用户名: 密码: 验证码:
功能化纳米纤维素的设计、构建及其在药物缓控释中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米纤维素(Cellulose nanocrystals, CNCs)具有生物活性、生物相容性、生物可降解性和低毒性等优异性能,是一种理想的新型药物载体。针对目前纳米纤维素制备条件繁杂、环境不友好、结晶度低,及其功能化修饰步骤多和收率低等问题,本论文对功能化纳米纤维素的设计、构建及其在药物缓控释中的应用进行了研究。采用绿色环保的离子交换树脂催化水解法制备了纳米纤维素;研究利用机械力化学作用的机械力、热力和化学力的协同效应作用下,一方面,基于“一锅法反应”原理,在无有机溶剂条件下,不经中间体的分离,开发定向合成马来酸酐酯化纳米纤维素(MA-CNCs)的新路线,为高效、绿色功能化修饰纳米纤维素提供了新思路;另一方面基于Fischer酯化反应原理,控制价键形成的化学选择性,使纤维素降解与酯化反应同步进行,为研制纤维素功能材料提供了科学基础。在此基础上,进一步设计研发了基于功能化纳米纤维素的药物载体,分析了其作为结肠靶向给药和口腔黏附缓释膜类药物载体的可行性。论文具体开展的主要结论及创新点如下:
     1.采用离子交换树脂催化水解法制得尺寸较均一的棒状纳米纤维素,这种方法操作方便、过程绿色低碳环保,且CNCs结晶度高(84.26%)。在超声波辅助作用下,基于Fischer酯化反应原理,使纤维素水解与酯化反应同步进行,制得乙酸酯化纳米纤维素(Esterified cellulose nanocrystals, E-CNCs)。研究发现超声波处理对纤维素的降解和酯化反应起着重要作用,XRD和NMR结果表明在实验条件下,酯化反应主要发生于无定形区,而对纤维素晶区结构破坏较小,E-CNCs取代度为0.47时,结晶度仍能达到80.16%。
     2.基于“一锅法”(one-pot)反应机理,在无有机溶剂下,使纤维素在机械力、热力与化学力的协同作用下,不经中间体的分离,直接获得马来酸酐酯化修饰纳米纤维素(Maleic anhydride functionalized cellulose nanocrystals, MA-CNCs)。通过改变球磨时间、超声波温度和超声时间研究了反应体系中球磨和超声处理所引起的机械力化学效应对产物得率和取代度的影响,阐明了其中的内在机理。反应过程中无有机溶剂使用、反应条件温和、MA-CNCs得率高和结晶度高等结果表明,将这两种机械力化学技术联合使用,可以高效、绿色地实现纤维素的纳米化与功能化修饰。通过对CNCs、E-CNCs和MA-CNCs的流变行为进行研究,发现这三者均为假塑性流体,并且在较高浓度、温度,以及强酸、强碱条件下分散系黏度较大。
     3.为了将纳米纤维素用于靶向药物载体,且具有荧光探测性,论文设计与研发了L-亮氨酸修饰接枝纳米纤维素(A-CNCs)的方法,通过将其与荧光素通过共价结合研制了荧光标记物(F-A-CNCs),研究了荧光素修饰接枝纳米纤维素的方法。采用傅里叶变换红外光谱(FTIR)、核磁共振波谱仪(NMR)、X射线光电子能谱仪(XPS)、荧光分光光度计和共聚焦激光扫描显微镜(CLSM)等表征技术验证了氨基酸和荧光素在CNCs表面的成功修饰接枝,且具有较好的光响应特性,同时研究探讨了氨基酸和荧光素在CNCs表面修饰接枝的机理。
     4.基于纳米纤维素优异的生物理化特性,以MA-CNCs为载体,通过酯化反应引入氨基酸间隔臂,再与妥舒沙星(TFLX)偶联得到TFLX-A-MA-CNCs药物轭合物。为判断药物轭合物的成功构建以及观察靶向释药过程,进一步设计合成了具有荧光性的F-TFLX-A-MA-CNCs前药。对TFLX-A-MA-CNCs药物轭合物在模拟胃液、小肠液和结肠液中的释药行为,以及荧光标记前药在这三种介质中的荧光变化机制进行分析与研究。研究表明MA-CNCs载体对药物具有良好的包载性,且可实现结肠靶向释药。
     5.采用天然树脂紫胶作为背衬层,以不同配比的E-CNCs、紫胶和PEG复合膜作为药物载体,研制备了基于E-CNCs载体的口腔黏附缓释膜。研发了纳米纤维素与天然树脂复合的方法。研究结果表明E-CNCs作为口腔黏附膜载体,可以较好地包覆药物,同时在口腔粘膜中具有良好的黏附性,缓释效果明显,作为缓释药物载体材料时具有明显的优势。
As an ideal drug carrier, cellulose nanocrystals (CNCs) are interesting nanoscalebiomacromolecular building blocks due to their biological activity, biocompatibility,biodegradability and low toxicity. Much work has been considered as an ideal drug carriers.An extensive number of works have been devoted to isolation and modification of cellulosenanocrystals, but these methods have drawbacks such as harsh conditions,environmentally-unfriendly, low crystallinity, multiple reaction steps and low yield. Toovercome these boundaries, the design and construction of functionalized cellulosenanocrystals and their applications in controlled drug release were studied in this dissertation.The cellulose nanocrystals were manufactured by exchange resin-catalyzed hydrolysis in anenvironmentally-friendly way. To utilize the mechanical, chemical and thermal effects ofmechanochemistry, we developed two approaches to manufacture functionalized CNCs. Asimple and environmentally benign approach was developed for manufacturing maleicanhydride functionalized cellulose nanocrystals (MA-CNCs) via one-pot tandem reactionsunder solvent-free conditions. On the other hand, by utilizing of the mechanism of Fischeresterification, the acetic acid esterified cellulose nanocrystals (E-CNCs) were manufactured insynchronous reaction in which the degradation and esterification of cellulose took placealmost simultaneously. This work will provide a new route to design functionalized CNCs. Inaddition, the functionalized CNCs drug carriers were designed and their feasibility on colonicdrug delivery and mucoadhesive buccal films drug delivery systems were evaluated. The mainachievements and innovative points obtained in this dissertation are as follows.
