用户名: 密码: 验证码:
水溶液性质及多孔介质吸附过程的计算机分子模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术的发展,计算机分子模拟已成为在分子水平上研究流体结构及性质的一种强有力工具,越来越受到化学工程界及其他一些领域的广泛重视。与传统的物性研究方法相比,计算机模拟方法有着独特的优越性。它可通过对模型流体的模拟,揭示宏观性质的微观本质,发现并解释实验现象和规律,指导建立流体的宏观性质模型;还可较严格地从分子的微观相互作用模型出发预测真实流体的宏观性质。在得到宏观性质的同时,还可获得实验无法得到的微观或介观结构图象,以利于分析现象和机理之间的内在联系。本文旨在利用计算机分子模拟方法预测无限稀释水溶液的性质,考察有机物在超临界水溶液中的亲水性以及多孔介质中流体吸附机理。
     应用NPT系综MC方法考察BF,SPC,TIPS2,TIP3P,TIP4P等模型,确定了环境条件下最适宜的水分子间的相互作用势能模型TIP4P,以用于常温常压条件下无限稀释水溶液性质的模拟。以甲烷和苯为代表,分别采用NPT系综Monte Carlo耦合参数热力学积分法及分子蜕变耦合参数积分法模拟了无限稀释水溶液的亨利常数及活度系数。结果与文献模拟精度相当,说明本文计算无限稀释水溶液性质的方法具有一定的预测性。
     以SPC模型为超临界水溶液水分子间的相互作用势能模型,苯作为有机物的代表,应用NVT系综MC方法,考察了超临界水的特殊微观结构,以及由此而引起的异常行为。通过考察温度、组成、密度等对苯的超临界水溶液中水及苯分子的微观结构的影响,并与常温下的纯水及纯苯溶液作比较分析,得出了有机物苯在超临界水中亲水的结论,并推荐了较适宜的与苯均相混合的超临界水条件,以用于指导化工和环境工程中的超临界反应及分离过程的开发。
     吸附操作对于环境工程具有重要意义,可以通过吸附过程来除去空气中的微量有害物质,以达到保护环境的目的。因此,本文用分子模拟方法考察了狭缝碳孔吸附脱除空气中的少量有机物。模拟时以苯作为有害物质的代表,且为简化起见用氮气代表空气。通过模拟并拟合得到了苯及氮气的化学位与主体压力的关联式。应用GCMC方法考察了狭缝孔宽及主体压力对苯吸附选择性及有效超额吸附量的影响,以确定最佳狭缝孔宽及操作工况。
     另外,为了保护环境,回收报废的冰箱、空调器等内的过渡型制冷剂HCFC也是环境工程中的重要课题。因此,本文应用GCMC系综方法模拟研究一氯二
With the development of computer science and technology, computer simulation has been becoming a powerful tool in studying both structures and properties of real fluids. It has also been drawn great attention in chemical engineering field. Compared with the traditional method, computer simulation has its special advantages. By performing computer simulation on model fluids, microscopic and macroscopic properties can be revealed, and many physical phenomena can also be discovered and interpreted. Moreover, the macroscopic properties of real fluids can be predicted from the interaction between molecules. In this work, we use the molecular simulation method to calculate the properties of infinite dilute aqueous solutions, to study the hydrophilicity of organic substances in supercritical aqueous solutions and to investigate adsorption processes of fluids in slit pores.
    At first, five water potential energy models have been investigated by the NPT ensemble Monte Carlo(MC) method, and the transferable intermolecular potential function for four points(TIP4P) model is considered as the best model for simulating the properties of water and aqueous solutions at normal temperatures and pressures. The Henry constants and activity coefficients for methane and benzene in infinite dilute aqueous solutions have been simulated by the NPT ensemble thermodynamic integration with the coupling parameter method. The preferential sampling method has been used for improving the efficiency of the simulation. The TIP4P and the optimized parameters by liquid simulation(OPLS) are proposed for the description of the molecular interactions for water and organic substances, respectively. The Ewald method has been incorporated into the long range correction for the interaction between water molecules. The simulated errors are in fair agreement with the literature data, which indicates that the method used in this work can be applied to the predication of the properties for organic substances in infinite dilute aqueous solutions.
    The hydrophilicity of benzene in supercritical aqueous solutions has been investigated by the canonical(NVT) ensemble method. The simple point charge(SPC) model and the Lennard-Jones(LJ) model with OPLS parameters have been adopted for the description of interactions between water and benzene molecules, respectively. The effects of the variables, including temperature, concentration and density in 10 cases on the hydrophilicity of benzene have been investigated. The microstructures and the radial distribution functions(RDFs) of the aqueous solutions describe the behavior of benzene molecules changing from hydrophobic to hydrophilic, taking place in the supercritical conditions. As a result, an appropriate condition for benzene molecules dissolving homogeneously in the supercritical water is recommended for the design of reaction
引文
[1] 胡英、刘国杰、徐英年、谭子明,应用统计力学——流体物性的研究基础,化学工业出版社,北京,1990.
