecules for specific electronic transmissions among different energy levels, which limits the candidate molecules and atoms to only a small number. It is consequently that many important small molecules, such as OH, CH_3, can't be quantitatively investigate due to the lack of proper electronic transitions in this spectral range. This part of the thesis demonstrated that the use of IRPS allows the detection of OH and CH_3 as the minor combustion intermediates in the mid-infrared spectral range by probing the vibrational and rotational levels. On designing and performing our experiments we have studied thoroughly the principle of IRPS as well as the spectrum of OH and CH_3 so as to achieve quantitative measurements. The detection of OH and CH_3 with high temporal and spatial resolution in combustion processes implies that IRPS can be regarded as a common tool to apply in general whenever the spectrally resolved and temporally resolved detection of small molecular hydrocarbons in harsh chemical reactions are involved.
     The main research results of the thesis:
     1. We studies the upconversion of Pr~(3+):Y_2SiO_5 crystal, including the ultraviolet up-conversion in the excitation of continual wave and pulse wave and the upconversions from infrared to visible light and from visible light to visible light. The mechanism of the up-conversion was investigated through temporal resolution laser spectroscopy. This part of result was published in Chem. Phys., 2006, 325:563-566; European Physical Journal D, 2006, 39:303-306. et.al.
     2. This thesis enriched the optical features of the Pr~(3+):Y_2SiO_5 single crystal, especially those in the ultraviolet region, and it also supplied more scientific data for the practical application of the crystal. This part of result was published in Chin. Phys. Lett., 2006, 23:1915-1918.
     3. The thesis demonstrated the use of IRPS for the detection of OH and CH_3 as minor combustion intermediate products in the mid-infrared spectral range by probing the vibrational and rotational levels of the molecules. The successful detection of OH and CH_3 with high temporal and spatial resolution in combustion processes implies that IRPS can be regarded as a common tool to apply in general whenever the spectrally resolved and temporally resolved detection of small molecular hydrocarbons in harsh chemical reactions are involved. This part of result was published in J. Chem. Phys., 2007,127:084310.
引文
[1]朱莉.第一台激光器的诞生[M],松辽学刊,1994,3,90.
    [2]GORDON J P, ZEIGER H J, TOWNES C H. The master-new type of microwave amplifier frequency standard and spectrometer [J]. Phys.Rev, 1955, 99:1264-1267.
    [3]朱莉.物理学现代应用[M].吉林大学出版社(长春),1991.
    [4]李庄.激光器的新进展[M].激光生物学报,1998,7:135.
    [5]王素,李书涛.激光器以及发展动向[J].安徽师大学报,1994,17:94.
    [6]GAO J Y, ZHANG H Z, CUI H F, GUO X Z, JIANG Y, et al. Inversionless light amplification in sodium [J].Opt.Comm, 1994,110:590-594.
    [7]陈丽江,陈秀娥.光纤激光器和光纤放大器的基础及发展状况[J],国外激光,1994,11,5.
    [8]张国威.可调谐激光技术[M].国防工业出版社(北京),2002.
    [9]巨养锋.罗烽,姜连勃等.深圳大学学报,2001,18:13.
    [10]BRIAN P.调谐紫翠宝石激光器在紫外得到应用[J].激光集锦,1999,10:73.
    [11]PINTO J F, ROSENBLATT G H,ESTEROWITA L,et al.Ce~(3+)-doped colquiriite:A new concept of all-solid-state tunable ultraviolet laser[J]. J. Mod. Opt, 1993,40:1-5.
    [12]SARUKURA N, LIU Z L,SEGAWA Y,et al.Direct and passive subnanosecond pulse-train generation from a self-injection-seeded ultraviolet solid-sate laser [J]. Opt.Lett, 1995,20:599-601.
    [13]徐东勇,臧竞存.上转换激光和上转换发光材料的研究进展[J].人工晶体学报,2001,30:203.
    [14]BLOEMBERGEN N.Solid state infrared quantum counters [J].Phys. Rev.Lett, 1959,2:84-85.
    [15]JOHNSON L F, GUGGENHEIM H J.Infrared-pumped visible laser [J]. Appl.Phys.Lett, 1971, 19:44-47.
