用户名: 密码: 验证码:
水和二氧化碳体系的分子模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
选择固定点电荷的柔性模型和合适的势能函数,优化得到了水分子势能函数的参数。与其它模型相比较,本模型增加了氢原子的L-J作用和考虑了水的键长和键角变化,得到的结果比较理想。然后采用NVT-GEMC和CBMC方法在很宽的温度范围内计算了水的气-液相平衡、饱和压力、第二维里系数、结构特征、自扩散系数和在超临界区域的压力,并分别与文献计算的数据进行了广泛的比较,说明本模型在预测水的各种性质时比较准确。本模型对水的饱和液相密度计算的准确性有较大提高,并且得到了合理的第二维里系数和水的径向分布函数。计算得到的水的临界性质比现有的柔性模型都有很大的改进。在计算超临界条件下水的压力-密度时,不论压力和温度多高,本模型计算结果都很准确,体现了其优异性;而在计算自扩散系数时,当压力不太高时计算的结果也比较理想。最后还讨论了水分子在气态、液态和超临界条件下扩散系数不同的原因。本模型可以运用到化学工程的分离方面。
     采用全柔性的二氧化碳分子模型计算得到二氧化碳的相图及其它热力学性质。该模型和已经存在的模型有较大的区别,主要是本模型考虑了原子电荷的影响,键长和键角改变的作用。在选择了适合二氧化碳体系的势能函数及优化获得参数后,采用NVT-GEMC计算了二氧化碳的相图,计算得到的饱和液体和气体的密度很理想,饱和压力的计算也有较大的改进,预测到的临界性质基本与实验数据一致。并且采用NVT-MD模拟了二氧化碳分子在超临界条件下的结构特征,得到了二氧化碳分子在超临界下的非线型结构,即T-二聚体、凹型二聚体和平行二聚体,解释了二氧化碳分子在超临界状态下具有偶极距的原因。最后还计算了二氧化碳在恒温条件下不同压力时的自扩散系数,得到在压力13 MPa左右时计算的结果很准确,但随着压力的升高误差也随之增加。最后讨论了二氧化碳、甲烷、氦、丙烷等分子的扩散行为,从分子角度解释了相同温度下气态时扩散快,液体时扩散慢的原因。这些性质对化工分离和传质很有用途,可以为化工设计提供一定的依据。
     采用NPT-GEMC法计算了CO_2/H_2O体系的气-液相平衡热力学性质和二氧化碳富集相处于超临界状态的高压下的相平衡性质。在恒温条件下,得到了从较低压力到高压时的热力学性质。这为设计CO_2/H_2O体系的萃取剂提供了数据,并且为更高压力下研究该体系打下了基础。
An improved fully flexible fixed-point charges model for water has been developed to predict the vapor-liquid coexistence properties using the NVT-Gibbs ensemble Monte Carlo technique (GEMC) and the pressure in supercritical region. The average deviation between our simulation and experimental data for saturated liquid densities is 2.75% over temperature range of 314 to 609K. Comparing with experimental data for T_c, P_c andρ_c (P_c=220.064bar, T_c=647.096K, andρ_c=0.322g/cm~3 for the experimental data), our calculated results (P_c=213bar, T_c=644.3K, andρ_c=0.325g/cm~3 for our simulations) are acceptable and are better than those by the SPC-E and TIP4P models. The saturated pressure is calculated by evaluating the pressure of vapor from NPT-MD simulation at the coexistence vapor densities at the nominal temperature. The agreement of our simulated pressures of supercritical water at any density and temperature with the experimental values is excellent. The second virial coefficient and radial distribution function in ambient and supercritical conditions are also estimated. The radial distributions consist with experimental data very well.
     A folly flexible alterable -point charges model for carbon dioxide has been developed to predict the vapor-liquid coexistence properties using the NVT-Gibbs ensemble Monte Carlo technique (GEMC). The average deviation between our simulation and the literature experimental data for saturated liquid densities is 0.3%. Comparing with the experimental data for T_c, P_c andρ_c (P_c=7.3773MPa, T_c=304.13K, andρ_c=0.4676g/cm~3 for the experimental data), our calculated results (P_c=7.39MPa, T_c=304.365 K, andρ_c=0.46673g/cm3 for our simulations) are good and are better than those by the EPM2 model. The agreement of our simulated saturated pressure and the pressures of supercritical water at any density and temperature with the experimental values are excellent. The radial distribution function in supercritical conditions is also estimated, which give that the carbon dioxide is a nonline molecule with the C=O bond length to be 1.17 A and the O=C=O bond angle to be 176.4°.The radial distributions consist with Car-Parrinello molecular-dynamics(CPMD) very well, but the EPM2 model shows large deviation.
     Finally, in this thesis phase coexistence properties of H_2O/CO_2 systems of interest for chemical industries were investigated using the NPT-Gibbs ensemble Monte Carlo (MC) simulations. Simulation results deviated from experimental data for the pressure-composition diagrams of the binary systems. And vapor density was compared to the density of pure CO_2.
引文
1.Prausnitz,J.M.,Lichtenthaler,R.N.,Azevedo,E.G.D.(陆小华,刘洪来译),流体相平衡的 分子热力学(第三版)[M],化学工业出版社,2006。
    
    2.刘志平,黄世萍,汪文川,分子计算科学-化学工程新的生长点[J],化工学报,2003, 54(4):464-476。
    
    3.陆小华,周健,王延儒等,化学工程中的分子动力学模拟[J],化工学报,1998,49(5):64-70.
    