     1. Exchange resin-catalyzed hydrolysis of cellulose can be an excellent method formanufacturing of cellulose nanocrystals (CNCs) in a simple and environmentally-friendlyway. The regular short rod-like CNCs with a high crystallinity of84.26%was obtained byexchange resin hydrolysis. The esterified cellulose nanocrystals (E-CNCs) were prepared withthe aid of ultrasonication in synchronous reaction, in which the degradation of cellulose pulpand esterification took place simultaneously. The results show ultrasonication treatment iseffective in the degradation of cellulose amorphous regions and esterification of hydroxylgroups. As the crystalline structures of E-CNCs by XRD and NMR revealed the degree ofsubstitute (DS) reaches0.47and E-CNCs still have high crystallinity of80.16%, indicatingthe maintenance of crystalline region of cellulose.
     2. We disclose a simple and versatile method to manufacture maleated cellulose nanocrystals (MA-CNCs) by conjunction of ball milling and ultrasonication in tandem mode,in which the nanocrystallization and maleation of cellulose take place simultaneously undersolvent-free conditions. In order to investigate the mechanochemical effects induced by ballmilling and ultrasonication on the yields and DS, some factors, such as the ball-milling time,ultrasonication temperature and ultrasonication time, were taken into consideration. The highyield and crystallinity, solvent-free conditions, as well as relative mild conditions make thisprocess a valuable and environmentally friendly alternative to the currently available methodsfor the preparation of functionalized cellulose nanocrystals in industry. The rheologicalbehaviors of CNCs, E-CNCs and MA-CNCs dispersions were tested. The results show that alldispersions are pseudoplastic fluid. The viscosity can be influenced by the concentration,temperature, pH values and the salt concentration.
     3. For the potential practical applications as drug delivery carriers for the fluorescentdetection of the drug release process, the amino modified cellulose nanocrystals (A-CNCs)and fluorescent labled nanoparticles (F-A-CNCs) were designed and constructed. Thesuccessful modifications of CNCs and photo responsive of F-A-CNCs were detected by FTIR,NMR, XPS, fluorescence spectrophotometer and CLSM. The functional mechanism of aminoand fluorescent modification of CNCs was explored.
     4. With exquisite biological physical and chemical properties of CNCs, a novel prodrugwas prepared by the covalent attachment of the tosufloxacin tosylate (TFLX) onto the surfaceof MA-CNCs with L-leucine as a spacer. The fluorescent labeled prodrug(F-TFLX-A-MA-CNCs) was designed for monitoring the process of drug release. The releasebehaviors of TFLX-A-MA-CNCs and F-TFLX-A-MA-CNCs in simulated gastric fluid (SGF),simulated intestinal fluid (SIF) and simulated colonic fluid (SCF) were investigated. Therelationship between the accumulative drug release and the fluorescence responsive has beenevaluated. The results show that the drug was efficiently entrapped by MA-CNCs carrier andpresents excellent behavior for colon specificity and may be considered as a potential materialfor a colon-specific drug delivery system.
     5. The new mucoadhesive films for topical administration in the oral cavity have beendeveloped, using a natural resin shellac as backing layer for preventing liquid permeation. TheE-CNCs, PEG and shellac composites were used as the drug carrier. The films were evaluated for their weight, thickness, swelling, drug content uniformity, mechanical property, vitro drugrelease and mucoadhesive properties. The films exhibit good swelling, mucoadhesiveproperties and promising controlled drug release, thus it can be selected to develop the buccalfilm for effective therapeutic uses. E-CNCs may be considered as a potential candidate for themucoadhesive film drug carrier.