    [2] M. Creutz. Microcanonical Monte Carlo simulation. Phys. Rev. Lett., 1983, 50: 1411~1414.
    [3] D. Frenkel, B. Smit, Understanding Molecular Simulation: from Algorithms to Applications. San Diego: Academic press, 1996, pp 157~176.
    [4] W. W. Wood. NPT-ensemble Monte Carlo calculations for the hard disk fluid. J. Chem. Phys., 1970, 52: 729~741.
    [5] G. E. Norman, and V. S. Filinov, Investigations of phase transitions by a Monte Carlo method, High Temp. (USSR), 1969, 7: 216~222.
    [6] A. Z. Panagiotoupolos, Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble, Mol. Phys., 1987, 61: 813.
    [7] D. A. Kofke and E. D. Glandt. Monte Carlo simulation of multicomponent equilibria in a semigrand canonical ensemble. Mol. Phys., 1988, 64: 1105~1131.
    [8] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford: Clarendon press, 1987
    [9] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys., 1953, 21: 1087
    [10] 汪国鑫,解析几何,四川大学出版社,1989,四川,成都,pp80~82.
    [11] 崔冠之,空间解析几何,中央民族学院出版社,1989,北京,pp278~279.
    [12] 丰宁欣,孙贤铭等,空间解析几何,浙江科学技术出版社,1982,浙江,杭州,pp205~208.
    [13] 高广图,博士学位论文:极性模型及真实流体汽液平衡性质的计算机分子模拟,北京化工大学,北京,1997
    [14] W. W. Wood, and J. D. Jacobson, Monte Carlo calculations in statistical mechanics. Proceedings of the Western Joint Computer Conference, San Francisco, 1959, pp261~269
    [15] F. H. Ree, Statistical mechanics of single-occupancy systems of spheres, disks and rods. J. Chem. Phys., 1970, 53: 920~931.
    [16] D. M. Ceperley, G. V. Chester and M. H. Kalos, Monte Carlo simulation of a many-fermion study. Phys. Rev., 1977, B16: 3081~99.
    [17] W. Chapman and N. Quirke, Metropolis Monte Carlo simulation of fluids with multiparticle moves. Proceedings of the NA TO Workshop on the Simulation of Condensed Matter, 1984, Physica B 131: 34-40
    [18] D. Nicholson and N. Parsonage, Computer simulation and the statistical mechanics of adsorption. Academic press, New York, 1982.
    [19] M. Mezei, A cavity-biased (μVT) Monte Carlo method for the computer simulation of fluids, Mol. Phys., 1980, 40: 901~6.
    [20] Q. Wang, J. Karl Johnson and J. Q. Broughton, Path integral grand canonical Monte Carlo, J. Chem. Phys., 1997, 107(13): 5108~5117.
    [21] B. Widom, Some topics in the theory of liquids, J. Chem. Phys. 1963, 39: 2808.
    [22] A. Z. Panagiotopoulos, Exact calculations of fluid phase equilibria by Monte Carlo simulation in a new statistical ensemble, Int. J. Thermophys., 1989, 10: 447.
    [23] J. J. de Pablo and J. M. Pranusnitz, Phase equilibria for fluid mixtures from Monte Carlo simulation, Fluid Phase Equilibria, 1989, 53: 177.
    [24] G. L. Deitrick, L. E. Seriven and H. T. Davis, Efficientt molecular simulation of chemical potentials, J. Chem. Phys., 1989, 90: 2370.
    [25] M. R. Stapleton and A. Z. Panagiotoupolos, Application of excluded volume map sampling to phase equilibrium calculations in the Gibbs ensemble, J. Chem. Phys., 1992, 92: 1285.
    [26] J. I. Siepmann and D. Frenkel, Configurational bias Monte Carlo: a new sampling scheme for flexible chains, Mol. Phys., 1992, 75: 59.
    [27] G. C. A. H. Mooij, D. Frenkel and B. Smit, Direct simulation of phase equilibria of chain molecules, J. Phys. Condense Matter, 1992, 4: L255.
    [28] M. Laso, J. J. de Pablo and U. W. Suter, Simulation of phase equilibrium for chain molecules, J. chem. Phys., 1992, 97: 2817.