    4.陆小华,王俊,朱宇,周健,王延儒等,分子动力学模拟研究流体微观结构和扩散性质[J], 南京工业大学学报,2002,24(1):7-11。
    
    5. Somorjai, G A., Modern surface science and surface technologies: An introduction [J], Chem. Rev., 1996, 96(4): 1223-1228.
    
    6. Prausnitz, J.M., Some new frontiers in chemical engineering thermodynamics [J], Fluid phase euiqilibra, 1995, 104: 1-10.
    
    7.徐光宪,物质结构(第二版)[M],北京:高等教育出版社,1987。
    
    8.胡英,刘洪来,分子工程和化学工程[J],化学进展,1995,7(3):235-249。
    
    9.屈一新,化工过程数值模拟及软件[M],化学工业出版社,2006。
    
    10. Khare, R., Sum, A.K., Nath, S.K., de Pablo, J.J., Simulation of Vapor-Liquid Phase Equilibria of Primary Alcohols and Alcohol-Alkane Mixtures [J], J. Phys. Chem. B, 2004, 108: 10071-10076.
    
    11.张伟平,郭明学,李总成,李以圭等,简单分子三元混合物气液平衡的分子模拟计算[J], 石油学报,1996,12:80-84.
    
    12.郭明学,汪文川,李以圭等,简单流体气液共存性质的Monte Carlo模拟[J],计算机与应 用化学,1994,11:112-115.
    
    13. Nath, S.K., J.Banaszak, B., de Pablo, J.J., A new united atom force field for α-olefins [J], J. Chem. Phys., 2001, 114: 3612-3616.
    
    14. Nath, S.K., A.Escobedo, F., de Pablo, J.J., On the simulation of vapor-liquid equilibra for alkanes [J],J. Chem. Phys., 1998,108: 9905-9911.
    
    15. C.Boulougouris, G., G.Economou, I., Theodorou, D. N., Engineering a molecular model for water phase equilibrium over a wide temperature [J], J. Phys. Chem. B, 1998,102: 1029-1035.
    
    16.张吕正,陆小华,王延儒,时钧,电解质溶液热力学新进展[J],南京化工学院学报,1995,??17:86-94.
    
    17.李以圭,刘金晨,分子模拟与化学工程[J],现代化工,2001,7(21):10-16.
    
    18. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.N., Teller, E., Equation of state calculations by fast computing machines [J], J. Chem. Phys., 1953, 21: 1087-1092.
    
    19. Allen, M. P., Tildesley, D. J., Computer Simulation of Liquid [M], Oxford University Press: New York, 1987.
    
    20. Kalos, M.H, Whitlock, P.A., Monte Carlo Methods [M].Wiley, New York, 1986.
    
    21. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., Numerical Recipes: The art of scientific computing.Cambridge University Press, Cambridge, 1986.
    
    22. Meijer, E.J., Computer simulation of molecular solids and colloidal dispersions Ph.D. thesis, Rijksuniversiteit Utrecht, The Netherlands, 1993.
    
    23. Nath, S.K., Molecular Simulation of Vapor-Liquid Phase Equilibria of Hydrogen Sulfide and Its Mixtures with Alkanes [J],J. Phys. Chem. B, 2003,107: 9498-9504.
    
    24. Jedlovszky, P., Palinkas, G, Monte Carlo simulation of liquid acetone with a polarizable molecular model [J], Mol Phys., 1995, 84: 217-233.
    
    25. Eastwood, J.W., and Hockney, R.W., Shaping the force law in two dimensional particle mesh models [J],J. Chem. Phys., 1974, 16: 342-359.
    
    26. Greengard, L., and Rokhlin, V, A fast algorithm for particle simulation [J], J. Comp. Phys., 1987, 73: 325-348.
    
    27. Guillot, B., Guissani, Y., How to build a better pair potential for water [J], J. Chem. Phys., 2001, 114:6720-6733.
    
    28.杨小震,分子模拟与高分子材料[M],科学出版社,2002。
    
    29. Verlet, L., Computer experiments on classical fluids I. Thermodynamical properties of Lennard-Jones molecules [J], Physical Review, 1967, 159: 98-103.
    
    30. Honeycutt, R.W., The potential calculation and some applications [J], Methods in computational Physics, 1970,9:136-211.
    
    31. Swope, W.C., Anderson, H.C., Wilson, K.R., A computational physics, 1970, 9:136-211.
    
    32. Gear, C.W., Numerical Initial value problems in ordinary differential equation [M], Englewood Cliffs, N.J: Prenticehall, 1971, 54.
    
