用户名: 密码: 验证码:
可穿戴型助力机器人技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可穿戴型步行助力机器人技术研究是近年来比较崭新的一个研究领域,属于特种机器人的范畴,其涉及机器人学、人体工程学、控制理论、传感器技术、信息处理技术等。可穿戴型步行助力机器人可帮助人们扩展其下肢部位的运动能力,可在帮助老人、残疾人提高自主生活能力,增加救灾、防暴人员运动能力等方面发挥重要作用。助力机器人包括可穿戴在人体上各部位的机械装置、动力装置和控制装置以及检测人体运动信息的多种传感器,它们组成一个可提高人体相应部位运动功能与负荷能力的辅助机器人系统以及一个类似人类神经系统的局域网,是典型的人机一体化系统。
     在国家自然科学基金的资助下,本文以多关节机械操作臂为基础,结合人体运动意图判断、接触力传感器和假想柔顺控制,研究了可穿戴型步行助力机器人系统。内容包括:系统分析和计算了外骨骼装置的基本特性;成功研制出助力装置的原形样机,包括外骨骼机械装置、人-机系统运动学和动力学分析、接触力传感器;采用基于接触力多传感器信息融合理论,进行人体运动意图的判别;提出了假想柔顺控制方法,通过调节各测力点处的假想质量、假想弹性系数和假想阻尼系数来改变使用者步行时感受到的运动强度。
     全文贯穿了理论分析和技术实现两个基本问题,涉及多个研究领域,主要体现在以下几个方面:
     1.步行助力机器人以不妨碍人的基本行走功能为前提,结合人体工程学、人体解剖学和机械设计技术等,设计出一款单侧具有6自由度的步行助力装置,其中,髋关节拥有3个自由度,分别完成屈/伸、外展/内收和旋内/旋外的运动,实现人在步行运动过程中的直线行走、调节平衡和改变方向的功能,膝关节仅具有完成屈/伸运动的自由度,它与髋关节的屈/伸运动共同完成了人体直线行走运动功能。此外,通过对人体在行走过程中关节活动的能量消耗及机械系统设计的复杂性分析,仅髋关节的屈/伸运动及膝关节的屈/伸运动采用外部驱动模式。步行助力机器人以使用者形体为设计参考对象,如大、小腿长度、腰围和关节活动自由度等。为了避免步行助力机器人与使用者在共同行走过程中出现运动干涉等问题,步行助力机器人各连杆长度可在一定范围内进行调节,金属腰带也依据使用者腰围进行调整,它们组成了一个开放的机械结构系统。通过助力机器人系统的运动学公式及动力学方程,并结合运动仿真软件进行了设计优化,同时,也为外部驱动源的选型提供了参考。
     2.提出了基于多接触力传感器的人体运动意图判别新思路。通过对获取肌电和运动图像等信息手段进行人体运动意图识别方法进行了分析和评判,结合我们现有的研究水平与实际应用环境,提出根据各测力点感受到的人体运动时的多维力导向信息来判断下肢运动模式的方法,通过在人-机间配置检测人体运动检测点,如侧面多维力传感器和脚底反力传感器等,利用现代信号处理技术、数据融合技术,综合判断人体的运动意图。这种方法将有别于现有可穿戴型助力机器人系统获取人体运动意图的方法。
     3.通过理论分析和技术实现,研制出十二自由度和四电机驱动的助力机器人原型样机。通过对国外助力机器人控制方法的详细分析研究后,根据其自身结构特点情况,提出假想柔顺控制方法,它通过调节各测力点的假想质量、假想弹性系数和假想阻尼系数,减小使用者感受到的运动强度,实现对人体运动的助力支持,同时,利用假想柔顺控制方法,把具有几个自由度的机器人的控制问题等效为几个独立的控制问题。
The wearable power assist robot is a new research field in recent years, which belongs to special robot category. Power assist robot represents a high integration of robotics, ergonomics, control engineering, technology of sensor, communication, signal processing and etc. The power assist robot is designed for normal human lower limb power augmentation, and it has its potential applications for elderly people, handicapped, succor, care-worker, soldier and fireman. The power assist system includes the fundamental exoskeleton, actuator, controller and many sensors for obtaining user motion information. The all devices constitutes a robot system to improve ability of human walking and increase load to human body, and it also constitutes a local area network similar to human nervous system. It becomes a humachine system.
    Supported by the National Nature Science Foundation of China and based on multi-joint mechanical operator, this thesis focuses on the research and development of a novel power assist system which is a combination of the human motion intention recognition, contact force sensor, pseudo-compliance control. The main research contents are as follows: analyze and calculation feature of body and exoskeleton; successful power assist prototype development including exoskeleton machine, human-robot kinematics and dynamics, contact force sensor; judgment of human motion intention using multi-sensor data fusion; a control method of pseudo-compliance is proposed, through which we can adjust the coefficient of mass, damp and spring to change user movement intensity during walking.