    [29] P. A. Gordon and E. D. Glandt, Liquid-liquid equilibrium for fluids confined within random porous materials, J. Chem. Phys., 1996, 105(10): 4257i<<4264.
    [30] M. Guo, Y. Li, Z. Li, J. Lu, Molecular simulation of liquid-liquid equilibria for Lennard-Jones fluids, Fluid Phase Equihbria, 1994, 98: 12
    [31] J. N. Canongia Lopes and D. J. Tildesley, Multiphase equilibria using the Gibbs ensemble Monte Carlo method, Mol. Phys., 1997, 92(2): 187~195.
    [32] M. Guo, W. Wang, H. Lu, Gibbs ensemble Monte Carlo simulation of vapor-liquid equilibria for simple fluids, J. Chem. Ind. Eng. (China), 1992, 7: 225
    [33] G. T. Gao, X. C. Zeng, Wenchuan Wang, Vapor-liquid coexistence of quasi-twodimensional Stockmayer fluids, J. Chem. Phys., 1997, 106: 3311
    [34] J. C. Owicki and H. A. Scherage, Preferential sampling near solutes in Monte Carlo calculations on dilute solutions, Chem. Phys. Lett., 1977a, 47: 600~602.
    [35] C. Pangali, M. Rao and B. J. Berne. On a novel Monte Carlo scheme for simulating water and aqueous solutions. Chem. Phys. Lett., 1978, 55: 413~417.
    [36] G. M. Torrie and J. P. Valleau. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comp. Phys., 1977, 23: 187~199.
    [37] J. C. Owicki, Optimization of sampling algorithms in Monte Carlo calculations on fluids. In Computer modelling of matter (ed. P. Lykos). ACS Symposium series Vol. 86, pp 159~171. American Chemical Society, Washington.
    [38] P. K. Mehrotra, M. Mezei and D. L. Beveridge, Convergence acceleration in Monte Carlo simulation on water and aqueous solutions, J. Chem. Phys., 1983, 78: 3156~3166.
    [39] K. Kazuo, S. Zhang and H. Toshihiko, Measuring methods of infinite dilution activity coefficients and a database for systems including water, Fluid Phase Equilibria, 1997, 131: 145~179.
    [40] 贾纯山,博士学位论文:模型流体过量性质的分子模拟与活度系数模型,北京化工大学,北京,1992.
    [41] J. G. Kirkwood. Statistical mechanics of fluid mixtures. J. Chem. Phys., 1935, 3: 300.
    [42] T. Lazaridis and M. E. Paulaitis. Activity coefficients in dilute aqueous solutions from free energy simulations. AIChE J., 1993, 39(6): 1051~1060.
    [43] R. W. Zwanzig, High temperature equation of state by a perturbation method: Ⅰ. nonpolar gases, J. Chem. Phys., 1954, 22: 1420
    [44] C. H. Bennett. Efficient estimation of free energy difference form Monte Carlo data. J. Comp. Phys., 1976, 22: 245~268.
    [45] A. M. Ferrenberg and R, H. Swendsen. Optimized Monte Carlo data analysis, Phys. Rev. Lett., 1989, 63: 1195~1198.
    [46] K. S. Shing and K. E Gubbins. Free energy and vapour-liquid equilibria for a quadrupolar Lennard-Jones fluid. Mol. Phys., 1982, 46: 1109~1128.
    [47] K. S. Shing and K. E. Gubbins. The chemical potential in non-ideal liquid mixtures: Computer simulation and theory. Mol. Phys., 1983, 49: 1121~1138.
    [48] M. Schoen, D. J. Diestler and J. H. Cushman, Fluids in micropores: Ⅰ. Structure of a simple classical fluid in a slit-pore, J. Chem. Phys., 1987, 87 (9): 5464~5476.
    [49] W. V. Megen and I. K. Snook, Physical adsorption of gases at high pressure: Ⅲ. Adsorption in slit-like pores, Mol. Phys., 1985, 54(3): 741~755.
    [50] K. K. Han, J. H. Cushman and D. J. Diestler, Grand canonical Monte Carlo simulations of a Stockmayer fluid in a slit micropore, Mol. Phys., 1993, 79(3): 537~545.
    [51] S. Y. Jiang, C. L. Rhykerd and K. E. Gubbins, Layering, freezing transitions, capillary condensation and suffusion of methane in slit carbon pores, Mol. Phys., 1993, 79(2): 373~391.
    [52] S. Sokolowski, Adsorption of oxygen in slit-like pores: GCEMC studies, Mol. Phys., 1992, 75(5): 999~1022.