    33. Andsen, H.C., Molecular dynamics at constant pressure and /or temperature [J], Chem.Phys.,??1980,72:2384-2393.
    
    34. Hoffmann, K.H.; Schreiber, M., Computational physica [M], Berlin heideberg: spring-veriag, 1996,268-326.
    
    35. Nose, S.A., Unified formulation of the constanr temperature Molecular dynamics [J], J. Chem. Phys., 1984,81:5-11.
    
    36. Berendsen, H.J,C, Postma, J.P.M., Gunsteren, W.F.V., Molecular dynamics with coupling to an external bath [J], J. Chem. Phys., 1984, 81: 3684-3690.
    
    37. Parrinello, M., Rahman, A., Polymorphic transitions in single crystals: A new molecular dynamics method [J], J. Appl. Phys., 1981, 52: 7182-7190.
    
    38. Parrinello, M., Rahman, A., J. Phys. (Paris), 1981, C6-511.
    
    39. Parrinello, M., Rahman, A., Strain Fluctuations and Elastic Constants [J], J. Chem. Phys., 1982, 76: 2662-2666.
    
    40. Agarwal, S., J.Solution. Chem., 1978,7: 795-806.
    
    41.吉青,杨小震,分子力场发展的新趋势[J],化学通报,2005,2:111-116。
    
    42.任译,杨捷,吴德印,李泽荣,田安民,分子力场发展[J],化学研究与应用,1998,10: 1-14。
    
    43. Hagler, A. T., L ifson, S., Dauber, P., Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 2. A benchmark for the objective comparison of alternative force fields [J], J. Am. Chem. Soc, 1979, 101: 5122-5130.
    
    44. Errington, J. R., Ph.D. thesis, Cornell University, 1999.
    
    45. Jorgensen, W. L., Maxwell, D.S., Tirado-Rives, J., Development and testing of the OPLS all-atom force field on conformational energetics and Properties of Organic Liquids [J], J. Am. Chem. Soc, 1996, 118 (45): 11225-11236.
    
    46. Cui, W.L., Li, F.B., Allinger, N.L., Simulation of conformational dynamics with the MM3 force field: the pseudorotation of cyclopentane [J], J. Am. Chem. Soc, 1993,115: 2943-2951.
    
    47. Peng, Z.W., Hwang, M.J., Waldman, M., Hagler, A.T., Derivation of Class Ⅱ Force Fields. 4. van der Waals Parameters of Alkali Metal Cations and Halide Anions [J], J. Phys. Chem. A, 1997,101:7243-7252.
    
    48. Mackerell, A. D., Wiorkiewicz-kuczera, J., Karplus, M., All-atom empirical energy function for the simulation of nucleic acids [J], J. Am. Chem. Soc, 1995, 117(48): 11946-11975.
    49. Cornell, W. D., Cieplak, P., Bayly, C.L., et al, A second generation force field for the simulation of proteins, nucleic acids, and organic molecules [J], J. Am. Chem. Soc, 1995, 117(19): 5179-5197.
    50. Sun, H., COMPASS:An ab initio force-field optimized for condensed phase applications-overview with details on alkanes and benzene compounds [J], J. Phys. Chem. B, 1998,102(38): 7338-7364.
    51. Martin, M.G., Siepmann, J.I., Transferable potentials for phase equilibria. 1. united-atom description of n-alkanes [J],J. Phys. Chem. B, 1998, 102(14): 2569-2577.
    52. Nath,S.K., Escobedo,F.A., de Pablo J. J., On the simulation of vapor-liquid equilibria for alkanes [J], J. Chem. Phys.,1998, 108 (23): 9905-9911.
    
    1. Ladd, A.J.C., Woodcock, L.V., Triple-point coexistence properties of the Lennard-Jones system [J], Chem. Phys. Lett., 1977, 51: 155-159.
    
    2. Ueda, A., Takada, J., Hiwatari, Y, Molecular-dynamics studies of solid-liquid interface of soft-core model [J], J. Phys. Soc. Jpn., 1980, 50: 307-314.
    
    3. Panagiotopoulos, A. Z., Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble [J], J. Mol. Phys. 1987, 61: 813-826.
    
    4. Panagiotopoulos, A. Z., Quirke, N., Stapleton, M., Tildesley, D. J., Phase equilibra by simulation in the Gibbs ensemble Alternative derivation, generalization and application to mixture and membrane equilibria [J], Mol. Phys. 1988, 63: 527-545.
    
    5. Widom, B., Some topics in the theory of fluid [J], J. Chem. Phys., 1963, 39: 2802-2812.
    
    6.Frenkel and Smit著,汪文川译,分子模拟-从算法到应用[M],化学工业出版社,2002。
    
    7. Rowlinson, J.S., Swindon, F.L., Liquid and liquid mixtures [M], 3~(rd) edu. Buterworth, London, 1982.
    
    8. Rowlinson, J.S., Swindon, F.L., Molecular theory of capillarity [M]. Clarendon press, Oxford, 1982.
    
    9. Kofke, D.A., Gibbs-Duhem integrations new method for direct evaluation of phase coexistence by molecular simulation [J], Mol. Phys., 1993, 78 (6): 1331-1336.
    