    The whole thesis has a thorough knowledge of theoretical analysis and the technology realization, and it involves many research fields manifested in following several aspects:
    1. The robot that we proposed is for assisting activities of daily life without affecting the user to walk normally. So, the system must have many DOFs like human, however, it is impossible to include all the DOFs of human legs in consideration of design complexities. Here, our mechanical structure consists of a 12 DOFs mechanism (6 DOFs for each leg) based on ergonomics, anatomy and mechanism design technology. The hip structure has 3 DOFs in total. They perform function of flexion/extension, abduction /adduction and internal rotation/external rotation, realizes the function of straight walking, balance adjustment, and walking direction change respectively. At the knee joint, there is 1 DOF, which perform the flexion /extension. Comparing to other joint motion, the flexion/extension of hip and knee is the most important to normal walking and its energy consumption is also most. So, only the motion of flexion/extension at hip and knee are currently powered. To avoid the motion collision between the WPAL exoskeleton and the user, the designed joint axes and human joint axes must be on an identical axis. So, the length of the designed exoskeleton links can be changed according to the real length of user thigh and lower leg, even for metal waistband. Through analyzing power assist system kinematics and dynamics, and combining simulation software, we can carry on the design optimization; simultaneously, it provides the reference for the motor selection.
    2. A novel thought about the judgment of human motion intention based on multi contact force sensor is proposed. After analyzing the motion recognition method based on image resolution and surface electromyographic (sEMG), we proposed a method using multi-dimensional force guidance information. The two-dimension force sensors are equipped on thigh and lower thigh respectively for each exoskeleton leg, which detect the force caused from the motion difference between WPAL and the user. And they contact directly with normal person leg through bundles. Floor reaction force (FRF) sensors are developed to measure FRF which are generated in front and rear parts of footboard. Using modern technology of signal processing and data fusion, we can finish the judgment of user motion intention. This method is different from existing method used in foreign power assist system.
    3. Through the theoretical analysis and the technical realization, we developed a prototype having 12 DOFs and four motor-driven. After study on the control method of foreign power assist device, we proposed a novel method named pseudo-compliance according to its own unique feature and our research level. We can adjust the coefficient of mass, damp and spring to change power assist supply for user during walking. And, we changed the multi-DOF robot control to equivalent several independent control way.
引文
[1] 张福学,机器人技术及其应用,北京:电子工工业出版社,2000.1.
    [2] 龚振邦,汪勤悫,陈振华,钱晋武,机器人机械设计,北京:电子工业出版社,1995.11.
    [3] M.伍科布拉托维奇著/马培荪译,步行机器人和动力型假肢,北京:科学出版社,1983.7.
    [4] B.J. Makinson, General Electric CO., "Research and Development Prototype for Machine Augmentation of Human Strength and Endurance, Hardiman I Projict", General Electric Report S-71-1056, Schenectady, NY, 1971.
    [5] Adam Zoss, H.Kazerooni, Andrew Chu, On the Mechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX), 2005 IEEE/RSJ International Conference on Intelligent Rotbots and Systems, Page(s): 3132-3139.
    [6] http://www.gizmag..co.uk/go/1604/.
    [7] http://www.21stcentury.co.uk/technology/solotrek xfv.asp.
    [8] Berkley Robotics Laboratory, "Berkeley Exoskeleton (BLEEX)", http://bleex.me.berkeley.edu/bleex.htm.
    [9] Kurt Amundson, Justin Raade, Nathan Harding, H.Kazerooni, Hybrid Hydraulic-Electric Power Unit for Field and Service Robots, 2005IEEE/RSJ International Conference on intelligent Robots and Systems, Page(s): 2053-2058.
    [10] H.Kazerooni, "Exoskeletons for Human Power Augmentation". 2005IEEE/RSJ International Conference on intelligent Robots and Systems, Page(s): 3120-3125.
    [11] Jerry E.Pratt, Benjamin T.Krupp, Christopher J.Morse, The RoboKnee: An Exoskeleton for Enhancing Strength and Endurance During Walking, Proceedings of the 2004 IEEE International Conference on Robotics & Automation, New Orleans, LA, April 2004, Page(s): 2430-2435.
    [12] Yamamoto., Keijiro; Hyodo, Kazuhito; Ishi, Mineo; Matsuo Takashi, T. Development of power assisting suit for assisting nurse labor, JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, v 45, n 3, September, 2002, Page(s): 703-711.
    [13] Keijiro Yamamoto, Mineo Ishi, Hirokazu Noborisaka, Kazuhito Hyodo, Stand Alone Wearable Power Assisting Suit-Sensing and Control Systems-, Proceeding of the 2004 IEEE International Workshop on Robot and Human Interactive Communication Kurashiki, Okayama Japan Setptember 20-22, 2004, Page(s): 661-666.