    [53] K. R. Matranga, A. L. Myers and E. D. Glandt, Storage of natural gas by adsorption on activated carbon, Chem. Eng. Sci., 1992, 47(7): 1569~1579.
    [54] Z. Tan and K. E. Gubbins, Adsorption in carbon micropores at supercritical temperatures, J. Phys. Chem., 1990, 94(15): 6061~6069.
    [55] T. Shigeta, J. Yoneya and T. Nitta, Monte Carlo simulation study of adsorption characteristics in slit-like micropores under supercritical conditions, Mol. Simul., 1996, 16: 291~305.
    [56] E. A. Muller, L. F. Rull, L. F. Vega and K. E. Gubbins, Adsorption of water on activated carbons: a molecular simulation study, J. Phys. Chem., 1996, 100(4): 1189~1196.
    [57] T. Nitta, M. Nozawa and Y. Hishikawa, Monte Carlo simulation of adsorption of gases in carbonaceous slit-like pores, J. Chem. Eng. of Japan, 1993, 26(3): 266~272.
    [58] R. F. Cracknell and D. Nicholson, GCMC study of LJ mixtures in slit-pores. Part 3. mixtures of two molecular fluids: Ethane and Propane, J. Chem. Soc. Faraday Trans., 1994, 90(11): 1487~1493.
    [59] E. Kierlik, M. Rosinberg, J. E. Finn and P. A. Monson, Binary vapour mixtures adsorbed on a graphite surface: A comparison of mean field density functional theory with results from Monte Carlo simulations, Mol. Phys., 1992, 75(6): 1435~1454.
    [60] D. Nicholson and K. E. Gubbins, Separation of carbon dioxide-methane mixtures by adsorption: effects of geometry and energetics on selectivity, J. Chem. Phys., 1996, 104(20): 8126~8134.
    [61] G. W. Wu and K. Y. Chan, Phase behaviour of oxygen adsorbed on graphite, Fluid Phase Equilibria, 1997, 132: 21~31.
    [62] A. Matsumoto, J. Zhao and K. Tsutsumi, Adsorption behavior of hydrocabons on slit-shaped micropores, Langmuir, 1997, 13: 496~501.
    [63] X. H. Yi, K. S. Shing and M. Sahimi, Molecular Dynamics simulation of diffusion in pillared clays, AIChE J., 1995, 41(3): 456~468.
    [64] M. Sahimi, Diffusion, Adsorption and reaction in pillared clays. Ⅰ. Rod-like molecules in a regular pore space, J. Chem. Phys., 1990, 92(8): 5107~5118.
    [65] B. K. Peterson and K. E Gubbins, Mol. Phys., 1987, 62(1): 215~226.
    [66] D. M. Razmus and C. K. Hall, Prediction of gas adsorption in 5A zeolites using Monte Carlo simulation, AIChE J., 1991, 37(5): 769~779.
    [67] S. Sunderrajan, C. K. Hall and B. D. Freeman, Sorption isotherms for spherical penetrates in facilitating polymeric media using Monte Carlo simulations, Mol. Phys., 1997, 92(1): 109~116.
    [68] D. Boda, J. Liszi and I. Szalai. Chem. Phys. Lett., 1996, 256: 474.
    [69] M. Mezei. Mol. Phys., 1980, 40: 901.
    [1] I. Nezbeda and J. Slovak, A family of primitive models of water. three, four and five-site models, Mol. Phys., 1997, 90(3): 353~372.
    [2] A. Rahman, F. H. Stillinger, J. Chem. Phys., 1971, 55: 3336.
    [3] A. Ben-Naim, F. H. Stillinger, Structure and Transport Processes in water and Aqueous Solutions, 1972, edited by R. A. Home, New York: Wiley
    [4] F. H. Stillinger, A. Rahman, J. Chem. Phys., 1974, 60: 1545.
    [5] P. Barnes, J. L. Finney, J. D. Nicholas and J. E. Quinn, Nature, 1979, 282: 459.
    [6] W. L. Jorgensen, Revised TIPS for simulations of liquid water and aqueous solutions, J. Chem. Phys., 1982, 77(7): 4156~4163.
    [7] W. L. Jorgenson, J. Amer. Chem. Soc., 1981, 103: 335.
    [8] H. J. C. Berendsen, J. P. M. Postma, W. F. von Gunsteren and J. Hermans. In Intermolecular Forces, edited by B. Pullman, reidel, Dordrecht, Holland, 1981, p331.
    [9] W. L. Jorgensen, J. Chandrasekhar and J, Madura, Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2): 926~935.
    [10] H. J. C. Berendsen, J. P. Postma, W. F. van Gunsteren and J. Hermans. The missing term in effective pair potential, J. Phys. Chem., 1987, 91: 6269~6271.