    10. Kofke, D. A., Direct evaluation of phase coexistence by molecular via integration along the saturation line [J], J. Chem. Phys., 1993, 98 (5): 4149-4162.
    
    11.Meijer, E. J., El Azhar, R, Novel procedure to determine coexistence lines by computer simulation: Application to hard-core Yukawa model for charge-stabilized colloids [J], J. Chem. Phys., 1997,106 (11): 4678-4683.
    
    12. Escobedo, F.A., de Pablo, J.J., Pseudo-ensemble simulations and Gibbs Duhem integrations for polymers [J], J. Chem. Phys., 1997,106: 2911-2923.
    
    13. Kofke, D. A., Glandt, E. D., Monte Carlo simulation of multicomponent equilibria in a semigrand canonical ensemble [J], Mol. Phys., 1988, 9: 1-23.
    
    14. Rosenhluth, M. N., Rosenhluth, A. W., Monte Carlo simulation of the average extension of molecular chains [J], J. Chem. Phys., 1955, 23 (2): 356-359.
    
    15. de Pablo, J. J., Laso, M., and Suter, U. W., Estimation of the chemical potential of chain molecules by simulation [J], J. Chem. Phys., 1992,96: 6157-6162.
    
    16. Laso, M., de Pablo, J. J., and Suter, U. W., Simulation of phase equilibria for chain molecules [J], J. Chem. Phys., 1992,97: 2817-2819.
    
    17. Frenkel, D. and Smit, B., Unexpected length dependence of the solibility of chain molecules [J], Mol. Phys., 1992, 75: 983-988.
    
    18. Duane, S., Kennedy, A. D., Pendleton, B. J., Roweth, D., Phys. Lett. B, 1987,195,216-222.
    
    19. Creutz, M., Higher Order Hybrid Monte Carlo Algorithms [J], Phys. Rev. Lett., 1989,63: 9-12.
    
    20. Brotz, F. A. and de Pablo, J. J., Hybrid Monte Carlo Simulation of Silica [J], Chem. Eng. Sci., 1994,49:3015-3031.
    
    21. Mehlig, B., Heermann, D.W., Forrest, B.M., Hybrid Monte Carlo Method for Condensed-Matter Systems [J], Phys. Rev. B, 1992,45: 679-685.
    
    22. Nath, S.K., Escobedo, F. A., de Pablo, J. J., On the simulation of Vapor Liquid Equilibria for Alkanes [J],J. Chem. Phys., 1998,108: 9905-9911.
    
    1. Klein, M., Mentha, Y., Tony, L., Decoupling substituent and solvent effects during hydrolysis of substituted anisoles in supercritical water [J],Ind. Eng. Chem. Res., 1992,31: 182-187.
    
    2. Li, R., Savage, P. E., Szmukler, D., 2-Chlorophenol oxidation in supercritical water: global kinetics and reaction products [J],AIChE J., 1993,39:178-187.
    
    3.丁军委,陈丰秋,吴素芳等,胺在超临界水中氧化反应动力学的研究[J],高校化学工程 学报,2001,15:66-70.
    
    4. Antal, M.J., Carlsson, M., Xu, X., Anderson, D.G.M., Mechanism and Kinetics of the Acid-Catalyzed Dehydration of 1- and 2-Propanol in Hot Compressed Liquid Water [J], Ind. Eng. Chem.Res., 1998, 37: 820-3829.
    
    5. Broil ,D., Kaul, C, Kramer, A., Krammer, P., Richter, T., Jung, M., Vogel, H., Zehner, P., Chemistry in Supercritical Water [J],Angew Chem. Int. Ed., 1999,38: 2998-3014.
    
    6. Ikushima, Y., Hatakeda, K., Sato, O., Yokoyama, T., Arai, M., Structure and Base Catalysis of Supercritical Water in the Noncatalytic Benzaldehyde Disproportionation Using Water at High Temperatures and Pressures [J], Angew Chem. Int. Ed., 2001,40(1): 210-213.
    
    7. Taylor, J.D., Steinfeld, J.I., Tester, J.W., Experimental Measurement of the Rate of Methyl tert-Butyl Ether Hydrolysis in Sub- and Supercritical Water [J], Ind. Eng. Chem. Res., 2001,40: 67-74.
    
    8. Sato, T., Sekiguchi, G., Adschiri, T., Arai, K., Ortho-Selective Alkylation of Phenol with 2-Propanol without Catalyst in Supercritical Water [J], Ind. Eng. Chem. Res., 2002, 41: 3064-3070.
    
    9.周健,陆小华,王延儒,时钧,超临界水的分子动力学模拟[J],物理化学学报,1999, 15:1017-1022。
    
    10. Galkin, A.A., Kostyuk, B.G., Kuznetdova, N.N, et al., Unusual Approaches to the Preparation of Heterogeneous Catalysts and Supports Using Water in Subcritical and Supercritical States [J], Kinet& Catal, 2001, 42: 154-162.
    