    [14] Kota Kasaoka, Yoshiyuki Sankai, Predictive Control Estimating Operator's Intention for Stepping-up Motion by Exo-Sckeleton Type Power Assist System HAL, Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, Hawaii, USA, Oct.29-Nov.03, 2001, Page(s): 1578-1583.
    [15] S. Lee, Y. Sankai, "Power Assist Control for Walking Aid with HAL-3 Based on EMG and Impedance Adjustment around Knee Joint", Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, Lausanne, Switzerland, October 2002, pp. 1499-1504.
    [16] Hiroaki Kawamoto, Shigehiro Kanbe, "Power Assist Method for HAL-3 Estimating Operator's Intention Based on Motion Information", Proceed125ing of the 2003 IEEE International Workshop on Robots and Human Interactive Communication, Millbrae, California, USA, Oct. 31-Nov. 2, 2003, pp. 67-72.
    [17] Hiroaki Kawamoto, Suwoong Lee, Shigehiro Kanbe, Yoshihuki Sankai, Power Assist Method for HAL-3 using EMG-based Feedback Controller, IEEE International Conference on System, Man and Cybernetics, 5-8 Oct. 2003, Page(s): 1648-1653.
    [18] Hiroaki KAWAMOTO, Yoshiyuki SANKAI, Power Assist Method Based on Phase Sequence Driven by Interaction between Human and Robot Suit, Proceedings of the 2004 IEEE International Workshop on Robot and Human Interactive Communication, Kurashiki, Okayama Japan, Sep. 20-22, 2004, Page(s): 491-496.
    [19] Tomohiro Hayashi, Hiroaki Kawamoto, Yoshiyuki Sankai, Control Method of Robot Suit HAL working as Operator's Muscle using Biological and Dynamical Information, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Page(s): 3455-3460.
    [20] Takahiko NaKamura, Kazunari Saito, ZhiDong Wang and Kazuhiro Kosuge, Control of Model-based Wearable Anti-Gravity Muscles Support System for Standing up Motion, Proceedings of the 2005IEEE/ASME International Conference on Advanced Intelligent Mechatronics Monterey, California, USA, 24-28 July, 2005, Page(s): 564-569.
    [21] Nelson Costa, Milan Bezdicek, Michael Brown, John O. Gray, Darwin G. Caldwell, Joint Motion Control of . Powered Lower Limb Orthosis for Rehabilitation, International Journal of Automation and Computing, Vol.3, No.3, 2006.7, Page(s): 271-281.
    [22] 李晓明,基于外骨骼技术的机器人远程控制,2004,浙江大学博士论文.
    [23] 黄雨,气动人工肌肉驱动特性实验研究,2003,北京理工大学硕士论文.
    [24] 郑奇,双自由度类人上肢的设计及气动执行器的研究,2004天津大学硕士论文.
    [25] http://www.siat.ac.cn/tech_1.asp.
    [1] 朱世强,王宣银,机器人技术及其应用,杭州:浙江大学出版社,2001.7.
    [2] M.伍科布拉托维奇著/马培荪译,步行机器人和动力型假肢,北京:科学出版社,1983.7.
    [3] 王明艳,两足步行生物的运动形态分析,中国科学技术大学硕士学位论文,2005.
    [4] 徐军,陶开山,人体工程学概论,北京:中国纺织出版社,2002.11.
    [5] 郑秀瑗等,运动生物力学进展,北京:国防工业出版社,1998.4.
    [6] 李勇,蓝宁,杨福生,神经运动控制的建模与仿真,中国生物医学工程学报,1999年(第18卷)第2期,121-129.
    [7] Kandel ER, Schwartz JH, Jessell TM, Principles of neural science (4th edition), New York: McGraw Hill, 2000.
    [8] 王西十,白瑞蒲,S.Turgat Tumer,Nuri Akkas,Ugur Gunel,一个解剖基人体下肢的生物力学模型—第三部分:肌肉效应,力学与实践,2000年(第22卷),44-48.
    [9] 邵象清,人体测量手册, 上海辞书出版社,1985.6.
    [10] 龚振邦,汪勤悫,陈振华,钱晋武,机器人机械设计,北京:电子工业出版社,1995.
    [11] 林锡乾,姚士硕,人体解剖学,上海:华东化工学院出版社,1990.8.
    [12] 孙迪生,王炎,机器人控制技术,北京:机械工业出版社,1997.
    [13] 何发昌,邵远,多功能机器人原理及应用,北京:高等教育出版社,1996.
    [14] 姚春东,液压传动实用技术, 北京:石油工业出版社, 2001.7.
    
    [15] Berkley Robotics Laboratory, "Berkeley Exoskeleton (BLEEX)", http:// bleex.me. berkeley.edu/bleex.htm.
    
    [16] Kurt Amundson, Justin Raade, Nathan Harding, H.Kazerooni, Hybrid Hydraulic-Electric Power Unit for Field and Service Robots, 2005IEEE/RSJ International Conference on intelligent Robots and Systems, Page(s): 2053-2058.