    [11] K. Kiyohara, K. E. Gubbins and A. Z. Panagiotopoulos, Phase coexistence properities of polarizable water models, International Symposium on Thermodynamics and Molecular Simulation, 1997, p311~317.
    [12] K. Kiyohara, K. E. Gubbins, A. Z. Panagiotopoulos, Phase coexistence properties of polarizable water models, Mol. Phys., 1998, 94(5): 803~808.
    [13] E. A. Moelwyn-Hughes, Physical Chemistry, New York: Macmillan, 1964, p383.
    [14] R. E. Kozack and P. C. Jordan, Polarizability effects in a four-charge model of water, J. Chem. Phys., 1992, 96: 3120~3130.
    [15] T. I. Mizan, P. E. Savage and R. M. Ziff, J. Phys. Chem., 1994, 98: 13067~13076
    [16] D. N. Bernardo, Y. Ding, K. K. Jespersen and R. M. Levy, An anisotropic polarizable water model: incorporation of all-atom polarizabilities into molecular mechanics force fields, J. Phys. Chem., 1994, 98: 4180~4187.
    [17] J. J. de Pablo, J. M. Prausnitz, H. J. Strauch and P. T. Cummings, Molecular simulation of water along the liquid-vapor coexistence cure from 25℃ to the critical point, J. Chem. Phys., 1990, 93: 7355~7359.
    [18] J. Alejandre, D. J. Tildesley and G. A. Chapela, Molecular dynamics simulation of the orthobaric densities and surface tension of water, J. Chem. Phys., 1995, 102: 4574~4583.
    [19] U. Grigull, J. Straub and P. Schiebener, Stem Tables in SI Units, Springer-Verlag, 1984.
    [20] M. P. Allen, D. J. Tildeslay, Computer Simulation of Liquids. Oxford: Clarendon press, 1987. p156~162.
    [21] D. Frenkel, B. Smit, Understanding Molecular Simulation: from Algorithms to Applications. San Diego: Academic press, 1996.
    [22] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys., 1953, 21: 1087.
    [23] G. S. Kell, J. Chem. Eng. Data, 1975, 20: 97.
    [24] N. E. Dorsey, Properties of Ordinary Water Substances, Rhein-hold, New York, 1940.
    [25] R. Mills,. J. Phys. Chem., 1973, 77: 685.
    [26] P. H. Jong, J. E. Wilson and G. W. Neilson, et al. Mol. Phys., 1997, 91: 99~103.
    [1] K. Kazuo, S. Zhang and H. Toshihiko, Fluid Phase Equilibria, 1996, 131: 145~179.
    [2] Y. Iwai, H. Uchida and Y. Koga, et al. Fluid Phase Equilibria, 1995, 111: 1~13.
    [3] Y. Iwai, H. Uchida and Y. Koga, et al. Fluid Phase Equilibria, 1995, 104: 403~412.
    [4] Y. Iwai, H. Higashi and H. Uchida, et al. Fluid Phase Equilibria, 1997, 127: 251~261.
    [5] S. L. Sandler Fluid Phase Equilib, 1996, 116: 343.
    [6] F. Chen, In: Environmental exposure analysis of chemicals. NERI Technical Reprt No 69, National Environmental Research Institute, Denmark, 1993, p9~43.
    [7] L. Themis and E. P. Michael, AIChE J., 1993, 39: 1051~1060.
    [8] P. H. Jong, J. E. Wilson and G. W. Neilson, et al. Mol. Phys., 1997, 91: 99~103.
    [9] S. Swaminathan, S. W. Harrison and D. L. Beveridge, J. Amer. Chem. Soc., 1978, 100: 5705.
    [10] A. Laaksonen, P. Stilbs, Molec. Phys., 1991, 74: 747.
    [11] J. M. Hail, Fluid Phase Equilibria, 1986, 26: 103.
    [12] W. L. Jorgensen, J. D. Chandrasekhar and R. W. Madura, et al. J. Chem. Phys., 1983, 79: 926.
    [13] W. L. Jorgensen and J. M. Briggs, Mol. Phys., 1988, 63: 547.
    [14] B. Widom, J. Chem. Phys., 1963, 39: 2808.
    [15] J. G. Kirkwood, J. Chem. Phys., 1935, 3: 300.
    [16] D. Frenkel, B. Smit, Understanding Molecular Simulation: from Algorithms to Applications. San Diego: Academic press, 1996, 150~176
    [17] K. S. Shing, K. E. Gubbins and K. Lucas, Mol. Phys., 1988, 65: 1235~1252.