    [16]SILVERSMITH A J, LENTH W, MACFARLANE R M. Green infrared-pumped erbium upconversion laser [J]. Appl.Phys.Lett, 1987, 51:1977-1979.
    [17] ANTIPENKO B M, VORONIN S P, PRIVALOVA T A. New laser channels of the Tm~(3+) ion [J]. Opt. Spectrosc, 1990, 68:164.
    [18] STEPHENS R R, MCFARLANE R A. Diode-pumped Upconversion Laser with l00mW Output Power [J]. Opt. Lett., 1993, 18:34-36.
    [19] HEINE F, HEUMANN E, DANGER T. Green Upconversion Continuous Wave Er~(3+):LiYF_4 Laser at Room Temperature [J]. Appl. Phys. Lett, 1994, 65:383-386.
    [20] HEUMANN E, BAR S, RADEMAKER K, et al. Semiconductor-laser-pumped high-power upconversion laser [J]. Appl.Phys.Lett, 2006,88:061108-1-3.
    [21] 杨建虎,戴世勋,姜中宏.稀土离子的上转换发光及研究进展[J].物理学进展,2003,23:284.
    [22] ANTIPENKO B M, VORONIN S P, Upconversion laser emission from Yb-sensitized Er~(3+) in BaY_2F_8 [J]. Opt.Spectrosc, 1987, 63:768-782.
    [23] HEBERT T, WANNEMACHER R, LENTH W, et al. Blue and green cw upconversion lasing in Er: LiLuF4 [J]. Appl.Phys.Lett, 1990, 57:1727-1729.
    [24] JOUBERT M F. Photon avalanche upconversion in rare earth laser materials [J]. Opt. Mater., 1999, 11:181-203.
    [25] ALLAIN J Y, MONERIE M, POIGNANT H. Blue upconversion fluorozirconate fibre laser [J]. Electron.Lett.,1990, 26:166-168.
    [26] ALLAIN J Y, MONERIE M, POIGNANT H. Room temperature CW tunable green upconversion holmium fibre laser [J]. Electron.Lett., 1990, 26:261-263.
    [27] WHITLEY T J, MILLAR C A, WYATT R, et al. Upconversion pumped green lasing in erbium doped fluorozirconate fibre [J]. Electron.Lett., 1991, 27:1785-1786.
    [28] SANDROCK T, SCHEIFE H, HEUMANN E, et al., High-power continuous-wave upconversion fiber laser at room temperature [J]. Opt.Lett, 1997, 22:808-810.
    [29] LAPERSE P, VALLEE R, ChANDONNET A. Stability aspects in the operation of a 2500-ppm thulium-doped ZBLAN fiber laser at 481 nm [J]. Opt.Commun, 2000, 175: 221-226.
    [30] (?)ZEN G, FORTE O, BARTOLO B D. Upconversion dynamics in Pr-doped YAlO_3 and Y_3Al_5O_(12) laser crystals [J]. Opt.Mater, 2005, 27:1664-1671.
    [31] LISIECKI R, RYBA-ROMANOWSKI W, LUKASIEWICZ T. Blue up-conversion with excitation into Tm ions at 808 nm in YVO_4 crystals co-doped with thulium and ytterbium [J]. Appl.Phys.B, 2005, 81:43-47.
    [32] BREDE R, HEUMANN E, KOETKE J, et al. Green up-conversion laser emission in Er-doped crystal at room temperature [J]. 1993, 63:2030-2035.
    [33] BRIEN B O. Development of Infra-red sensitive phosphors [J]. J.Opt.Soc.Am, 1946, 36:369-369.
    [34] KASTLER A. Proc. Phys.Soc. (London), 1954, A67:853.
    [35] HEWES R A, SARVER J A. Infrared Excitation processes for the visible luminescence of Er~(3+), Ho~(3+), Tm~(3+) in Yb~(3+)-sensitized rara-earth trifluorides [J]. Phys.Rev, 1969,182:427-436.
    [36] INOKUTI M, HIRAYAMA F. Influence of energy transfer by the exchange mechanism on donor luminescence [J]. J, Chem.Phys., 1965,43:1978-1989.