引文
[1] Lin N, Huang J, Dufresne A. Preparation, properties and applications of polysaccharide nanocrystals inadvanced functional nanomaterials: a review[J]. Nanoscale,2012,4,3274-3294.
    [2] Siró I, Plackett D. Microfibrillated cellulose and new nanocomposite materials: a review[J]. Cellulose,2010,17,459-494.
    [3] Siqueira G, Bras J, Dufresne A. Cellulosic bionanocomposites: A review of preparation, properties andapplications[J]. Polymers,2010,2,728-765.
    [4] La Mantia F P, Morreale M. Green composites: a brief review[J]. Composites Part A: Applied Scienceand Manufacturing,2011,42,579-588.
    [5] Siqueira G, Tapin-Lingua S, Bras J, et al. Mechanical properties of natural rubber nanocompositesreinforced with cellulosic nanoparticles obtained from combined mechanical shearing, and enzymaticand acid hydrolysis of sisal fibers[J]. Cellulose,2011,18,57-65.
    [6] Bras J, Hassan M L, Bruzesse C, et al. Mechanical, barrier, and biodegradability properties of bagassecellulose whiskers reinforced natural rubber nanocomposites[J]. Industrial Crops and Products,2010,32,627-633.
    [7] Zoppe J O, Peresin M S, Habibi Y, et al. Reinforcing poly(ε-caprolactone) nanofibers with cellulosenanocrystals[J]. ACS Applied Materials&Interfaces,2009,1,1996-2004.
    [8] Peresin M S, Habibi Y, Zoppe J O, et al. Nanofiber composites of polyvinyl alcohol and cellulosenanocrystals: manufacture and characterization[J]. Biomacromolecules,2010,11,674-681.
    [9] Paralikara S A, Simonsen J, Lombardi J. Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes[J].Journal of Membrane Science,320,248-258.
    [10] Ljungberg N, Cavaillé J Y, Heux L. Nanocomposites of isotactic polypropylene reinforced withrod-like cellulose whiskers[J]. Polymer,47,6285-6292.
    [11] Wang Y, Tian H, Zhang L. Role of starch nanocrystals and cellulose whiskers in synergisticreinforcement of waterborne polyurethane[J]. Carbohydrate Polymers,2010,80,665-671.
    [12] Pei A, Malho J M, Ruokolainen J, et al. Strong nanocomposite reinforcement effects in polyurethaneelastomer with low volume fraction of cellulose nanocrystals[J]. Macromolecules,2011,44,4422-4427.
    [13] Li Y, Ragauskas A J.“Cellulose nano whiskers as a reinforcing filler in polyurethanes”. In: Advancesin Diverse Industrial Applications of Nanocomposites; Reddy B, Eds, InTech,2011,17-36.
    [14] Tang L, Weder C. Cellulose whisker/epoxy resin nanocomposites[J]. ACS Applied Materials&Interfaces,2010,2,1073-1080.
    [15] Kaushik A, Singh M, Verma G. Green nanocomposites based on thermoplastic starch and steamexploded cellulose nanofibrils from wheat straw[J]. Carbohydrate Polymers,2010,82,337-345.
    [16] Chen Y, Liu C, Chang P R, et al. Bionanocomposites based on pea starch and cellulose nanowhiskershydrolyzed from pea hull fibre: effect of hydrolysis time[J]. Carbohydrate Polymers,2009,76,607-615.
    [17] Wang Y, Cao X, Zhang L. Effects of Cellulose whiskers on properties of soy protein thermoplastics[J].Macromolecular Bioscience,2006,6,524-531.
    [18] Rodionova G, Lenes M, Eriksen, et al. Surface chemical modification of microfibrillated cellulose:improvement of barrier properties for packaging application[J]. Cellulose,2011,18:127-134.
    [19] Saito T, Hirota M, Tamura N, et al. Individualization of nano-sized plant cellulose fibrils by directsurface carboxylation using TEMPO catalyst under neutral conditions[J]. Biomacromolecules,2009,10:1992-1996.
    [20] Xhanari K, Syverud K, Chinga-Carrasco G, et al. Reduction of water wettability of nanofibrillatedcellulose by adsorption of cationic surfactants[J]. Cellulose,2011,18(2):257-270.
    [21] Littunen K, Hippi U, Johansson L, et al. Free radical graft copolymerization of nanofibrillatedcellulose with acrylic monomers[J]. Carbohydrate Polymers,2011,84:1039-1047.
    [22] Yuan H, Nishiyama Y, Wada M, et al. Surface acylation of cellulose whiskers by drying aqueousemulsion[J]. Biomacromolecules,2006,7(3):696-700.
    [23] Roy D, Semsarilar M, Guthrie J T, et al. Cellulose modification by polymer grafting: a review[J].Chemical Society Reviews,2009,38,2046-2064.