    11. Bellissent-Funel, M.C., Structure of supercritical water [J], J. Mol. Liq. 2001, 90: 313-322.
    
    12. Vega,C, Abascal, J. L. F., Nezbeda, I., Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice [J], J. Chem. Phys., 2006,125: 34503-34511.
    13. Berendsen, H.J.C., Postma, J. P. M., van Gunsteren, W. F., Hermans, J., In Intermolecular Forces; Pullman, B., Ed.; Reidel: Dordrecht, 1981.
    14. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water [J], J. Chem. Phys., 1983,79: 926-935.
    15. Jorgensen, W. L., Revised TIPS for simulations of liquid water and aqueous solution [J], J. Chem. Phys., 1982, 77: 4156-4163.
    16. Mahoney, M. W., Jorgenson, W. L., A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions [J], J. Chem. Phys., 2000,112: 8910-8922.
    17. Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P., The missing term in effective pair potentials [J],J. Phys. Chem., 1987, 91: 6269-6271.
    18. Boulougouris, G. C, Economou, I. G., Theodorou, D.N., Engineering a Molecular Model for Water Phase Equilibrium over a Wide Temperature Range [J], J. Phys. Chem. B, 1998,102: 1029-1035.
    19. Chen, B., Potoff, J. J., Siepmann, J. I., Adiabatic Nuclear and Electronic Sampling Monte Carlo Simulations in the Gibbs Ensemble: Application to Polarizable Force Fields for Water [J], J. Phys. Chem. B, 2000, 104: 2378-2390.
    20. Kiyohara, K., Gubbins, K. E., Panagiotopoulos, A. Z., Coexistence properties of polarizable water models [J], Mol. Phys., 1998, 94: 803-808.
    21. Rick, S. W., Stuart, S. J., Berne, B. J., Dynamical fluctuating charge force fields: Application to liquid water [J],J. Chem. Phys., 1994,101: 6141-6156.
    22. Chialvo, A. A., Cummings, P. T., Engineering a simple polarizable model for the molecular simulation of water applicable over wide ranges of state conditions [J], J. Chem. Phys., 1996, 105: 8274-8281.
    23. Kozack, R. E., Jordan, P. C, Polarizability effects in a four-charge model for water [J], J. Chem. Phys., 1992,96:3120-3130.
    24. Svishchev, I. M., Kusalik, P. G., Wang, J., Boyd, R. J., Polarizable point-charge model for water: Results under normal and extreme conditions [J], J. Chem.Phys., 1996,105: 4742-4750.
    25. Chen, B., Xing, J. H., Siepmann, J. I., Development of Polarizable Water Force Fields for Phase Equilibrium Calculations [J], J. Phys. Chem. B, 2000, 104: 2391-2401.
    26. Teleman, O, et al, A molecular dynamics simulation of a water model with intramolecular degrees of freedom [J], Mol. Phys., 1987,60:193-203.
    27. Mizan, T.I., Savage, P. E., Ziff, R. M., Molecular Dynamics of Supercritical Water Using a Flexible SPC Model [J], J. Phys. Chem., 1994,98:13067-13076.
    28. Duan, Z.H., Weare, J.H., Gibbs Ensemble Simulations of Vapor/Liquid Equilibrium Using the Flexible RWK2 Water Potential [J], J. Phys. Chem. B, 2004,108: 20303-20309.
    29. Liew, C.C., Inomata, H., Arai, K., Flexible molecular models for molecular dynamics study of near and supercritical water [J], Fluid Phase Equilibria., 1998,144: 287-298.
    30. Toukan, K., Rahman, A., Molecular-dynamics study of atomic motions in water [J], Phys. Rev. 5,1985,31:2643-2648.
    31. Smith, R.W., Nezbeda, I., Lisal, M., Vapor-Liquid Equilibria in Five-Site (TIP5P) Models of Water [J], J. Phys. Chem. B, 2004,108: 7412-7414.
    32. Baranyaia, A., Bartok., Chialvo, A. A., Limitations of the rigid planar nonpolarizable models of water [J], J. Chem. Phys., 2006,124: 74507-745012.
    33. Abascal, J. L. F., Vega, C, A general purpose model for the condensed phases of water: TIP4P/2005 [J], J. Chem. Phys., 2005, 123: 234505-234516.
    34. Paricaud, P., Pfedota, M., Chialvo, A.A., Cummings, P.T., From dimer to condensed phases at extreme conditions: Accurate predictions of the properties of water by a Gaussian charge polarizable model [J], J. Chem. Phys., 2005,122: 244511-244524.
    35. Horn, H. C. W., Swope, W., W. Pitera, J., et al., Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew [J], J. Chem. Phys., 2004, 120: 9665-9678.
    36. Gla"ttli,A., Daura, X.,Gunsteren, W. F. V., Derivation of an improved simple point charge model for liquid water:SPC/A and SPC/L [J], J. Chem. Phys., 2002,116: 9811-9828.
    37. Svishchev, I. M., Hayward, T. M., Phase coexistence properties for the polarizable point charge model of water and the effects of applied electric field [J], J. Chem. Phys., 1999, 111: 9034-9038.