    [37] SNITZER E, WOODCOCK R. Yb~(3+)- Er~(3+) glass laser [J]. Appl.Phy.Lett, 1965,6:45-46.
    [38] MIYAKAWA T, DEXTER D L. Cooperative ans Stepwise Excitation of Luminescence: Trivalent Rare-Earth ions in Yb~(3+)-sensitized crystals [J]. Phsy.Rew.B, 1970,1:70-80.
    [39] AUZEL F. Quantum counter obtained by using energy transfer between two rare earth ions in a mixed tungstate and in a glass [J]. Compt Rend, 1966, 262B.1016-1019.
    [40] AUZEL F. Materials and devices using double-pumped phosphors with energy transfer [J]. IEEE, 1973, 61:758-786.
    [41] SANDROCK T, SCHEIFE H, HEUMANN E, HUBER G. High-power continuous-wave upconversion fiber laser at room temperature [J]. Opt.Lett, 1997, 22:808-810.
    [42] NOGINVO M A, CURLEY M, VENKATESWARLU P, et al. Excitation scheme for the upper energy levels in a Tm:Yb:BaY_2F_8 laser crystal [J]. J.Opt.Soc. Am.B., 1997,14:2126-2136.
    [43] ALLAIN J Y, MONERIE M, POIGNANT H. Tunable green upconversion erbium fibre laser [J]. Electron, Lett., 1992, 28:111-113.
    [44] SANDERS S, WAARTS R G, MEHUYS D G, WELCH D F. Laser diode pumped 106 mW blue upconversion fiber laser [J]. Appl. Phys.Lett., 1995, 67:1815-1817.
    [45] XIE P, GOSNELL T R. Room/temperatur upconversion fiber laser tunable in the red, orange, green, and blue spectral regions [J]. Optics letters, 1995, 20:1014-1016.
    [46] GUY S, JOUBERT M F, JACQUIER B. Photo avalanche and the mean-field approximation [J]. Phys. Rev. B, 1997, 55:8240-8248.
    [47] GUY A, JOUBERT M F, JACQUIER B, The photon avalanche as a bifurcation phenomenon application to various Tm~(3+)-doped materials [J]. Journal of Luminescence, 1997, 72-74:65-67.
    [48] SPARIOSU K, BIRNBAUM M, VIANA B. Er~(3+):Y_3Al_5O_(12) laser dynamics: effects of upconversion [J]. J.Opt.Soc.Am.B, 1994,11:894-900.
    [49] FAN T Y. Heat generation in Nd:YAG and Yb:YAG [J]. IEEE J. QE., 1993,29:1457-1459.
    [50] BLOWS J L, OMATSU T, DAWES J, PASK H, TATEDA M. Heat generation in Nd:YVO_4 with and without laser action [J]. IEEE photon. Tech. Lett., 1998, 10:1727-1729.
    [51] OSTROUMOV V, JENSEN T, MEYN J P, HUBER G, NOGINOV M A. Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc_3(BO_3)_4 and GdVO_4 laser crystals [J]. J. Opt. Soc. Am. B, 1998, 15:1052-1060.
    [52] PAYNC S A, WILKE G D, SMITH L K, KRUPKE W F. Auger upconversion losses in Nd-doped laser glasses [J]. Optics Communications, 1994, 111:263-268.
    [53] CHUANG T, VERDUN H R. Energy transfer up-conversion and excited state absorption of laser radiation in Nd:YLF laser [J]. IEEE J. QE., 1996, 32:79-91.
    [54] AUZEL F. Upconversion and anti-Stokes processes with f and d ions in solids [J]. Chemical reviews, 2004,104:139-173.
    [55] BLOEMBERGEN N. Solid state infrared quantum counters [J]. Phys. Rev. Lett., 1959,2:84-85.
    [56] CHIVIAN J S, CASE W E, EDEN D D. The photon avalanche: A new phenomenon in Pr~(3+)-based infrared quantum counters [J]. Appl. Phys. Lett., 1979, 35: 124-125.
    [57] ECKBRETH A C. Laser Diagnostics for Combustion Temperature and Species [M]. Abacus, Kent, UK, 1988:301-361.