    [24] Siqueira G, Bras J, Dufresne A. Cellulosic bionanocomposites: a review of preparation, properties andapplications[J]. Polymers,2010,2,728-765.
    [25] Peng B L, Dhar N, Liu H L, et al. Chemistry and applications of nanocrystalline cellulose and itsderivatives: a nanotechnology perspective[J]. The Canadian Journal of Chemical Engineering,2011,89,1191-1206.
    [26] Heinze T, Liebert T, Koschella A. Esterification of polysaccharides[M]. Springer,2006.
    [27] Habibi Y, Lucia L A, Rojas O J. Cellulose nanocrystals: chemistry, self-assembly, and application[J].Chemical Reviews,2010,110,3479-3500.
    [28] Goussé C, Chanzy H, Excoffier G, et al. Stable suspension of partially silylated cellulose whiskersdispersed in organic solvents[J]. Polymer,2002,43,2645-2651.
    [29] Habibi Y, Chanzy H, Vignon M. TEMPO-mediated surface oxidation of cellulose whiskers,2006,13,679-687.
    [30] Morandi G, Heath L, Thielemans W. Cellulose nanocrystals grafted with polystyrene chains throughsurface-initiated atom transfer radical polymerization(SI-ATRP)[J]. Langmuir,2009,25,8280-8286.
    [31] Heux L, Chauve G, Bonini C. Nonflocculating and chiral-nematic self-ordering of cellulosemicrocrystals suspensions in nonpolar solvents[J]. Langmuir,2000,16,8210-8212.
    [32] Bonini C, Heux L, Cavaillé J, Lindner P, et al. Rodlike cellulose whiskers coated with surfactant: asmall-angle neutron scattering characterization[J]. Langmuir,2002,18,3311-3314.
    [33] Elazzouzi-Hafraoui S, Putaux J, Heux L. Self-assembling and chiral nematic properties oforganophilic cellulose nanocrystals[J]. The Journal of Physical Chemistry,2009,113,11069-11075.
    [34] Ljungberg N, Cavaillé J, Heux L. Nanocomposites of isotactic polypropylene reinforced with rod-likecellulose whiskers[J]. Polymer,2006,47,6285-6292.
    [35] Kim J, Montero G, Habibi Y, et al. Dispersion of cellulose crystallites by nonionic surfactants in ahydrophobic polymer matrix[J]. Polymer Engineering and Science,2009,49,2044-2061.
    [36] Rojas O J, Montero G A, Habibi Y. Electrospun nanocomposites from polystyrene loaded withcellulose nanowhiskers[J]. Journal of Applied Polymer Science,2009,113,927-935.
    [37] Bondeson D, Oksman K. Dispersion and characteristics of surfactant modified cellulose whiskersnanocomposites[J]. Composite Interfaces,2007,14,617-630.
    [38] Zhou Q, Brumer H, Teeri T T. Self-organization of cellulose nanocrystals adsorbed with xyloglucanoligosaccharide-poly(ethylene glycol)-polystyrene triblock copolymer[J]. Macromolecules,2009,42,5430-5432.
    [39] de Nooy A E J, Besemer A C, van Bekkum H. Highly selective tempo mediated oxidation of primaryalcohol groups in polysaccharides[J]. Recueil des Travaux Chimiques des Pays-Bas,1994,113,165-166.
    [40] Okita Y, Saito T, Isogai A. Entire surface oxidation of various cellulose microfibrils byTEMPO-Mediated oxidation[J]. Biomacromolecules,2010,11,1696-1700.
    [41] Habibi Y, Chanzy H, Vignon M R. TEMPO-mediated surface oxidation of cellulose whiskers[J].Cellulose,2006,13,679-687.
    [42]耿存珍,夏延致,全凤玉.纤维素的选择性氧化及发展趋势[J].功能材料,2012,15,1976-1980.
    [43] Araki J, Wada M, Kuga S. Steric Stabilization of a Cellulose Microcrystal Suspension byPoly(ethylene glycol) Grafting[J]. Langmuir,2001,17,21-27.
    [44] Saito T, Kimura S, Nishiyama Y, et al. Cellulose nanofibers prepared by TEMPO-mediated oxidationof native cellulose[J]. Biomacromolecules,2007,8,2485-2491.
    [45] Ishii D, Saito T, Isogai A. Viscoelastic evaluation of average length of cellulose nanofibers preparedby TEMPO-Mediated oxidation[J]. Biomacromolecules,2011,12,548-550.
    [46] Ishii D, Saito T, Isogai A. Correction to viscoelastic evaluation of average length of cellulosenanofibers pepared by TEMPO-Mediated oxidation[J]. Biomacromolecules,2012,13,1706.
