用户名: 密码: 验证码:
偏分复用系统中解复用方案和偏振相关损耗的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着互联网行业的发展,多媒体等数据业务的不断出现,人们对通信系统传输能力和效率有了更高的要求。偏分复用技术(Polarization Division Multiplexing)能够将光纤传输系统的频谱效率提高一倍,而且不会大幅增加系统复杂度,因此成为提高光纤通信系统传输容量的重要技术之一。目前100Gb/s及更高速率的光纤传输实验系统基本采用偏分复用与高阶调制码型相结合的方案以满足传输速率的要求。
     偏分复用技术拥有巨大的应用潜力,但在偏分复用信号的接收技术方面还存在一些的问题。由于传输过程中光信号的偏振态无法保持不变,在接收端我们需要有针对性地设计出自适应的解调模块,该模块不仅能够检测出输光纤链路中信号的偏振态变化,同时还能够调整输入光信号的偏振态,消除信号间串扰,实现偏分解复用。对于100Gb/s以上的高速光纤通信系统,偏振相关损耗(Polarization Dependent Loss, PDL)也是影响传输性能的重要因素之一,因此还需要分析讨论偏振相关损耗对偏分复用系统的影响。
     本文利用偏振光相关理论,将琼斯矢量和斯托克斯矢量相结合,推导出来偏分复用系统信道串扰的理论模型,设计了基于射频功率检测的偏分解复用方案,建立了2×50Gb/s偏分复用光纤传输系统仿真平台,验证了偏分解复用方案的效果。结果表明:该方案能够有效消除信道串扰,改善系统性能。在此基础上研究了偏振相关损耗,仿真了其对偏分复用系统的影响,并从理论上进行了分析讨论。本文主要工作如下:
     1)利用偏振光的琼斯矢量和斯托克斯矢量研究光纤链路中正交偏振光的变化情况,通过理论推导得到了光纤链路中信道串扰的传输矩阵。
     2)理论分析了基于功率差的偏分解复用方案的工作原理及存在的问题;提出了基于射频功率检测的偏分解复用方案。详细描述了偏振解复用模块,包括偏振控制器、偏振控制算法以及相关软硬件结构,并分析了模块的工作原理和性能。
     3)利用matlab和Optisystem软件建立了2×50Gb/s偏分复用光纤传输系统,并仿真验证了偏振解复用模块的效果。
     4)讨论了偏振相关损耗对偏分复用系统的影响,给出了偏振相关损耗的理论模型,并将其应用于2×50Gb/s偏分复用光纤传输系统进行实验验证。
The demands for large capacities and high spectral efficiency communication systems are increasing due to the development of Internet and the appearance of multimedia data service. Polarization Division Multiplexing (PDM) Technology, which can double the spectral efficiency of the transmission system without increasing the system structure complexity, has attracted much attention. Polarization Division Multiplexing combining with High-Order Modulation is applied in most experiments on 100Gb/s transmission system.
     Except for its great advantage, there are still some drawbacks for PDM Technology. As the SOP of an optical signal changes randomly with wavelength and time and cannot be maintained in a transmission link, an adaptive demultiplexing module is applied in receiver with proper design. It can detect the SOPs of the optical signals in the fiber link and adjust the SOPs to eliminate crosstalk between the two polarization channels. Polarization Dependent Loss (PDL) is also a main factor in 100Gb/s and higher speed PDM systems and the tolerance to PDL is discussible.
     A theoretic model of the crosstalk in polarization division multiplexing system (PDM) is induced. An adaptive crosstalk elimination scheme is proposed, in which the radio frequency (RF) power of the optical signal related with the crosstalk is used as feedback signal and particle swarm optimization (PSO) algorithm is applied in the control unit to adjust the polarization controller and eliminate the crosstalk. The effectiveness is demonstrated in 2×50Gb/s PDM-DQPSK system. The results show that with the crosstalk elimination scheme the performance of the system is improved remarkably and the BER is reduced greatly. The thesis mainly consists of following work:
     1) Study on the SOPs of orthogonal optical signals in fiber link, using Jones vector and Stokes vector. A transmission matrix of the crosstalk in the fiber link is induced.
     2) Study on demultiplexing scheme based on power difference. Propose demultiplexing scheme based on RF power detection, using optical signals mixing theory. Discuss the demuliplexing module in details, including polarization controller, demuliplexing algorithm and the performance of the module.