    [58] BEITING E J, LUTHE J C. CARS Temperature measurements in the Fuel Preburner of the Space Shuttle Main Engine, A Feasibility Study [D]. NASA-CR-170764 (Mississippi State Univ., MS 1983).
    [59] BARONAVSKI A P, MCDONALD J R. Application of Saturation Spectroscopy to the Measurement of C_2, 3Ⅱ-Concentration in Oxy-Acetylene Flames [J]. Appl. Opt., 1977, 16:4138-4144.
    [60] DYER M J, CROSELEY D R. Two-Dimensional Imaging of OH Laser-Induced Fluorescence in a Flame [J]. Opt. Lett., 1982, 7:382-384.
    [61] KYCHAKOFF G, HOWE R D, HANSON R K, et al. Quantitative Visualization of Combustion Species in a Plane Flame [J]. Applied Optics, 1982, 21:3225-3227.
    [62] KYCHAKOFF G, HOWE R D, HANSON R K. Use of Planar Laser-Induced Fluorescence for the Study of Combustion Flow fields [J]. AIAA., 1983,83:1361.
    [63] SUVERNEV A A, DREIZLER A, DREIER T, et al. Polarization-spectroscopic measure-ment and spectral simulation of OH (A2∑-X2Ⅱ) and NH (A3Ⅱ-X3∑) transitions in atmospheric pres-sure flames [J]. Appl. Phys, 1995,B61:421-472.
    [64] NYHOLM K, KAIVOLA M, AMINOFF C G. Polarization spectroscopy applied to C2 detection in a flame [J]. Appl. Phys., 1995, B60:5-10.
    [65] NYHOLM K, FRITZON R, GEORGIEV N, et al. Two-photon induced polarization spectroscopy applied to the detection of NH_3 and CO molecules in cold flows and flames [J]. Opt. Commun., 1995, 114:76-82.
    [66] HEAPS W S, ELIAS L R, YEN W M. Vacuum-ultraviolet absorption bands of trivalent lanthanides in LaF_3 [J]. Phys. Rev. B, 1976,13:94-104.
    [67] HENDERSON B, IMBUSCH G F. Optical spectroscopy of inorganic solids [M]. Clarendon press, Oxford, 1989.
    [68] HENDERSON B, YAMAGA M, O'DONNEL K P. Optical characterization of tunable solid state laser gain media [J]. Optical and Quantum Electronics, 1990, 22:S167-S198.
    [69]庞辉勇,赵广军,介明印,等,硅酸钇晶体的生长、腐蚀形貌和光谱性能研究, 人工晶体学报 34(2005)421.
    [70]M.Nilsson,L.Rippe,S.Kroll,et al.,"Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr~(3+):Y_2SiO_5"Phys.Rev.B 70(2004)214116.
    [71]Flurin Konz,Y.Sun,C.W.Thiel,et al.,"Temperature and concentration dependence of optical dephasing,spectral-hole lifetime,and anisotropic absorption in Eu~(3+):Y_2SiO_5"Phys.Rev.B 68(2003)085109.
    [72] KULESHOV N V, MIKHAILOV V P, et al. Luminescence and absorption properties of the Pr~(3+) ion in a Y_2SiO_5 crystal [J]. Optics and Spectroscopy, 1994, 77: 220-224.
    [73] MAKSIMOV B A, KHARITONOV Y A, et al. Dokl. Akad. Nauk USSR, 1968,183:1072.
    [74] YANO R, MITSUNAGA M, UESSUGI N. Ultralong optical dephasing time in Eu~(3+):Y_2SiO_5 [J]. Optics Letters, 1991,16:1884-1886.
    [75]YANO R, MITSUNAGA M, UESUGI N. Nonlinear laser spectroscopy of Eu~(3+):Y_2SiO_5 and its application to time-domain optical memory [J]. J. Opt. Soc. Am. B, 1992, 9:992-997.
    [76]MITSUNAGA M, YANO R, UESUGI N. Time- and frequency-domain hybrid optical memory: 1.6-kbit data storage in Eu~(3+):Y_2SiO_5 [J]. Optics Letters, 1991, 16:1890-1892.