    
    [17] H.Kazerooni, "Exoskeletons for Human Power Augmentation". 2005IEEE/RSJ International Conference on intelligent Robots and Systems, Page(s): 3120-3125.
    
    [18] Adam Zoss, H.Kazerooni, Andrew Chu, "On the Mechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX)". 2005 IEEE/RSJ International Conference on intelligent Robots and Systems, Page(s): 3132-3139.
    
    [19] Yamamoto, Keijiro; Hyodo, Kazuhito; Ishi, Mineo; Matsuo Takashi, T. "Development of power assisting suit for assisting nurse labor", JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, v 45, n 3, September, 2002, Page(s): 703-711.
    [20] Keijiro Yamamoto, Mineo Ishi, Hirokazu Noborisaka, Kazuhito Hyodo, "Stand Alone Wearable Power Assisting Suit-Sensing and Control Systems-", Proceeding of the 2004 IEEE International Workshop on Robot and Human Interactive Communication, Kurashiki, Okayama Japan Setptember 20-22, 2004, Page(s). 661-666.
    [21] Jerry E.Pratt, Benjamin T.Krupp, Christopher J.Morse, The RoboKnee: An Exoskeleton for Enhancing Strength and Endurance During Walking, Proceedings of the 2004 IEEE International Conference on Robotics & Automation, New Orleans, LA, April 2004, Page(s): 2430-2435.
    [22] Kota Kasaoka, Yoshiyuki Sankai, Predictive Control Estimating Operator's Intention for Stepping-up Motion by Exo-Sckeleton Type Power Assist System HAL, Proceeding of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems.Mani, Hawaii, USA, Oct. 29-Nov. 03, 2001, Page(s): 1578-1583.
    [23] S. Lee, Y. Sankai, Power Assist Control for Walking Aid with HAL-3 Based on EMG and Impedance Adjustment around Knee Joint, Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, Lausanne, Switzerland, October 2002, Page(s): 1499-1504.
    [24] Hiroaki Kawamoto, Shigehiro Kanbe, Power Assist Method for HAL-3 Estimating Operator's Intention Based on Motion Information, Proceeding of the 2003 IEEE International Workshop on Robots and Human Interactive Communication, Millbrae, California, USA, Oct. 31-Nov. 2,2003, Page(s); 67-72.
    [25] Hiroaki KAWAMOTO, Yoshiyuki SANKAI, Power Assist Method Based on Phase Sequence Driven by Interaction between Human and Robot Suit, Proceeding of the 2004 IEEE International Workshop on Robot and Human Interactive Communication, Kurashiki, Okayama Japan September 20-22, 2004, Page(s): 491-496.
    [26] Tomohiro Hayashi, Hiroaki Kawamoto, Yoshiyuki Sankai, Control Method of Robot Suit HAL working as Operator's Muscle using Biological and Dynamical Information, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Page(s): 3455-3460.
    [27] Takahiko NaKamura, Kazunari Saito, ZhiDong Wang and Kazuhiro Kosuge, Control of Model-based Wearable Anti-Gravity Muscles Support System for Standing up Motion, Proceedings of the 2005IEEE/ASME International Conference on Advanced Intelligent Mechatronics Monterey, California, USA,24-28 July,2005,Page(s): 564-569.
    [28] (日)大熊繁,土田缝夫,加藤厚生,松井信行,铃木达也,卢伯英译,机器人控制,北京:科学出版社,2002.
    [29] 李鹏,控制电机及应用,北京:中国电力出版社,1998.
    [30] 汤蕴璎,史乃,电机学,北京:机械工业出版社,2001.4.
    [31] (美)丹尼斯·克拉克,迈克尔·欧文斯著,宗光华,张慧慧译,机器人设计与控制,北京:科学出版社, 2004.
    [32] 杨渝钦,控制电机(第2版),北京:机械工业出版社,2001.
    [33] (美)理查德·摩雷,(中)李泽湘等,机器人操作的数学导论,北京:机械工业出版社,1995.
    [34] Lorenzo Sciavicco, Bruno Siciliano, A dynamic solution to the inverse kinematic problem for redundant manipulators, Proceedings of the 1987 IEEE International Conference on Robotics and Automation, Volume 4, Mar. 1987, Page(s): 1081-1087.
    [35] Bao-Liang Lu, Koji Ito, Regularization of inverse kinematics for redundant manipulators using neural network inversions, Proceedings of the 1995 IEEE International Conference on Neural Networks, Volume 5, 27 Nov.-1 Dec. 1995, Page(s):2726-2731.
    [36] Nikhil A.Deshpande, Madan M.Gupta, Inverse kinematic neuro-control of robotic systems, 1997 First International Conference on Knowledge-Based Intelligent Electronic System, 21-23 May 1997, Adelaide, Australia. Page(s): 338-346.
    [37] F.Chapelle, P.Bidaud, A closed form for inverse kinematics approximation of general 6R manipulators using genetic programming, Proceedings of the 2001 IEEE International Conference on Robotics & Automation, Seoul, Korea, May 21-26, 2001, Page(s): 3364-3369.