     3) Set up 2x50Gb/s PDM-DQPSK transmission system with matlab and Optisystem. Demonstrate the performance of the demultplexing scheme.
     4) Study on PDL in PDM system and induce the theoretic model. Demonstrate the performance of the optical transmission system with PDL.
引文
[1]顾畹仪,李国瑞.光纤通信系统.北京邮电大学出版社[M].2006年
    [2]刘增基,周洋溢,胡辽林,周绮丽.光纤通信.西安电子科技大学出版社[M].2001年
    [3]Zinan Wang, Chongjin Xie. Automatic optical polarization demultiplexing for polarization division multiplexed signals[J]. Optics Express,2009,17(5): 3184-3189
    [4]X.Steve Yao, L.-S.Yan, B.Zhang et al.. All-optic scheme for automatic polarization division demultiplexing[J]. Optics Express,2007,15(12): 7407-7414
    [5]Qingyue Di, Xuan Weng, Yang Sun et al.. An Experiment of De-multiplexing for Polarization Division Multiplexing System by PSO Algorithm[C]. ACP,2010, 511-512
    [6]Roudas, I., A. Vgenis, et al.. Optimal Polarization Demultiplexing for Coherent Optical Communications Systems[J]. Journal of Lightwave Technology.2010, 28(7):1121-1134
    [7]Noe R, Koch B, Mirvoda V, et al..38-krad/s 3.8-Grad broadband endless optical polarization tracking using LiNbO3 device[J]. IEEE Photonics Technology Letters,2009,21(17):1220-1222.
    [8]Dominique Mongardien, Philippe Bousselet, Orio Bertran-Pardo, et al.. 2.6Tb/s(26×100Gb/s) Unrepeatered Transmission Over 401km Using PDM-QPSK with a Coherent Receiver[C]. ECOC 2009,6.4.3
    [9]Alan Gnauck, Peter Winzer.10×113-Gb/s PDM 16-QAM Transmission over 1022km of SSMF with a Spectral Efficiency of 4.1b/s/Hz and no Optical Filtering[C]. ECOC 2009,8.4.2
    [10]B.koch, R.Noe,D.Sandel et al..200-Gb/s,430-km PDM-RZ-DQPSK (4bit/symbol) Transmission with 10krad/s Endless Polarization Tracking[C]. OFC/NFOEC,2010, OTuD4
    [11]Seiji Okamoto, Tatsunori Omiya, Keisuke Kasai et al..140Gb/s Coherent Optical Transmission over 150km with a lOGsymbol/s Polarization-Multiplexed 128QAM Signal[C]. OFC/NFOEC,2010, OThD5
    [12]Chongjin Xie, Rene-Jean Essiambre. Electronic Nonlinearity Compensation in 112-Gb/s PDM-QPSK Optical Coherent Transmission Systems[C]. ECOC 2010, Mo.1.C.1
    [13]Massimiliano Salsi, Gabriel Charlet, Oriol Bertran-Pardo, etal.. Experimental Comparison between Binary and Quadrature Phase Shift Keying at 40Gbit/s in a Transmission System Using Coherent Detection[C]. ECOC 2010, Mo.2.c.5
    [14]Massimiliano Salsi, Clemens Koebele, Patrice Tran, etal..80×100-Gbit/s transmission over 9,000km using erbium-doped fibre repeaters only[C]. ECOC 2010,We.7.C.3
    [15]Shogo Yamanaka, Takayuki Kobayashi, Akihide Sano, etal.. 11×171Gb/s PDM 16-QAM Transmission over 1440km with a Spectral Efficiency of 6.4b/s/Hz using High-Speed DAC[C]. ECOC 2010, We.8.C.1
    [16]Dominique Mongardien, Philippe Bousselet, Hans Bissessur, etal..4x43Gb/s Unrepeatered Transmission over 525km Using PDM-RZ-BPSK with a Coherent Receiver[C]. ECOC 2010, P4.05
    [17]Donato Sperti, Alberto Bononi. A Comparison of Different Options to Improve PDM-QPSK Resilience against Cross-channel Nonlinearities[C]. ECOC 2010, Th.9.Al
    [18]J.-X.Cai, Y.Cai, Y.Sun etal..112c112Gb/s Transmission over 9,360km with Channel Spacing Set to the Baud Rate(360% Spectral Efficiency)[C]. ECOC 2010, PD2_1
    [19]P.J.Winzer, A.H.Gnauck, S.Chandrasekhar, etal.. Generation and 1,200-km Transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a Single I/Q Modulator[C]. ECOC 2010, PD2_2
    [20]Akihide Sano, Takayuki Kobayashi, Akihiko Matsuura, etal..100×120-Gb/s PDM 64-QAM Transmission over 160km Using Linewidth-Tolerant Pilotless Digital Coherent Detection[C]. ECOC 2010, PD2_4
    [21]T.Kobayashi, A.Sano, A.Matsuura et al.120-Gb/s PDM 64-QAM transmission over 1280km using multi-staged nonlinear compensation in digital coherent receiver[C]. OFC/NFOEC,2011, OThF6
    [22]Mingfang Huang, Yuekai Huang, Ezra Ip et al.. WDM Transmission of 152-Gb/s Polarization Multiplexed RZ-16QAM Signals with 25-GHz Channel Spacing over 15×80-km of SSMF[C]. OFC/NFOEC,2011, OThX2
    [23]A.H.Gnauck, P.J.Winzer, A.Konczykowska, etal.. Generation and Transmission of 21.4-Gbaud PDM 65-QAM Using a High-Power DAC Driving a Single I/Q Modulator[C]. OFC 2011, PDPB2.