    [77] KUO Y K, HUANG M F, BIRNBAUM M. Tunable Cr~(4+):YSO Q-swithched Cr:LiCAF laser [J]. IEEE Journal of Quantum Electronisc, 1995, 31:657-663.
    [78] KUO Y K, BIRNBAUM M. Passive Q switching of the alexandrite laser with a Cr~(4+):Y_2SiO_5 solid-state saturable absorber [J]. Appl. Phys. Lett., 1995, 67:173-175.
    [79] KOETKE J, KUCK S, PETERMANN K, et al. Quasi-continuous wave laser operation of Cr~(4+)-doped Y_2SiO_5 at room temperature [J]. Optics Communications, 1993,101:195-198.
    [80]LI C, WYON C, MONCORGE R. Spectroscopic properties and fluorescence dynamics of Er~(3+) and Yb~(3+) in Y_2SiO_5 [J]. IEEE Journal of Quantum Electronics, 1992, 28:1209-1221.
    [81] RANDLES M H, CREAMER J E. Disordered oxide crystal hosts for diode pumped lasers [J]. Journal of Crystal Growth, 1993, 128:1016-1020.
    [82]SCHWEIZER T, JENSEN T, HEUMANN E, HUBER G. Spectroscopic properties and diode pumped 1.6um laser performance in Yb-codoped Er:Y_3Al_5O_(12) and Er:Y_2SiO_5 [J]. Optics Communications, 1995,118:557-561.
    [83]W.戴姆特瑞德,激光光谱学-基本概念和仪器手段,科学出版社 1989(Laser spectroscopy-Basic concepts and instrumentation by W.Demtr(?)der).
    [84]JUDD B R. Optical absorption intensities of Rare-earth ions [J]. Phys.Rev., 1962, 127:750-761.
    [85]DONLAN V L, SANTIAGO A A. Optical spectra and energy levels of Erbium-doped Yttrium orthoaluminate [J]. J.Chem.Phys., 1972, 57:4717-4723.
    [86]M. J. Weber, Spontaneous emission Probabilities and quantum efficiencies for excited states of Pr~(3+) in LaF3, J. Chem. Phys., 1968, 48(10), 4774.
    [87]张思远,毕宪章,稀土光谱理论,吉林大学科学技术出版社,1991,pp.181.
    [88]WEBER M J. Probabilities for radiative and nonradiative decay of Er3+ in LaF3 [J]. Phys.Rev., 1967, 157:262-272.
    [89]KUSHIDA T. Energy transfer and cooperative optical teansitions in rere-earth doped inorganic materials [J]. 1973, 34:1318-1337.
    [90]SCHEPS R. Upconversion laser processes [J]. Prog. Quant. Electr., 1996, 20:271-358.
    [91]POLLNAU M, GAMELIN D R, LUTHI S R, GUDEL H U, HEHLEN M P. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems [J]. Phys. Rev. B, 2000, 61:3337-3346.
    [92]MALINOWSKI M, JOUBERT M F, JACQUIER B. Dynamics of the IR-blue wavelength upconversion in Pr~(3+)-doped yttrium aluminum garnet and LiYF_4 crystals [J]. Phys. Rev. B, 1994, 50:12367-12374.
    [93]HEHLEN M P, FREI G, GUDEL H U. Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er~(3+) [J]. Phys. Rev. B, 1994, 50:16246-16273.
    [94]Wolfgang Demtr.der, Laser spectroscopy,(Spinger-Verlag press,Berlin Heidelberg 1996) pp. 13-54.
    [95]张思远,毕宪章,稀土光谱理论,吉林大学科学技术出版社,1991,pp.155.
    [96]KOHSE-H(?)INGHAUS K, JEFFRIES J B. Applied Combustion Diagnostics [M]. Taylor and Francis, New York, 2002.
    [97]ECKBRETH A C. Laser Diagnostics for Combustion Species and Temperature [M]. Gordon and Breach, Amsterdam, 1996.
    [98]TAATJES C A, HANSEN N, MCLLROY A, MILLER J A, et al. Enols Are Common Intermediates in Hydrocarbon Oxidation [J]. Science, 2005, 308:1887-1889.