    [38] Jihong Lee, K.T.Won, Inverse kinematic solution based on decomposed manipulability, Proceedings of the 1999 IEEE International Conference on Robotics & Automation, Detroit, Michigan, May 1999, Page(s): 1514-1519.
    [39] Lorenzo Sciavicco, Bruno Siciliano, A solution algorithm to the inverse kinematic problem for redundant manipulators, IEEE Journal of Robotics and Automation, Vol.4, No.4, August 1988, Page(s): 403-410.
    [40] 王常武,韩佩富,孔令富,黄真,赵立强,6-DOF并联机器人逆运动模型高效算法及其并行处理,计算机工程与设计,Vol.21,No.3,2000.6.
    [41] 孟正大,戴先中,安藤英由树,加藤厚生,基于扩散原理的冗余机器人逆运动学的学习方法,机器人, Vol.23,No.6,2001.11.
    [42] 杭鲁滨,金琼,杨廷力,基于线性变换的一般5R串联机器人逆运动学分析,机械工程学报,Vol.37,No.5, 2001.5.
    [43] 王洪斌, 宋佐时, 王洪瑞, 基于模糊神经网络的机器人逆运动学问题,系统仿真学报,Vol.14,No.7, 2002.7.
    [44] 钟金明,徐刚,张海波,模糊逆运动学控制方法在机器人视觉伺服中的应用,控制与检测,2005年第7期.
    [45] 姜志兵,赵英凯,李方方,神经网络在机器人逆运动学中的应用,机械与电子,2005年第11期.
    [46] 熊有伦,机器人学,北京:机械工业出版社,1993.10.
    [47] 蔡自兴,机器人学,北京:清华大学出版社,2000.9.
    [48] 郭巧,现代机器人学:仿生系统的运动感知与控制,北京:北京理工大学出版社,1999.7.
    [49] 冯景华,吴南星,余冬玲,机械系统动态仿真技术及ADAMS的理论基础研究,机械设计与制造,2004(2): 17-19
    [50] 郑建荣,ADAMS—虚拟样机技术入门与提高,北京:机械工业出版社,2001.11.
    [51] 吴宝元,余永,许德章,吴仲城,陈峰,可穿戴式下肢助力机器人运动学分析与仿真,机械科学与技术, Vol.26.No.2,2007.
    [1] 熊有伦,机器人学,北京:机械工业出版社,1993.10.
    [2] 蔡自兴,机器人学,北京:清华大学出版社,2000.9.
    [3] 郑秀瑗等,运动生物力学进展,北京:国防工业出版社,1998.4.
    [4] 郑秀瑗,现代运动生物力学,北京:国防工业出版社,2002,10.
    [5] 殷际英,何广平,关节型机器人,北京:化学工业出版社,2003.7.
    [6] 龚振邦,汪鄞悫,陈振华,钱晋武,机器人机械设计,北京:电子工业出版社,1995.
    [7] 张劲夫,秦卫阳,高等动力学,北京:科学出版社,2004.
    [8] 雷建和,基于多源信息融合的人体运动分析与建模研究,中国科学技术大学博士学位论文,2006.
    [9] 李晓明,基于外骨骼技术的机器人远程控制,浙江大学博士学位论文,2004.
    [10] 吴立勤,两足步行机器人步行步态研究及仿真,上海大学硕士学位论文,2002.
    [11] 王明艳,两足步行生物的运动形态分析,中国科学技术大学硕士学位论文,2005.
    [12] Osamu Mori, Toru Omata, Coupling of Two 2-Link Robots with a Passive Joint for Reconfigurable Planar Parallel Robot, Proceedings of the 2002 IEEE International Conference on Robotics & Automation Washington, DC, May 2002, Page(s): 4120-4125.
    [13] Feng Chen, Yong Yu, Yunjian Ge, "Dynamic Model and Motion Control Analysis of the Power Assist Intelligence Leg", Proceedings of 6th World Congress on Control and Automation, June21-23, 2006, Dalian, China. Page(s): 6436-6440.
    [14] Feng Chen, Yong Yu, Yunjian Ge, Baoyuan Wu, Jian Sun, "Basic Research on Power Assist Walking Leg Using Force Velocity Control Strategies", Proceedings of the 2006 IEEE International Conference on Information Acquisition, August20-23, 2006, Weihai, China. Page(s): 701-706.
    [15] Feng Chen, Yong Yu, Yunjian Ge, Jian Sun, Baoyuan Wu, "A PAWL for Enhancing Strength and Endurance during Walking Using Interaction Force and Dynamical Information", Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics, December 17-20, 2006, Kunming, China. Page(s): 654-659.
    [1] 路甬祥,陈鹰,人体一体化系统与技术——21世纪机械科学的重要发展方向,机械工程学报,1994年10月第30卷,第5期,1-7.