    [47] Fukuzumi H, Saito T, Iwata T, et al. Transparent and high gas barrier films of cellulose nanofibersprepared by TEMPO-mediated oxidation[J]. Biomacromolecules,2009,10,162-165.
    [48] Hasani M, Cranston E D, Westman G, et al. Cationic surface functionalization of cellulosenanocrystals[J]. Soft matter,2008,4,2238-2244.
    [49] de la Motte H, Hasani M, Brelid H, et al. Molecular characterization of hydrolyzed cationizednanocrystalline cellulose, cotton cellulose and softwood kraft pulp using high resolution1D and2DNMR[J]. Carbohydrate Polymers,2011,85,738-746.
    [50] Zaman M, Xiao H, Chibante F, et al. Synthesis and characterization of cationically modifiednanocrystalline cellulose[J]. Carbohydrate Polymers,2012,89,163-170.
    [51] Hasani M, Westman G, Potthast A, et al. Cationization of cellulose by usingN-Oxiranylmethyl-N-Methylmorpholinium chloride and2-Oxiranylpyridine as etherification agents[J].Journal of Applied Polymer Science,114,1449-1456.
    [52] Khatri Z, Mayakrishnan G, Hirata Y, et al. Cationic-cellulose nanofibers: preparation and dyeabilitywith anionic reactive dyes for apparel application[J]. Carbohydrate Polymers,2013,91,434-443.
    [53] Zhang W, Zhang X, Lu C, et al. Flexible and transparent paper-based ionic diode fabricated fromoppositely charged microfibrillated cellulose[J]. The Journal of Physical Chemistry C,2012,116,9227-9234.
    [54]王金霞,刘温霞.纤维素的化学改性[J].纸和造纸,2011,30,31-37.
    [55] Revol J F, Bradford H, Giasson J, et al. Helicoidal self-ordering of cellulose microfibrils in aqueoussuspension[J]. International Journal of Biological Macromolecules,1992,14,170-172.
    [56]徐雁.功能性无机-晶态纳米纤维素复合材料的研究进展与展望[J].化学进展,2011,23,2183-2199.
    [57]王文俊,邵自强,张凤侠等.以纳米纤维素晶须悬浮液为原料制备纳米硝化棉[J].火炸药学报,2011,34,73-76.
    [58]夏敏,罗运军,华毅龙.纳米硝化纤维素的制备及性能表征[J].含能材料,2012,20,167-171.
    [59] Sovizi M R, Hajimirsadeghi S S, Naderizadeh B. Effect of particle size on thermal decomposition ofnitrocellulose[J]. Journal of Hazardous materials,2009,168,1134-1139.
    [60]王文俊,冯蕾,邵自强等.纳米纤维素晶须/硝化纤维素复合材料的制备与力学性能研究[J].兵工学报,2012,33,1173-1177.
    [61]陈觉声,刘淑贞,刘雄.微细化纤维素改性技术研究进展[J].食品工业科技,2012,33,382-386.
    [62] Sassi J, Chanzy H. Ultrastructural aspects of the acetylation of cellulose[J]. Cellulose,1995,111-127.
    [63] Braun B, Dorgan J R. Single-step method for the isolation and surface functionalization of cellulosicnanowhiskers[J]. Biomacromolecules,2009,10,334-341.
    [64] Yuan H, Nishiyama Y, Wada M, et al. Surface acylation of cellulose whiskers by drying aqueousemulsion[J]. Biomacromolecules,2006,7,696-700.
    [65] Berlioz S, Molina-Boisseau S, Nishiyama Y, et al. Gas-phase surface esterification of cellulosemicrofibrils and whiskers[J]. Biomacromolecules,2009,10,2144-2151.
    [66] de Menezes A J, Siqueira G, Curvelo A A S, et al. Extrusion and characterization of functionalizedcellulose whiskers reinforced polyethylene nanocomposites[J]. Polymer,2009,50,4552-4563.
    [67] Lee K, Quero F, Blaker J J, et al. Surface only modification of bacterial cellulose nanofibres withorganic acids[J]. Cellulose,2011,18,595-605.
    [68] Lin N, Huang J, Chang P R, et al. Surface acetylation of cellulose nanocrystal and its reinforcingfunction in poly(lactic acid)[J]. Carbohydrate Polymers,2011,83,1834-1842.
    [69] Hu W, Chen S, Xu Q, et al. Solvent-free acetylation of bacterial cellulose under moderate conditions[J].Carbohydrate Polymers,2011,83,1575-1581.
    [70] Andresen M, Johansson L, Tanem B S, et al. Properties and characterization of hydrophobizedmicrofibrillated cellulose[J]. Cellulose,2006,13,665-677.
    [71] Bordeanu N, Eyholzer C, Zimmermann T. Surface modified cellulose nanofibrils[P].2010, EP2196478.
    [72] Yano S, Maeda H, Nakajima M, et al. Preparation and mechanical properties of bacterial cellulosenanocomposites loaded with silica nanoparticles[J]. Cellulose,2008,15,111-120.