    [18] J. C. Owicki and H. A Scheraga, Chem. Phys. Lett., 1977, 47: 600.
    [19] M. P. Allen and D. J. Tildeslay, Computer Simulation of Liquids. Oxford: Clarendon press, 1987. p156~162.
    [20] J. C. Owicki, ACS Symp. Ser., 1978, 86: 159.
    [21] J. C. Owicki, Computer Modeling of Matter. Washington D C: P. G. Lukos, American Chemical Society, 1978.
    [22] 吴雄武.有机相中水行为的研究及似化学局部组成模型[博士学位论文].北京:清华大学,1990.
    [23] 徐萃薇,计算方法引论,高等教育出版社,1985,p88~92.
    [24] D. Mackay and W. Y. Shiu, A critical review of Henry's law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data, 1981, 10(4): 1175~1199
    [25] X. Wu, Y. Li, J. Lu, et al. Fluid Phase Equilibria, 1992, 77: 139~156.
    [1] G. M, Schneider, E. Stabl and G. Wilke, Extraction with Supercritical Gases, Verlag Chemic, Weinheim, 1980.
    [2] M. E. Paulaitis, J. M. L. Penninger, R. D. Gray, and P. Davidson, Chemical Engineering at Supercritical Fluid Conditions, Ann Arbor Science, Ann Arbor, Mich., 1983.
    [3] J. M. L. Penninger, M. Radosz, M. A. McHugh and V. J. Krukonis, Supercritical Fluid Techniques, Elsevier, New York, 1985.
    [4] K. P. Johnston and J. M L. Penninger, Supercritical Fluid Science and Technology, American Chemical Society, Washington, D. C., 1989.
    [5] H. D. Cochran, L. L. Lee and D. M. Pfund, In Fluctuation Theory of Mixtures, edited by E. Matteoli and G. A. Mansoori, Taylor and Francis, New York, 1990, p69.
    [6] P. T. Cummings, H D. Cochran and J. M. Simonson, et al., J. Chem. Phys., 1991, 94(8), 5606~5621.
    [7] 向波涛,王涛,杨基础,沈忠耀.化工进展,1997,3:39~44.
    [8] P. H. Jong, J. E. Wilson, G. W. Neilson, et al. Mol. Phys., 1997, 91: 99~103
    [9] T. I. Mizan, P. E. Savage and R. M. Ziff, J. Phys. Chem., 1994, 98: 13067~13076
    [10] J. Gao, J. Am. Chem. Soc., 1993, 115: 6893~6895.
    [11] A. A. Chialvo, and P. T. Cummings, J. Chem. Phys., 1994, 101(5): 4466~4469.
    [12] S. T. Cui and J. G. Harris, J. Chem. Phys., 1995, 99: 2900~2906.
    [13] P. T. Cummings and A. A. Chialvo, J. Phys. Condense Matter, 1996, 94(8): 9281~9287.
    [14] S. Swaminathan, S. W. Harrison and D. L. Beveridge, J. Amer. Chem. Soc., 1978, 100: 5705
    [15] B. Guillot, Y. Guissani and S. Bratos, J. Chem. Phys., 1991, 95(5): 3643~3648.
    [16] A. K. Soper, F. Bruni and M. A. Ricci, J. Chem. Phys., 1997, 106(1): 247~254.
    [17] J. Ortega, J. P. Lewis and O. F. Sankey, J. Chem. Phys., 1997, 106(9): 3696~3702.
    [18] W. L. Jorgensen, J. M. Briggs, Mol. Phys., 1988, 63: 547
    [19] M. P. Allen and D. J. Tildeslay, Computer Simulation of Liquids. Oxford: Clarendon press, 1987
    [20] D. Frenkel, B. Smit, Understanding molecular Simulation: From Algorithms to Applications, San Diego: Academic Press, 1996
    [21] W. L. Jorgensen, J. Chandrasekhar and J. D. Madurua, et al. J. Chem. Phys., 1983, 79(2): 926~935.
    [22] 徐萃薇,计算方法引论,高等教育出版社,北京,1985,p88
    [1] 严继民,张启元.吸附与凝聚—固体的表面与孔.科学出版社,1979,p1~6.
    [2] Z. Tan and K. E. Gubbins, J. Phys. Chem., 1992, 96(2): 845~854.
    [3] Z. Tan and K. E. Gubbins, J. Phys. Chem., 1990, 94(15): 6061~6069.
    [4] E. Kierlik, M. Rosinberg, J. E. Finn, et al., Mol. Phys., 1992, 75(6): 1435~1454.