    [2] 路甬祥,陈鹰,人机一体化系统与技术立论,机械工程学报,1994年12月第30卷,第6期,1-8.
    [3] 路甬祥,陈鹰,人机一体化系统科学体系和关键技术,机械工程学报,1995年2月第31卷,第1期,1-7.
    [4] 李卫平,计时鸣,王烈鑫,熊四昌,席静珠,基于人机一体化思想实现模式分类器的智能化,浙江工业大学学报,1998年3月第26卷第1期,28-33.
    [5] 王智,石玉祥,王险峰,“人主机辅”型人机一体化系统人行为形成主因子的确定,机电一体化,2001年第2期.15-18.
    [6] 杨灿军,陈鹰,路甬祥,人机一体化智能系统理论及应用研究探索,机械工程学报,2000年6月第36卷第6期.42-47.
    [7] 杨灿军,陈鹰,人机一体化智能系统综合感知体系建模方法研究,控制理论与应,2000年4月第17卷第2期,220-224。
    [8] 卢得明,运动生物力学测量方法.北京:北京体育大学出版社,2001.
    [9] 袁红艳,基于数字铅球的运动员训练指导系统研究,合肥:中科院智能所,2004.
    [10] 郑秀瑗,现代运动生物力学,北京:国防工业出版社,2002,10.
    [11] 王健,金小刚,表面肌电信号分析及其应用研究,中国体育科技,2000年第36卷第8期,26-28.
    [12] 杜春梅,田丰,崔建国,用小波和神经网络相结合的方法识别人体表面肌电信号,沈阳航空工业学院学报,2005年(第22卷)第3期,28-29.
    [13] 雷建和,基于多源信息融合的人体运动分析,中国科学技术大学,博士学位论文,2006
    [14] 龙胜春,翁剑枫,肌电信号的检测与分析方法,国外医学生物医学工程分册,1998年(第21卷)第2期,78-83.
    [15] 何庆华,彭承琳,吴宝明,王禾,有源电极用于表面肌电信号的检测,生物医学工程学杂志,2003,20(3),488-490.
    [16] Osamu FUKUDA, Toshio TSUJI, Hiroki SHIGEYOSHI, Makoto KANEKO, An EMG Controlled Human Supporting Robot Using Neural Network, Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and systems, 17-21 Oct. 1999, Page(s):1586-1591.
    [17] Y.Yazama, Y.Mitsukura, M.Fukumi, N. Akamatsu, Analysis and Recognition of Wrist Motions by Using Multidimensional Directed Information and EMG signal, Fuzzy Information, Processing NAFIPS'04, 27-30 June 2004, Page(s):867-870.
    [18] O.Bida, D.Rancourt, E.A.Clancy, Electromyogram (EMG) Amplitude Estimation and Joint Torque Model Performance, Bioengineering Conference, 2005. Proceedings of the IEEE 31st Annual Northeast, 2-3 April 2005, Page(s):229-230.
    [19] Changfeng Tai, August M. Booth, Charles J. Robinson, EMG ACTIVITY AND KNEE JOINT TORQUE EVOKED BY MICROSTIMULATION OF THE CAT L6 SPINAL CORD, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol.20, No. 5, 1998, Page(s):2570-2573.
    [20] Bouchard S., Rancourt D., Clancy E.A., EMG-TO-TORQUE DYNAMIC RELATIONSHIP FOR ELBOW CONSTANT ANGLE CONTRACTIONS, Proceedings of the First Joint BMES/EMBS Conference Serving Humanity, Advancing Technology, Oct. 13-16,1999, Page(s):573.
    [21] Koji ITO, Toshio TSUJI, Atsuo KATO, Masami ITO, Limb-Function Discrimination using EMG Signals by Neural Network and Application to Prosthetic Forearm Control, 1991 IEEE International Jiont Conference on Neural Networks, 18-21 Nov. 1991, Page(s): 1214-1219.
    [22] Kazuo Kiguchi (Member, IEEE), Takazu Tanaka, Toshio Fukuda (Fellow, IEEE), Neuro-Fuzzy Control of a Robotic Exoskeleton with EMG Signals, IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL.12, NO. 4, AUGUST 2004, Page(s):481-490.
    [23] Kyuwan Choi, Hideaki Hirose, Toshio, Iijima, Yasuharu Koike, Prediction of four degrees of freedom arm movement using EMG signal, Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, September 1-4, 2005, Page(s):5820-5823.
    [24] Inhyuk Moon, Myungjoon Lee, Junuk Chu, Museong Mun, Wearable EMG-based HCI for Electric-Powered Wheelchair Users with Motor Disabilities, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 2005, Page(s):2649-2654.
    [25] 王人成,黄昌华,常字,杨年峰,表面肌电信号的分形分析,中国医疗器械,1999年(第23卷) 第3期,125-127.
    [26] 杨基海,周平,娄智,刘攻,肌电信号分解及其研究现状与展望,生物学杂志,1999年(第16卷)第2期,8-9.