    [73] Xu S H, Gu J, Luo Y F, et al. Effects of partial replacement of silica with surface modifiednanocrystalline cellulose on properties of natural rubber nanocomposites[J]. Experss Polymer Letters,2012,6,14-25.
    [74] Zolfrank C, Scheel H, Greil P. Regioselectively ordered silica nanotubes by molecular templating[J].Advanced Materials,2007,19,984-987.
    [75] Gu Y, Liu X, Niu T, et al. Superparamagnetic hierarchical material fabricated by protein moleculeassembly on natural cellulose nanofibres[J]. Chemical Communications,2010,46,6096-6098.
    [76] Huang J, Gu Y. Self-assembly of various guest substrates in natural cellulose substances to functionalnanostructured materials[J]. Current Opinion in Colloid&Interface Science,2011,16,470-481.
    [77]陈觉声,刘淑贞,刘雄.微细化纤维素改性技术研究进展[J].食品工业科技,2012,19,382-386.
    [78] Roy D, Semsarilar M, Guthrie J T, et al. Cellulose modification by polymer grafting: a review[J].Chemical Society Reviews,2009,38,2046-2064.
    [79] Kyung H H, Liu N, Sun G. UV-induced graft polymerization of acrylamide on cellulose by usingimmobilized benzophenone as a photo-initiator[J]. European Polymer Journal,2009,45,2443-2449.
    [80]周刘佳,叶代勇.丙烯酸单体接枝纳米纤维素晶须[J].精细化工,2010,27,720-725.
    [81] Littunen K, Hippi U, Johansson L, et al. Free radical graft copolymerization of nanofibrillatedcellulose with acrylic monomers[J]. Carbohydrate Polymers,2011,84,1039-1047.
    [82] Gupta K C, Keerti K. Temperature-responsive cellulose by cede(IV) ion-initiated graftcopolymerization of N-isopropylacrylamide[J]. Biomacromolecules,2003,4,758-765.
    [83] John G, Pillai C K S. Grafting of bio-monomers.1. Cationic graft-copolymerization of cardanol usingborontrifluoridediethyletherate onto cellulose[J]. Polymer Bulletin,1989,22,89-94.
    [84] Feit B A, Bar-Nun A, Lahav M, et al. Anionic graft polymerization of vinyl monomers on celluloseand polyvinyl alcohol[J]. Journal of Applied Polymer Science,1964,4,1869-1888.
    [85] Gupta K C, Sahoo S. Graft copolymerization of4-vinylpyridine onto cellulose using Co(III)acetylacetonate complex in aqueous medium[J]. Cellulose,2001,8,233-242.
    [86] Hafren J, Cordova A. Direct organocatalytic polymerization from cellulose fibers[J]. MacromolecularRapid Communications,2005,26,82-86.
    [87] Habibi Y, Goffin A L, Schiltz N, et al. Bionanocomposites based on poly(epsilon-caprolactone)-graftedcellulose nanocrystals by ring-opening polymerization[J]. Journal of Materials Chemistry,2008,18,5002-5010.
    [88] Loennberg H, Zhou Q, Brumer H, et al. Grafting of cellulose fibers with poly(epsilon-caprolactone)and poly(L-lactic acid) via ring-opening polymerization[J]. Biomacromolecules,2006,7,2178-2185.
    [89] Kloser E, Gray G D. Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueousmedia[J]. Langmuir,2010,26,13450-13456.
    [90] Georges M K, Veregin R P N, Kazmaier P M, et al. Narrow molecular weight resins by a free-radicalpolymerization process[J]. Macromolecules,1993,26,2987-2988.
    [91] Daly W H, Evenson T S, Iacono S T, et al. Recent developments in cellulose grafting chemistryutilizing barton esterintermediates and nitroxide mediation[J]. Macromolecular Symposia,2001,174,155-163.
    [92] Araki J, Wada M, Kuga S. Steric stabilization of a cellulose microcrystal suspension by poly(ethyleneglycol) grafting[J]. Langmuir,2001,17,21-27.
    [93] Mangalam A P, Simonsen J, Benight A S. Cellulose/DNA hybrid nanomaterials[J]. Biomacromolecules,2009,10,497-504.
    [94] Azzam F, Heux L, Putaux J L, et al. Preparation by grafting onto, characterization, and properties ofthermally responsive polymer-decorated cellulose nanocrystals[J]. Biomacromolecules,2010,11,3652-3659.
    [95] Wang J S, Matyjaszewski K. Controlled/“living” radical polymerization. Atom transfer radicalpolymerization in the presence of transition-metal complexes[J]. Journal of the American ChemicalSociety,1995,117,5614-5615.
    [96] Carlmark A, Malmstr m E. Atom transfer radical polymerization from cellulose fibers at ambienttemperature[J]. Journal of The American Chemical Society,2002,124,900-901.