    38. Billeter, S. R., King, P. M. and Gunsteren, W. F. van., Can the density maximum of water be found by computer simulation? [J], J. Chem. Phys., 1994, 100: 6692-6699.
    39. Baez, L. A. and Clancy, P., Existence of a density maximum in extended simple point charge water [J],J. Chem. Phys., 1994, 101: 9837-9840.
    40. Wallqvist, A., Astrand, P.-O., Liquid densities and structural properties of molecular models of water [J],J. Chem. Phys., 1995,102: 6559-6565.
    41. Guillot, B., Guissani, Y., How to build a better pair potential for water [J], J. Chem. Phys., 2001,114:6720-6733.
    42. Allen, M. P., Tildesley, D. J., Computer Simulation of Liquid [M], Oxford University Press: New York, 1987.
    43. Nath, S.K., Molecular Simulation of Vapor-Liquid Phase Equilibria of Hydrogen Sulfide and Its Mixtures with Alkanes [J], Phys. Chem. B, 2003,107: 9498-9504.
    44. Khare, R., Sum, A. K., Nath, S. K., de Pablo, J. J., Simulation of Vapor-Liquid Phase Equilibria of Primary Alcohols and Alcohol-Alkane Mixtures [J], J. Phys. Chem. B, 2004,108: 10071-10076.
    45. Smit, B., Karaborni, S., Siepmann, J. I., Computer simulations of vapor-liquid phase equilibria of n-alkanes [J], J. Chem. Phys., 1994,102: 2126-2140.
    46. Frisch, M. A., Cheeseman, J. R., Zakrzewski, V. G., et al., Gaussian 98; Gaussian, Inc.: Pittsburgh, PA, 1998.
    47. ASME Steam Tables, 6th Edition, The American Society of Mechanical Engineers [M], New York, NY, 1992.
    48. Panagiotopoulos, A. Z., Quirke, N., Stapleton, M., Tildesley, D., Phase equilibra by simulation in the Gibbs ensemble Alternative derivation, generalization and application to mixture and membrane equilibra [J], J. Mol. Phys., 1988,63(4): 527-545.
    49. Martin, M. G., Siepmann, J. I., Novel Configurational-Bias Monte Carlo Method for Branched Molecules. Transferable Potentials for Phase Equilibria. 2. United-Atom Description of Branched Alkanes [J],J. Phys. Chem. B, 1999,103: 4508-4517.
    50. de Pablo, J. J., Laso, M., Suter, U. W., Simulation of polyethylene above and below the melting point [J], J. Chem. Phys., 1992, 96: 2395-2303.
    51. Vlugt, T. J. H.,Martin, M. G., Smit, B., Siepmann, J. I., Krishna, R., Improving the efficiency of the CBMC algorithm [J], Mol. Phys., 1998, 94: 727-733.
    52. Chen, B., Siepmann, J. I., Transferable Potentials for Phase Equilibria. 3. Explicit-Hydrogen Description of Normal Alkanes [J], J. Phys. Chem. B, 1999,103: 5370-5379.
    53. Levelt Sengers, J.M.H., Straub, J., Watanabe, K., Hill, P. G., Assessment of Critical Parameter Values for H_2O andD_2O [J],J. Phys. Chem. Ref.Data, 1985,14:193-207.
    54. http://webbook.nist.gov/chemistry
    55. Vorholz, J., Harismiadis, V.I., Rumpf, B., Panagiotopoulos, A.Z., Maurer, G., Vapor-Liquid Equilibrium of Water, Carbon Dioxide and the Binary System Water + Carbon Dioxide from Molecular Simulation [J], Fluid Phase Equilibria., 2000,170: 203-234.
    56. Frenkel, D., Smit, B., Understanding molecular simulation-from algorithms to application [M], second edition, 1996.
    57. Einstein, A., On the movement of small particles in a stationary liquid demanded by the molecular-kinetic theory of heat [J], Ann. Phys., 1905, 17: 549-560.
    58. Lal, M, Spencer, D.J., Chem.Spc, Faraday Trans. 1973,69,1502.
    59. Vlot, M. J., Huinink, J., and van der Eerden, J. P., Free energy calculations on systems of rigid molecules: An application to the TIP4P model of H_2O [J], J. Chem. Phys., 1999,110: 55-61.
    60. Svishchev, I. M., Kusalik, P. G., Wang, J., Boyd, R. J., Polarizable point-charge model for water: Results under normal and extreme conditions [J], J. Chem. Phys., 1996,105: 4742-4750.
    61. Guissani, Y., Guillot, B., A computer simulation study of the liquid-vapor coexistence curve of water [J], J. Chem. Phys., 1993, 98: 8221-8235.
    62. Gallagher,J. S., Kell, L. H., G. S. NBS/NRC Steam Tables (Hemisphere, Washington, D.C., 1984).
    63. Soper, A.K., The radial distribution functions of water and ice from 220 K to 673 K and at pressures up to 400 MPa [J], Chem. Phys., 2000, 258: 121-137.
    64. Angell, C. A., Finch, E. D., Woolf, L. A., Bach, P., ibid. 1976, 65: 3063-3071.
    65. Lamb, W.J., Hoffman, GA., Jonas, J., Self-diffusion in compressed supercritical water [J], J. Chem. Phys., 1981, 74: 6875-6880.
    66. Jorgensen, W.L., Mahoney, M.W., Diffusion constant of the TIP5P model of liquid water [J], J. Chem. Phys., 2001, 114: 363-366.
    