    [99]岑可法.高等燃烧学[M].浙江大学出版社,2002.
    [100]张平编著.燃烧诊断学[M].兵器工业出版社,1988.
    [101]NYHOLM K, MAIER R, AMINOFF C G, KAIVOLA M. Detection of OH in flames by using polarization spectroscopy [J]. Appl. Opt., 1993, 32:919-924.
    [102]NYHOLM K, KAIVOLA M, AMINOFF G. Polarization spectroscopy applied to C_2 detection in a flame [J]. Appl. Phys. B, 1995, 60:5-10.
    [103]LOFSTEDT B, RITZON R, ALDEN M. Investigation of NO detection in flames by the use of polarization spectroscopy [J]. Appl. Opt., 1996, 35:2140 -2146.
    [104]SUVERNEW A A, DREIZLER A, DREIER T, WOLFRUM J. Polarization-spectroscopic measurement and spectral simulation of OH and NH transitions in atmospheric pressure flames [J]. Appl. Phys. B, 1995, 61:421-427.
    [105]DEMTRODER W.著.严光耀等译.激光光谱学:基本概念和仪器手段[M].科学出版社,1989.P318-328.
    [106]黄秀莲,张大年,何隧源等编著.环境分析与监测[M].高等教育出版社,1989年11月第1版。
    [107]高小霞等编著.电化学分析法在环境监测中的应用[M].科学出版社,1982年05月第1版。
    [108]王俊德,商振华,郁蕴璐等编著.高效液相色谱法[M].中国石化出版社,1992年03月第1版。
    [109]荒木峻著,伉大器,张蓝田,傅敬贤译,气相色谱法[M].化学出版社,1985年02月第1版。
    [110]DONG M W, et al. Analysis of Polynuclear aromatic hydrocarbons using Photodiode array detection [J]. J. Liq. Chromatogr., 1988,11:1887-1905.
    [111]KAZUHIRO, et al. Liquid chromatographic of traces of phenols in air [J]. J.chromatography, 1988, 442:407-441.
    [112]KOHSE-H(?)INGHAUS K, BARLOW R S, ALDEN M, WOLFRUM J. Combustion at the focus: laser diagnostics and control [J]. Proc. Comb. Inst., 2005, 30:89-124.
    [113] ECKBRETH A C. Laser Diagnostics for Combustion Species and Temperature [M]. Gordon and Breach, Amsterdam, 1996.
    [114] SMYTH K C, CROSLEY D R. Applied combustion Diagnostics [M]. Eds. by K. Kohse-H(?)inghaus and J. B. Jeffries, Taylor and Francis, New York, 2002, 9-68.
    [115] COOL T A, MCLLROY A, QI F, et al. Photoionization mass spectrometer for studies of flame chemistry with a synchrotron light source [J]. Rev. Sci. Inst., 2005, 76:094102-1-7.
    [116] LI H J, HANSON R K, JEFFRIES J B. Diode laser-induced infrared fluorescence of water vapour [J]. Meas. Sci. Technol., 2004, 15:1285-1290.
    [117] SCHERER J J, VOELKEL D, RAKESTRAW D J. Infrared cavity ringdown laser absorption [J]. Appl. Phys. B, 1997, 64:699-705.
    [118] SCHERER J J, ANIOLEK K W, CERNANSKY N P, RAKESTRAW D J. Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy [J]. J. Chem. Phys., 1997, 107:6196-6203.
    [119] DREIER T, EWART P. Applied combustion Diagnostics [M]. Eds. by K. Kohse-H(?)inghaus and J. B. Jeffries, Taylor and Francis, New York, 2002, 69-97.
    [120] VANDER WAL R L, HOLMES B E, JEFFRIES J B. Detection of HF using infrared degenerate four-wave mixing [J]. Chem. Phys. Lett., 1992, 191: 251-258.
    [121] GERMANN G J, MCLLROY A, DREIER T, FARROW R L, RAKESTRAW D J. Detection of polyatomic molecules using infrared degenerate four-wave mixing [J]. Ber. Bunsenges. Phys. Chem., 1993, 97:1630.