    [97] Carlmark A, Malmstr m E. ATRP grafting from cellulose fibers to create block-copolymer grafts[J].Biomacromolecules,2003,4,1740-1745.
    [98] Morandi G, Heath L, Thielemans W. Cellulose nanocrystals grafted with polystyrene chains throughsurface-initiated atom transfer radical polymerization (SI-ATRP)[J]. Langmuir,2009,25,8280-8286.
    [99]张晓玮,曹兵,刘雷等. ATRP可控接枝制备pH敏感性微滤膜[J],高分子材料科学与工程,2010,26,153-155.
    [100]张晓玮.表面ATRP法制备pH/温度敏感性微滤膜的研究[D],北京:北京化工大学,2009.
    [101] Westlund R, Carlmark A, Hult A, et al. Grafting liquid crystalline polymers from cellulose substratesusing atom transfer radical polymerization[J]. Soft Matter,2007,3,866-871.
    [102] Yuan B, Chen Q, Ding W, et al. Copolymer coatings consisting of2-methacryloyloxyethylphosphorylcholine and3-methacryloxypropyl trimethoxysilane via ATRP to improve cellulosebiocompatibility[J]. ACS Applied Materials&Interfaces,2012,4,4031-4039.
    [103] Justin O, Zoppe Y, Habibi, et.al. Poly(N-isopropylacrylamide) brushes grafted from cellulosenanocrystals via surface-initiated single-electron transfer living radical polymerization[J].Biomacromolecules,2010,11,2683-2691.
    [104] Hiltunen M, Siiril J, Aseyev V, et.al. Cellulose-g-PDMAam copolymers by controlled radicalpolymerization in homogeneous medium and their aqueous solution properties[J]. European PolymerJournal,2012,48,136-145.
    [105] Lutz J F.1,3-Dipolar Cycloadditions of Azides and Alkynes: a Universal Ligation Tool in Polymerand Materials Science[J]. Angewandte Chemie International Edition,2007,46,1018-1025.
    [106] Finn M G, Kolb H C, Fokin V V, et al.点击化学——释义与目标[J].化学进展,2008,20,1-4.
    [107]陈晓勇.点击化学在高分子研究中的进展[J].化学推进剂与高分子材料,2010,8,17-19,27.
    [108]李娟,段明,张烈辉等.点击化学及其应用[J].化学进展,2007,19,1754-1760.
    [109] Filpponen I, Argyropoulos D S. Regular Linking of Cellulose Nanocrystals via Click Chemistry:Synthesis and Formation of Cellulose Nanoplatelet Gels[J]. Biomacromolecules,2010,11,1060-1066.
    [110] Zhang J, Xu X D, Wu D Q, et al. Synthesis of thermosensitive P(NIPAAm-co-HEMA)/cellulosehydrogels via “click” chemistry[J]. Carbohydrate Polymers,2009,77,583-589.
    [111] Ringot C, Sol V, Granet R, et al. Porphyrin-grafted cellulose fabric: New photobactericidal materialobtained by click-chemistry reaction[J]. Materials Letters,2009,63,1889-1891.
    [112] Pohl M, Schallar J, Meister F, et al. Selectively dendronized cellulose: synthesis andcharacterization[J]. Macromolecular Rapid Communications,2008,29,142-148.
    [113] Pohl M, Heinze T. Novel Biopolymer Structures Synthesized by Dendronization of6-Deoxy-6-aminopropargyl cellulose[J]. Macromolecular Rapid Communications,2008,29,1739-1745.
    [114] Pohl M, Michaelis N, Meister F, et al. Biofunctional Surfaces Based on Dendronized Cellulose[J].Biomacromolecules,2009,10:382-389.
    [115] Liebert T, H nsch C, Heinze T. Click Chemistry with Polysaccharides[J]. Macromolecular RapidCommunications,2006,27,208-213.
    [116] Krouit M, Bras J, Belgacem M N. Cellulose surface grafting with polycaprolactone by heterogeneousclick-chemistry[J]. European Polymer Journal,2008,44,4074-4081.
    [117] Hernández J G, Juaristi E. Recent efforts directed to the development of more sustainable asymmetricorganocatalysis[J]. Chemical Communications,2012,48,5396-5409.
    [118] Baiq R B, Varma R S. Alternative energy input: mechanochemical, microwave andultrasound-assisted organic synthesis[J]. Chemical Society Reviews,2012,41,1559-1584.
    [119]谢冬,邵友东.浅谈绿色化学中的无溶剂反应[J].安徽农学通报,2009,15,219-221.
    [120] Chauhan P, Chimni S S. Mechanochemistry assisted asymmetric organocatalysis: a sustainableapproach[J]. Beilstein Journal of Organic Chemistry,2012,8,2132-2141.
    [121] James S L, Adams C J, Bolm C, et al. Mechanochemistry: opportunities for new and cleanersynthesis[J]. Chemical Society Reviews,2012,41,413-417.