    [27] 王人成,杨巍,黄昌华,李波,肌电控制及肌电信号的分析处理,中国康复医学杂志,1996年第6期,261-263.
    [28] 姚良标,楼蔚松,罗志增,肌电信号处理和肌电控制的研究,杭州电子工业学院学报,2004年(第24卷)第6期,82-84.
    [29] 李芳,王人成,肌电信号及其运动模式辨识方法的发展趋势,中国康复医学杂志,2005年(第20卷)第7期,492-493.
    [30] 严凯,邹俊忠,王蓓,朱波,王行愚,基于表面肌电信号的肘关节运动角度的提取,上海生物医学工程,2005年(第26卷)第3期,129-134.
    [31] 李醒飞,杨晶晶,史颖,张国雄,卢志扬,基于肌电信号的手臂运动状态的辨识,中国生物医学工程学报,2005年(第24卷)第4期,416-420.
    [32] 陆光华,张立群,单佩钧,截瘫病人完成下肢运动的肌电信号分辨,西安电子科技大学学报, 1994年(第21卷)第4期,434-438.
    [33] 张瑞红,王入成,金德闻,张济川,人体下肢表面肌电信号的检测与分析,清华大学学报(自然科学版),2000年(第40卷)第8期,73-76.
    [34] Osamu Fukuda, Toshio Tsuji (Member), Makoto Kaneko (Senior Member), Akira Otsuka, A human-assisting manipulator teleoperated by EMG signals and arm motions, IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 19, NO.2, APRIL 2003, 210-222.
    [35] Y Su, A Wolczowski, M H Fisher, G D Bell, D Burn, R Gao, Towards an EMG Controlled Prosthetic Hand Using a 3D Electromagnetic Positioning System, IMTC 2005-Instrumentation and Measurement Technology Conference, Ottawa, Canada, 17-19 May 2005, 261-266.
    [36] Ehab A. Goldstein, James T. Heaton, James B. Kobler, Garrett B. Stanley, Robert E. Hillman, Design and Implementation of a Hands-Free Electrolarynx Device Controlled by Neck Strap Muscle Electromyographic Activity, IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL.51, NO.2, Feb. 2004, Page(s):325-332.
    [37] Osamu FUKUDA, Toshio TSUJI, A kira OTSUKA, Makoto KANEKO, A Human Supporting Manipulator Using Neural Network and Its Clinical Application for Forearm Amputation, 1999 Third International Conference on Knowledge-Based Intelligent Information Engineering Systems, 31st Aug.-1st Sept. 1999, Adelaide, Australia, Page(s):128-134.
    [38] 董震,顾玉东,成效敏,张凯莉,朱艺,电子假肢肌电信号源的改进,中华手外科杂志,2001年(第17卷)第2期,86-87.
    [39] 雷敏,王志中,肌电假肢控制中的表面肌电信号的研究进展与展望,中国医疗器械杂志,2001年(第25卷)第3期,156-160.
    [40] 才德容,蒋如金,张耀,上臂肌电假肢驱动电路,北京生物医学工程,1995年(第14卷)第3期,153-156.
    [41] 邓琛,张琴舜,翁羿浩,现代控制理论在假肢技术中的应用,上海交通大学学报,1996年(第30卷)第8期,96-99.
    [42] Inhyuk Moon, Myoungjoon Lee, Museong Mun, A Novel EMG-based Human-Computer Interface for Persons with Disability, Proceedings of the IEEE International Conference on Mechatronics, ICM'02, 3-5 June 2004, Page(s): 519-524.
    [43] H Nazeran, S Jaberzadeh, An Integrated Computer-based System to Study Neuromuscular Disorders of the Upper Limb, Proceedings of the Second Joint EMBS/BMES Conference Houston, TX, USA, Oct. 23-26, 2002, Page(s): 1730-1731.
    [44] Kentaro Nagata, Kazushige Magatani, Development of the assist system.to operate a computer for the disabled, Proceedings of the 25th Annual International Conference of the IEEE EMBS Cancun, Mexico, Sep. 17-21, 2003, Page(s): 1666-1669.
    [45] K.Nagata, M.Yamada, K,Magatani, Development of the assist system to operate a computer for the disabled using multichannel surface EMG, Proceedings of the 26th Annual International Conference of the IEEE EMBS San Francisco, CA, USA, Sep. 1-5, 2004, Page(s): 4952-4955.
    [46] 陆廷仁,张少军,对截肢患者肌电假手的功能训练和评定的临床研究,中华物理医学与康复杂志,2003年(第25卷)第3期,169-171.
    [47] 王耀兵,季林红,黄靖远,康复训练过程中上肢运动肌电信号特征的对比分析,中国临床康复,2004年(第8卷)第23期,4721-4723.
    [48] 牟洪雨,季林红,王人成,杨义勇,金德闻,张济川,人体上肢表面肌电反馈康复训练系统的研制,中国康复医学杂志,2003年(第18卷)第5期,291-292.