    [24]X.Zhou, L.Nelson, P.Magill, etal..8×450-Gb/s,50-GHz-Spaced, PDM-32QAM transmission over 400km and one 50GHz-grid ROADM[C]. OFC 2011, PDPB3
    [25]J.-X.Cai, Y.Cai, C.R.Davidson, etal..20Tbit/s Capacity Transmission Over 6,860km[C]. OFC 2011, PDPB4
    [26]Dayou Qian, Ming-Fang Huang, Yue-Kai Huang, etal..101.7-Tb/s(370x294-Gb/s)PDM-128QAM-OFDM Transmission over 3*55-km SSMF using Pilot-based Phase Noise Mitigation[C]. OFC 2011, PDPB5
    [27]B.Zhu, T.F.Taunay, M.Fishteyn, etal.. Space-, Wavelength-, Polarization-Division Multiplexed Transmission of 56-Tb/s over a 76.8-km SeveniCore Fiber[C]. OFC 2011,PDPB7
    [28]Chongjin Xie, Gregory Raybon, Peter J.Winzer. Hybrid 223-Gb/s and 112-Gb/s PDM-QPSK Transmission at 50-GHz Channel Spacing over 1200-km Dispersion-Managed LEAF Spans and 3 ROADMs[C]. OFC 2011, PDPD2
    [29]新谷隆一,范爱英,康昌鹤.偏振光.原子能出版社[M].1994年
    [30]张晓光.光纤偏振模色散自适应补偿系统的研究.[学位论文].北京邮电大学:2004年
    [31]许玮.高速光纤通信系统中码型调制技术与偏振模色散补偿技术的研究.[学位论文].北京邮电大学:2008年
    [32]刘慧洋.高速光纤通信系统中DQPSK调制格式的理论研究.[学位论文].北京邮电大学:2009年
    [33]张荣国.偏振模色散补偿的搜索和跟踪算法研究.[学位论文].北京邮电大学:2010年
    [34]赵鑫媛.高速光纤通信系统中多级相位调制码及其PMD缓解的研究.[学位论文].北京邮电大学:2010年
    [35]周炯槃,庞沁华,续大我,吴伟陵.通信原理[M].北京邮电大学出版社.2005年
    [36]Arun Kumar, Ajoy Ghatak. Polarization of Light With Applications in Optical Fibers[M].2011,94-95
    [37]董洪成,刘阳,易葵,贺洪波,邵建达.偏振光束相干合成的理论分析[J].中国激光,2009,36(9):2346-2351
    [38]张晓光,段高燕,席丽霞.偏振控制器完成任意偏振态变化的最小自由度研究[J].光学学报,2009,29(5):1173-1176
    [39]张晓光,方光青,赵鑫媛,王少康.光纤中偏振稳定控制的实验研究[J].光学学报,2009,29(4):888-891
    [40]张晓光.高速光纤通信中的偏振控制技术[J].北京邮电大学学报,2011,34(1):1-10
    [41]王铁城,姚晓天,万木森,刘铁根.偏振相关损耗对偏振复用系统信道正交性的影响[J].中国激光,2009,36(4):879-883

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700