    [122] GERMANN G J, FARROW R L, RAKESTRAW D J. Infrared degenerate four-wave mixing spectroscopy of polyatomic molecules: CH_4 and C_2H_2 [J]. J. Opt. Soc.Am.B, 1995, 12:25-32.
    [123] TANG Y, REID S A. Infrared degenerate four wave mixing spectroscopy of jet-cooled C_2H_2 [J]. Chem. Phys. Lett., 1996,248:476-481.
    [124] VOELKEL D, CHUZAVKOV Y L, et al. Infrared degenerate four-wave mixing and resonance-enhanced stimulated Raman scattering in molecular gases and freejets [J]. Appl. Phys. B, 1997, 65:93-99.
    [125] WIEMAN C, HANSCH T W Doppler-free laser polarization spectroscopy [J]. Phys. Rev. Lett., 1976, 36:1170-1173.
    [126] ROY S, LUCHT R P, MCILROY A. Mid-infrared polarization spectroscopy of carbon dioxide [J]. Appl. Phys. B, 2002, 75:875-882.
    [127] ALWAHABI A T, LI Z S, ZETTERBERG J, ALDEN M. Infrared polarization spectroscopy of CO_2 at atmospheric pressure [J]. Opt. Commun., 2004, 233:373-381.
    [128] LI Z S, RUPINSKI M, AETTERBERG J, ALWAHABI Z T ALDEN M. Detection of methane with mid-infrared polarization spectroscopy [J]. Appl. Phys. B, 2004,79:135-138.
    [129] LI Z S, RUPINSKI M, ZETTERBERG J, ALDEN M. Mid-infrared PS and LIF detection of CH_4 and C_2H_2 in cold flows and flames at atmospheric pressure [J]. Proc. Combust. Inst., 2005, 30:1629-1636.
    [130] LI Z S, RUPINSKI M, ZETTERBERG J, ALWAHABI Z T, ALDEN M. Mid-infrared polarization spectroscopy of polyatomic molecules: Detection of nascent CO_2 and H_2O in atmospheric pressure flames [J]. Chem. Phys. Lett., 2005, 407:243-248.
    [131] LI Z S, LINVIN M, ZETTERBERG J, KIEFER J, ALDEN M. Mid-infrared polarization spectroscopy of C_2H_2: Non-intrusive spatial-resolved measurements of polyatomic hydrocarbon molecules for combustion diagnostics [J]. Proceedings of Combustion Symposium, 2007, 31:817-824.
    [132] MAILLARD J P, CHAUVILLE J, MANTZ A W. High-resolution emission spectrum of OH in an oxyacetylene flame from 3.7 to 0.9 μm [J]. J. Mol. Spectrosc, 1976,63:120-141.
    [133] AMANO T. Difference frequency laser spectroscopy of OH and OD: Simultaneous fit of the infrared and microwave lines [J]. J. Mol. Spectrosc, 1984, 103:436-454.
    [134] PESCE G, RUSCIANO G, SASSO A. Detection and spectroscopy of OH fundamental vibrational band based on a difference frequency generator at 3μm [J]. Chem. Phys. Lett., 2003, 374: 425-431.
    [135] SETTERSTEN T B, FARROW R L, GRAY J A. Infrared-ultraviolet double-resonance spectroscopy of OH in a flame [J]. Chem. Phys. Lett., 1999, 369:584-590.
    [136] DEMTRODER W. Laser Spectroscopy: Basic concepts and instrumentation [M]. Springer Verlag, Berlin, New York, 2~(nd) edition, 1996.
    [137] TEETS R E, KOWALSKI F V, HILL W T, CARLSON N, HANSCH T W. Laser polarization spectroscopy [M]. In Advances in Laser Spectroscopy I, ZEWAIL, A H, ed., Proc. SPIE, 1977, 113:80-87.
    [138] REICHARDT T A, LUCHT R P. Theoretical calculation of line shapes and saturation effects in polarization spectroscopy [J]. J. Chem. Phys., 1994, 101:1072-1092.
    [139] REICHARST T A, GIANCOAL W C, LUCHT R P. Saturated LIPS measuments of OH [J]. App. Opt., 2000, 39:2002-2008.