    [5] T. Nitta, M. Nozawa and Y. Hishikawa, Monte Carlo simulation of adsorption of gases in carbonaceous slit-like pores, J. Chem. Eng. of Japan, 1993, 26(3): 266~272.
    [6] T. Shigeta, J. Yoneya and T. Nitta, Monte Carlo simulation study of adsorption characteristics in slit-like micropores under supercritical conditions, Mol. Simul., 1996, 16: 291~305.
    [7] M. Maddox, D. Ulberg and K. E. Gubbins, Fluid Phase Equilibria, 1995, 104: 145~158.
    [8] D. Nicholson and K. E. Gubbins, Separation of carbon dioxide-methane mixtures by adsorption: effects of geometry and energetics on selectivity, J. Chem. Phys., 1996, 104(20): 8126~8134.
    [9] M. Schoen, D. J. Diestler and J. H. Cushman, J. Chem. Phys., 1987, 87 (9): 5464~5476.
    [10] S. Y. Jiang, C. L. Rhykerd and K. E. Gubbins, Layering, freezing transitions, capillary condensarion and siffusiion of methane in slit carbon pores, Mol. Phys., 1993, 79(2): 373~391.
    [11] K. K. Han, J. H. Cushman and D. J. Diestler, Grand canonical monte carlo simulations of a Stockmayer fluid in a slit micropore, Mol. Phys., 1993, 79(3): 537~545.
    [12] R. F. Cracknell, D. Nicholson and N. Quirke, Mol. Phys., 1993, 80(4): 885~897.
    [13] K. R. Matranga, A. L. Myers and E. D. Glandt, Storage of natural gas by adsorption on activated carbon, Chem. Eng. Sci., 1992, 47(7): 1569~1579.
    [14] S. Sokolowski, Adsorption of oxygen in slit-like pores: GCEMC studies, Mol. Phys., 1992, 75(5): 999~1022.
    [15] E. A. Muller, L. F. Rull, L. F. Vega and K. E. Gubbins, Adsorption of water on activated carbons: a molecular simulation study, J. Phys. Chem., 1996, 100(4): 1189~1196.
    [16] R. F. Cracknell and D. Nicholson, GCMC study of LJ mixtures in slit-pores. Part 3. mixtures of two molecular fluids: Ethane and Propane, J. Chem. Soc. Faraday Trans., 1994, 90(11): 1487~1493.
    [17] W. V. Megen and I. K. Snook, Mol. Phys., 1985, 54(3): 741~755.
    [18] G. W. Wu and K. Y. Chan, Phase behaviour of oxygen adsorbed on graphite, Fluid Phase Equilibria, 1997, 132: 21~31.
    [19] A. Matsumoto, J. Zhao and K. Tsutsumi, Adsorption behavior of hydrocabons on slit-shaped micropores, Langmuir, 1997, 13: 496~501.
    [20] D. E. Ulberg and K. E. Gubbins, Water adsorption in microporous graphitic carbons, Mol. Phys., 1995, 84(6): 1139~1153.
    [21] A. Matsumoto, J. Zhao and K. Tsutsumi, Adsorption behavior of hydrocabons on slit-shaped micropores, Langmuir, 1997, 13: 496~501.
    [22] X. H. Yi, K. S. Shing and M. Sahimi, Molecular Dynamics simulation of diffusion in pillared days, AIChE J., 1995, 41(3): 456~468.
    [23] M. Sahimi, Diffusion, Adsorption and reaction in pillared clays. Ⅰ. Rod-like molecules in a regular pore space, J. Chem. Phys., 1990, 92(8): 5107~5118.
    [24] B. K. Peterson and K. E. Gubbins, Mol. Phys., 1987, 62(1): 215~226.
    [25] D. M. Razmus and C. K. Hall, Prediction of gas adsorption in 5A zeolites using Monte Carlo simulation, AIChE J., 1991, 37(5): 769~779.
    [26] M. Rigby, et al., The Forces between Molecules, Clarenden, Oxford, 1986.
    [27] W. L. Jorgensen, J. M. Briggs, Mol. Phys., 1988, 63: 547
    [28] W. A. Steele, Surf. Sci., 1973, 36: 317.
    [29] The Interaction of Gases with Solid Surface, Pergamon: Oxford, U. K., 1974.
    [30] W. A. Steele, The physical interaction of gases with crystalline solids, Surface Science, 1973, 36: 317~352.
    [31] M. P. Allen, D. J. Tildeslay, Computer Simulation of Liquids. Oxford: Clarendon press, 1987, p156~162.
    [32] B. Widom, J. Chem. Phys., 1963, 39: 2808.
    [33] C. C. Li, Can. J. Chem. Eng., 1971, 19: 709.