    [49] Kota Kasaoka, Yoshiyuki Sankai, Predictive Control Estimating Operator's Intention for Stepping-up Motion by Exo-Sckeleton Type Power Assist System HAL, Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui,Hawaii,USA, Oct.29-Nov.03,2001, Page(s): 1578-1583.
    [50] Hiroaki Kawamoto, Suwoong Lee, Shigehiro Kanbe, Yoshihuki Sankai, Power Assist Method for HAL-3 using EMG-based Feedback Controller, IEEE International Conference on Systems, Man and Cybernetics, 5-8 Oct. 2003, Page(s): 1648-1653.
    [51] Hiroaki Kawamoto, Shigehiro Kanbe, "Power Assist Method for HAL-3 Estimating Operator's Intention Based on Motion Information", Proceeding of the 2003 IEEE International Workshop on Robots and Human Interactive Communication, Miilbrae, California, USA, Oct. 31-Nov. 2,2003, PP.67-72.
    [52] 彭军,传感器与检测技术,西安:西安电子科技大学出版社,2003.11.
    [53] 凌振宝,传感器原理及检测技术,长春:吉林大学出版社,2003.9.
    [54] 孙迪生,王炎,机器人控制技术,北京:机械工业出版社,1997.
    [55] 罗志增,蒋静坪,机器人感觉与多信息融合,北京:机械工业出版社,2002.6.
    [1] Visual C++串口通信技术与工程实践(第二版),李现勇,人民邮电出版社,北京:2004.7.
    [2] 机器人学,熊有伦,北京:机械工业出版社,1992.
    [3] 建模与仿真,王红卫,北京:科学出版社,2002.
    [4] 数学模型,陈义华,重庆:重庆大学出版社,1995.1.
    [5] 数学模型建模分析,蔡常丰,北京:科学出版社,1995,12.
    [6] 郭齐胜,系统建模原理与方法,长沙:国防科技大学出版社,2003.1.
    [7] Feng Chen, Yong Yu, Yunjian Ge, Baoyuan Wu, Jian Sun, "Basic Research on Power Assist Walking Leg Using Force Velocity Control Strategies", Proceedings of the 2006 IEEE International Conference on Information Acquisition, August20-23, 2006, Weihai, China. Page(s): 701-706.
    [8] 吴威,隋爱娜,具有位置/力混合控制的虚拟装配模型,北京航空大学学报,Vol.27,No.4,2001 Page(s):377-380.
    [9] Jaydeep Roy, Louis L. Whitcomb (Member, IEEE), Adaptive Force Control of Position/Velocity Controlled Robots: Theory and Experiment, IEEE TRANSACTION ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 2, APRIL 2002, Page(s): 121-137.
    [10] Bogdan, S., Zovacic, Z. FUZZY RULE-BASED ADAPTIVE FORCE OF A SINGLE DOF MECHANISMS [A], Proceedings of the 1993 IEEE International Symposium, 25-27 Aug, 1993 Page(s):469-474.
    [11] Richard Volpe, Pradeep Khosla(Senior Member, IEEE), A Theoretical and Experimental Investigation of Explicit Force Control Strategies for Manipulators, IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. 38, NO. 11, NOVEMBER 1993, Page(s): 1634-1650.
    [12] Feng Chen, Yong Yu, Yunjian Ge, Jian Sun, Baoyuan Wu, "A PAWL for Enhancing Strength and Endurance during Walking Using Interaction Force and Dynamical Information", Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics, December 17-20, 2006, Kunming, China. Page(s): 654-659.
    [13] 郑秀瑗等,运动生物力学进展,北京:国防工业出版社,1998.4.
    [14] 单大卯,人体(下肢)肌肉功能模型简介,山东体育学院学报,2005年6月第21卷第3期,65-70.
    [15] 单大卯,魏文仪,人体下肢肌肉功能模型参数研究简介,上海体育学院学报,2004年8月第28卷第4期,63-67.
    [16] 王人成,杨年峰,朱长虹,黄昌华,金德闻,人体下肢摆动相冗余肌力分析,清华大学学报(自然科学版),1999年第39卷第11期,104-106.
    [17] H.Kazerooni, "Exoskcictons for Human Power Augmentation". 2005IEEE/RSd International Conference on intelligent Robots and Systems, Page(s): 3120-3125.
    [18] Nelson Costa, Milan Bezdicek, Michael Brown, John O. Gray, Darwin G. Caldwell, Joint Motion Control of a Powered Lower Limb Orthosis for Rehabilitation, International Journal of Automation and Computing, Vol.3, No.3, 2006.7, Page(s): 271-281.
    [19] H. Kazerooni, Jean-Louis Racine, Lihua Huang, and Ryan Stcger, On the Control of the Berkeley Lower Extremity Exoskeleton (BLEEX), Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 2005, Page(s): 4353-4360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700