    [140] FARROW R L, RAKESTRAW D J, DREIER T. Investigation of the dependence of degenerate four-wave mixing line intensities on transition dipole moment [J]. J. Opt. Soc. Am. B, 1992, 9:1770-1777.
    [141] 'HITEMP, the High-Temperature Molecular Spectroscopic Database', L. S. Rothman, C. Camy-Peyret, J.-M. Flaud, R. R. Gamache, D. Goorvitch, A. Goldman, R. L. Hawkins, J. Schroeder, J.E.A. Selby and R. B. Wattson, prepared for J. Quant. Spectrosc. Radiat. Transfer, 2007.
    [142] TEETS R, FEINBERG R, HANSCH T W, SCHAWLOW A L. Simplification of spectra by polarization labeling [J]. Phys. Rev. Lett., 1976, 37:683-686.
    [143] NYHOLM K, FRITZON R, ALDEN M. Two-dimensional imaging of OH in flames by use of polarization spectroscopy [J]. Opt. Lett., 1993, 18:1672-1674.
    [144] MILLER J A, KEE R J, WESTBROOK C K. Chemical kinetics and combustion modeling [J]. Annu. Rev. Phys. Chem., 1990, 41:345-387.
    [145] LEE S, MINSEK D W, VESTYCK D J, CHEN P. Growth of diamond from atomic hydrogen and a supersonic free jet of methyl radicals [J]. Science, 1994, 263:1596.
    
    [146] HARRIS S J. Mechanism for diamond growth from methyl radicals [J]. Appl. Phys. Lett., 1990, 56:2298-2300.
    
    [147] DAVIDSON D F, CHANG A Y, DI ROSA M D, HANSON R K. A cw laser absorption diagnostics for methyl radicals [J]. J. Quant. Spectrosc. Radiat. Transfer., 1993,49:559-571.
    
    [148] LOH M H, CAPPELLI M A. CH_3 detection in a low-density supersonic arcjet plasma during diamond synthesis [J]. Appl. Phys. Lett., 1997, 70:1052-1054.
    
    [149] FARROW R L, BUI-PHAM M N, SICK V. In:Twenty-sixth symposium on combustion, the combustion institute, Proceeding of Combustion Institute, 1996, 26:975-983.
    [150] SICK V, BUI-PHAM M N, FARROW R L. Detection of methyl radicals in a flat flame by degenerate four-wave mixing [J]. Opt. Lett., 1995,20:2036-2038.
    [151] BETHARDY G A, MACDONALD R G. Direct measurement of the transition dipole moment of the ν_3 asymmetric C-H stretching vibration of the CH_3 radical [J]. J. Chem. Phys., 1995,103:2863-2872.
    [152] BUSCH G E, CORNELIUS J F, et al. Photofragment spectrometer [J]. Rev.Sci.Instrum., 1970,41:1066-1073.
    [153] SATO H. Photodissociation of simple molecules in the gas phase [J]. Chem.Rev., 2001,101:2687-2726.
    [154] YANG X M.World Science [M]. Singapore, 2004.
    [155] COPELAND R A, CROSLEY D R. Radiative, collisional and dissociative processes in triplet acetone [J]. Chemical physics letters, 1985,115:362-368.
    [156] ZUCKERMAN H, SCHMITZ B, HAAS Y, J.Phys.Chem., 1988, 92:4835.
    [157] NORTH S W, BLANK D A, et al. Evidence for stepwise dissociation dynamics in acetone at 248 and 193 nm [J]. J.Chem.Phys., 1995,102:4447-4460.
    [158] LI X L, LI Z H, MA S Y. Science in China (Series B), 1999, 42:373.
    [159] LIAO D W, MEBEL A M, HAYASHI M, et al. Ab initio study of the n-π electronic transition in acetone: symmetry-forbidden vibronic spectra [J]. J.Chem. Phys., 1999,111:205-215.
    [160] 王艳,冯文林,刘若庄.Beijing Normal University (Natural Science),1993.29:531.
    [161] LIU D, FANG W H, FU X Y. An ab initio study on photodissociation of acetone [J]. Chemical physics letters, 2000, 325:86-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700