    (1) Reverchon, E., Caputo, G., Marco, I.D., Role of Phase Behavior and Atomization in the Supercritical Antisolvent Precipitation [J], Ind. Eng. Chem. Res., 2003,42: 6406-6414.
    
    (2) DeSimone, J. M., Practical approaches to green solvents [J], Science. 2002,297: 799-803.
    
    (3) Turner, C. H., Gubbins, K. E., Effects of supercritical clustering and selective confinement on reaction equilibrium: A molecular simulation study of the esterification reaction [J], J. Chem. Phys., 2003,119:6057-6067.
    
    (4) Clarke, M. J., Harrison, K. L., Johnston, K. P.,Howdle, S. M., Water in Supercritical Carbon Dioxide Microemulsions: Spectroscopic Investigation of a New Environment for Aqueous Inorganic Chemistry [J], J. Am. Chem. Soc, 1997,119: 6399-6406.
    
    (5) Heldebrant, D. J., Jessop, P. G., Liquid Poly(ethylene glycol) and Supercritical Carbon Dioxide: A Benign Biphasic Solvent System for Use and Recycling of Homogeneous Catalysts [J], J. Am. Chem. Soc, 2003, 125: 5600-5601.
    
    (6) Harris, J. G., Yung, K. H., Carbon Dioxide's Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model [J], J. Phys. Chem., 1995, 99: 12021-12024.
    
    (7) Brennecke, F., et al, Intermolecular repulsions and the equation of state [J], AIChE J, 1989, 35: 1409-1412.
    
    (8)朱自强,超临界流体萃取中的相平衡进展[J],高校化学工程学报,1994,8(1):1-10.
    
    (9) Murthy, C. S., Oshea, S. F., McDonald, I. R., Electrostatic interactions in molecular crystals:Lattice dynamics of solid nitrogen and carbon dioxide [J], Mol. Phys., 1983, 50: 531-541.
    
    (10)Geiger, L. C, Ladanyi, B. M., Chapin, M. E., A comparison of models for depolarized lightscattering in supercritical CO_2 [J], J. Chem. Phys., 1990, 93:4533-4542.
    
    (11)Potoff, J. J.and Siepmann, J. I., Vapor-liquid equilibria of mixtures containing alkanes, carbondioxide, and nitrogen [J], AIChE J., 2001,47: 1676-1682.
    
    (12)Zhang, Z., Duan, Z., An optimized molecular potential for carbon dioxide [J], J. Chem. Phys.,2005,122: 214507-214522.
    
    (13)Saharay, M., Balasubramanian, S., Ab initio molecular-dynamics study of supercritical carbondioxide [J], J. Chem. Phys., 2004,120: 9694-9702.
    (14)Shkrob, I. A.,Ionic Species in Pulse Radiolysis of Supercritical Carbon Dioxide. 2. Ab Initio Studies on the Structure and Optical Properties of (CO_2)_n~+, (CO_2)_2~-, and CO_3~- Ions [J], J. Phys. Chem. A, 2002, 106:11871-11881.
    (15)Zhang, Y., Yang, J., Yu, Y., Dielectric Constant and Density Dependence of the Structure of Supercritical Carbon Dioxide Using a New Modified Empirical Potential Model: A Monte Carlo Simulation Study [J], J. Phys. Chem. B, 2005,109: 13375-13382.
    (16)Ishii, R., Okazaki, S., Odawara, O., Okada, I., Misawa, M., Fukunaga, T.,Structural study of supercritical carbon dioxide by neutron diffraction [J], Fluid Phase Equilib., 1995, 104: 291-304.
    (17)Ishii, R., Okazaki, S., Okada, I., Furusaka, M., Watanabe, N., Misawa, M., Fukunaga, T., Density dependence of structure of supercritical carbon dioxide along an isotherm [J], J. Chem. Phys., 1996,105:7011-7021.
    (18)Nath, S.K., Molecular Simulation of Vapor-Liquid Phase Equilibria of Hydrogen Sulfide and Its Mixtures with Alkanes [J], J. Phys. Chem. B, 2003,107: 9498-9504.
    (19)Khare, R., Sum, A. K., Nath, S. K., de Pablo, J. J., Simulation of Vapor-Liquid Phase Equilibria of Primary Alcohols and Alcohol-Alkane Mixtures [J], J. Phys. Chem. B, 2004, 108: 10071-10076.
    (20) Yang Zhang, Y., Jichu Yang, J.C., Yu Y.X, Dielectric Constant and Density Dependence of the Structure of Supercritical Carbon Dioxide Using a New Modified Empirical Potential Model: A Monte Carlo Simulation Study [J], J. Phys. Chem. B, 2005,109: 13375-13382.
    (21)Ewald, P. P., Die Berechnung optischer und elektrostatischer gitterpotentiale, Ann. Phys., 1921, 64:253-287.
    (22)Panagiotopoulos, A. Z., Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble [J], J.Mol. Phys., 1987, 61: 813-826.
    (23)Panagiotopoulos, A. Z., Quirke, N., Stapleton, M., Tildesley, D. J., Phase equilibra by simulation in the Gibbs ensemble Alternative derivation, generalization and application to mixture and membrane equilibria [J], Mol. Phys., 1988, 63: 527-545.
    (24)Martin, M. G., Siepmann, J. I.,Novel Configurational-Bias Monte Carlo Method for Branched Molecules. Transferable Potentials for Phase Equilibria. 2. United-Atom Description of Branched Alkanes [J], J. Phys. Chem. B, 1999, 103: 4508-4517.
    