    [1] United Nations Environmental Programs, Montreal Protocol on Substance that Deplete the Ozone Layer: Final Act United Nations, 1989.
    [2] 高广图,博士学位论文:极性模型及真实流体汽液平衡性质的计算机分子模拟,北京化工大学,北京,1996.
    [3] M. E. van Leeuwen, B. Smit and Z. E. Hendriks, Mol. Phys., 1993, 78: 271.
    [4] M. E. van Leeuwen, Fluid Phase Equilibria, 1994, 99: 1.
    [5] G. T. Gao, W. C. Wang and X. C. Zeng, Vapor-liquid equilibria for pure HCFC/HFC substances by Gibbs ensemble simulation of Stockmayer potential molecules, Fluid Phase Equilibria, 1997, 137: 87~98.
    [6] G. Gao and W. Wang, Gibbs ensemble Monte Carlo simulation of binary vaporliquid equilibria for CFC alternatives, Fluid Phase Equilibria, 1997, 130: 157~166.
    [7] W. A. Steele, Surf Sci., 1973, 36: 317.
    [8] The Interaction o Gases with Solid Surface, Pergamon: Oxford, U. K., 1974.
    [9] E. A. Muller, L. F. Rull, L. F. Vega and K. E. Gubbins, J. Phys. Chem., 1996, 100(4): 1189~1196.
    [10] E. Kierlik, M. Rosinberg, J. E. Finn and P. A. Monson, Mol. Phys., 1992, 75(6): 1435~1454.
    [11] K. K. Han, J. H. Cushman and D. J. Diestler, Mol. Phys., 1993, 79(3): 537~545.
    [12] S. Y. Jiang, C. L. Rhykerd and K. E. Gubbins, Mol. Phys., 1993, 79(2): 373~391.
    [13] R. F. Cracknell and D. Nicholson, J. Chem. Soc. Faraday Trans., 1994, 90(11): 1487~1493.
    [14] B. K. Peterson and K. E. Gubbins, Mol. Phys., 1957, 62(1): 215~226.
    [15] D. Nicholson and K. E. Gubbins, J. Chem. Phys., 1996, 104(20): 8126~8134.
    [16] B. Widom, J. Chem. Phys., 1963, 39: 2808.
    [17] D. M. Razmus and C. K. Hall, AIChE J., 1991, 37(5): 769~779.
    [18] D. Frenkel and B. Smit, Understanding molecular simulation, Academic Press, Amsterdam, 1996.
    [19] Z. Tan and K. E. Gubbins, J. Phys. Chem., 1990, 94(15): 6061~6069.
    [20] T. Nitta, M. Nozawa and S. Kida, J. Chem. Eng. Japan 1992, 25(2): 176~182.
    [21] T. Nitta, M. Nozawa and Y. Hishikawa, J. Chem. Eng. of Japan, 1993, 26(3): 266~272.
    [22] T. Shigeta, N. Yoneya and T. Nitta, Mol. Simul., 1996, 16: 291~305.
    [23] E. I. Segarra, E. D. Glandt, Chem. Eng. Sci., 1993, 49: 2953.
    [24] M. Maddox, D. Ulberg and K. E. Gubbins, Fluid Phase Equilibria, 1995, 104: 145~158.
    [25] H. D. Baehr and R. Tillner-Roth, Thermodynamic Properities of Environmentally acceptable refrigerants, Springer-verlag, 1994.
    [26] B. S. Smith and R. Srivaastava, Thermodynamic Data for Pure Compounds, Part B, Halogenated Hydrocarbons and Alcohols, Elsevier, New York, 1986.
    [1] 孙家昶,张林波,迟学斌等.网络并行计算与分布式编程环境.科学出版社,1996.
    [2] M. Surridge, D. L. Tildesley, Y. C. Kong, et al. A parallel dynamics simulation code for dialkyl cationic surfactants, Parallel Computing, 1997, 22: 1053~1071.
    [3] D. Frenkel and B. Smit, Understanding molecular simulation. Academic Press, 1996.
    [4] A. Nakano and T. Campbell, An adaptive curvilinear-coordinate approach to dynamic load balancing of parallel multiresolution molecular dynamics, Parallel Computing, 1997, 23: 1461~1478.
    [5] 陈国良,并行算法的可扩展性分析系统,小型微型计算机系统,1995,vol.16(2)
    [6] 李晓梅、蒋增荣等,并行算法,湖南科学技术出版社,1992
    [7] 康立山、陈毓屏,演化计算,数值计算与计算机应用,1995,vol.16(3)
    [8] 康立山,孙乐林,陈毓屏,解数学物理问题的异步并行算法,科学出版社,1985

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700