    (25)De Pablo, J. J., Laso, M., Suter, U. W., Simulation of polyethylene above and below themelting point [J], J. Chem. Phys., 1992,96:2395-2402.
    
    (26) Vlugt, T. J. H.,Martin, M. G., Smit, B., Siepmann, J. I., Krishna, R., Improving the efficiencyof the configurational-bias Monte Carlo algorithm [J], Mol. Phys., 1998,94:727-733.
    
    (27)Errington, J. R., Panagiotopoulos, A. Z., Phase equilibria of the modified Buckinghamexponential-6 potential from Hamiltonian scaling grand canonical Monte Carlo [J], J. Chem.Phys., 1998,109:1093-1100.
    
    (28)http://webbook.m'st.gov/chemistry
    
    (29) Vorholz, J., Harismiadis, V.I., Rumpf, B., Panagiotopoulos, A.Z., Maurer, G., Vapor plus liquidequilibrium of water, carbon dioxide, and the binary system, water plus carbon dioxide, frommolecular simulation [J], Fluid Phase Equilibria., 2000,170: 203-234.
    
    (30)Herzberg, G., Electronic Spectra and Electronic Structure of Polyatomic Molecules [M], VanNostrand, New York, 1966.
    
    (31)Etesse, P., Zega, J.A., Kobayashi, R., High pressure nuclear magnetic resonance measurementof spin-lattice relaxation and self-diffusion in carbon dioxide [J], J. Chem. Phys., 1992, 97:2022-2029.
    
    1. Mesiano, A.J., Bechman, E.J., Russel, A.J., Supercritical Biocatalysis [J], Chem.Rev., 1999, 99(3): 623-633.
    
    2. Jessop, P.G, Ikariya, T., Noyori, R., Homogeneous Catalysis in Supercritical Fluids [J], Science, 1995,269:1065-1069.
    
    3. Shi, Y.F., Gao,Y., Dai, Y.Ch., Yuan, W.K., Kinetics for benzene+ethylene reaction in near-critical regions [J], Chem.Eng.Sci., 2001, 56 (4): 1403-1410.
    
    4. Gross, S.M., Roberts, GW, Kiserow, D.J., Desimone, J.M., Crystallization and Solid-State Polymerization of Poly(bisphenol A carbonate) Facilitated by Supercritical CO_2 [J], Macromolecules, 2000, 33: 40-45.
    
    5. Kerton, F.M., Lawless, GA., Armes, S.P., J.Mater.Chem., 1997,7(10): 1965-1966.
    
    6. Kung, E., Lesser, A.J., McCarthy, T.J., Morphology and Mechanical Performance of Polystyrene/Polyethylene Composites Prepared in Supercritical Carbon Dioxide [J], Macromolecules, 1997, 31: 4160-4169.
    
    7. Holgate, H.R., Tester, J.W., Oxidation of hydrogen and carbon monoxide in sub- and supercritical water: reaction kinetics, pathways, and water-density effects. 2. Elementary reaction modeling [J], J. Phys. Chem., 1994, 98: 810-822.
    
    8. Savage, P.E., Gopalan, S., Mizan,T.L, Martino, C.J., Brock, E.E., Reactions at supercritical conditions: applications and fundamentals [J], AIChE J, 1995,41(7): 1723-1778.
    
    9.中国科学院化学学部国家自然科学基金委员会化学科学部编写,展望21世纪的化学工程 [M],化学工业出版社,2004。
    
    10.施晓明,GEMC法模拟流体气液相平衡[D],重庆大学硕士学位论文,2006。
    
    11. Vorholz, J., Harismiadis, V.I., Rumpf, B., Panagiotopoulos, A.Z., Maurer, G., Vapor plus liquid equilibrium of water, carbon dioxide, and the binary system, water plus carbon dioxide, from molecular simulation [J], Fluid Phase Equilibria., 2000,170: 203-234
    
    12. Bamberger, A., Sieder, G, Maurer, G, High-pressure (vapor-liquid) equilibrium in binary mixtures of (carbon dioxide+water or acetic acid) at temperatures from 313 to 353 K [J], Journal of Supercritical Fluids, 2000,17: 97 -110.
    
    13. Panagiotopoulos, A. Z., Quirke, N., Stapleton, M., Tildesley, D., Phase equilibra by simulation??in the Gibbs ensemble Alternative derivation, generalization and application to mixture and membrane equilibra [J],J. Mol Phys., 1988,63(4): 527-545,
    
    14. http://webbook.nist.gov/chemistry

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700