    [122] Fri i T. Supramolecular concepts and new techniques in mechanochemistry: cocrystals, cages,rotaxanes, open metal-organic frameworks[J]. Chemical Society Reviews,2012,41,3493-3510.
    [123] Rodríguez B, Bruckmann A, Rantanen T, et al. Solvent-free carbon-carbon bond formations in ballmills[J]. Advanced Synthesis&Catalysis,2007,349,2213-2233.
    [124] Stolle A, Szuppa T, Leonhardt S E S, et al. Ball milling in organic synthesis: solutions andchallenges[J]. Chemical Society Reviews,2011,40,2317-2329.
    [125] Kleine T, Buendia J, Carsten Bolm. Mechanochemical degradation of lignin and wood bysolvent-free grinding in a reactive medium[J].2013,15,160-166.
    [126] Wiggins K M, Brantley J N, Bielawski C W. Polymer mechanochemistry: force enabledtransformations[J]. ACS Macro Letters,2012,1,623-626.
    [127] Beyer M K, Clausen-Schaumann H. Mechanochemistry: the mechanical activation of covalentbonds[J]. Chemical Reviews,2005,105,2921-2948.
    [128] Avolio R, Bonadies I, Capitani D, et al. A multitechnique approach to assess the effect of ball millingon cellulose[J]. Carbohydrate Polymers,2012,87,265-273.
    [129] Guesmi A, Ladhari N, Sakli F. Ultrasonic preparation of cationic cotton and its application inultrasonic natural dyeing[J]. Ultrasonics Sonochemistry,2013,20,571-579.
    [130] Wong S, Kasapis S, Tan Y M. Bacterial and plant cellulose modification using ultrasoundirradiation[J]. Carbohydrate Polymers,2009,77,280-287.
    [131] Liu C, Sun R, Qin M, et al. Chemical modification of ultrasound-pretreated sugarcane bagasse withmaleic anhydride[J]. Industrial Crops and Products,2007,26,212-219.
    [132] Flint E B, Suslick K S. The temperature of cavitation[J]. Science,1991,253,1397-1399.
    [133] Cravotto G, Cintas P. Power ultrasound in organic synthesis: moving cavitational chemistry fromacademia to innovative and large-scale applications[J]. Chemical Society Reviews,2006,35,180-196.
    [134] Cravotto G, Cintas P. The combined use of microwaves and ultrasound: improved tools in processchemistry and organic synthesis[J]. Chemistry-A European Journal,2007,13,1902-1909.
    [135] Alonso F, Beletskaya I P, Yus M. Non-conventional methodologies for transition-metal catalysedcarbon-carbon coupling: a critical overview. Part I: The heck reaction[J]. Tetrahedron,2005,11771-11835.
    [136] Pinjari D V, Pandit A B. Cavitation milling of natural cellulose to nanofibrils[J]. UltrasonicsSonochemistry,2010,17,845-852.
    [137]张海燕,邢佩佩,李娜等.蛋白质标记荧光探针的研究及其进展[J].分析科学学报,2009,25,593-597.
    [138] Clark H A, Hoyer M, Philbert M A, et al. Optical nanosensors for chemical analysis inside singleliving cells.1. Fabrication, characterization, and methods for intracellular delivery of PEBBLEsensors[J]. Analytical Chemistry,1999,71,4831-4836.
    [139] Liu J, Yang X, He X, et al. Fluorescent nanoparticles for chemical and biological sensing[J]. ScienceChina Chemistry,2011,54,1157-1176.
    [140] Sun H, Scharff-Poulsen A M, Gu H, et al. Synthesis and characterization of ratiometric, pH sensingnanoparticles with covalently attached fluorescent dyes[J]. Chemistry of Materials,2006,18,3381-3384.
    [141] McNamara K P, Nguyen T, Dumitrascu G, et al. Synthesis, characterization, and application offluorescence sensing lipobeads for intracellular pH measurements[J]. Analytical Chemistry,2001,73,3240-3246.
    [142] Almdal K, Sun H, Poulsen A K, et al. Fluorescent gel particles in the nanometer range for detection ofmetabolites in living cells[J]. Polymers Advanced technologies,2006,17,790-793.
    [143] Wallace P A, Elliott N, Uttamlal M, et al. Development of a quasi-distributed optical fibre pH sensorusing a covalently bound indicator[J]. Measurement Science and Technology,2001,12,882-886.
    [144]孟庆涛.材料化荧光探针的合成及应用研究[D].大连理工大学,2011.
    [145]张艺娟,马春艳,杨溢等.纳米荧光探针在药物输送中的应用[J].材料导报A:综述篇,2011,25,114-117.
    [146]薛昌刚.生物纳米颗粒在药物载体及磁性荧光探针中的应用[D].湖南大学,2008.
    [147]彭玲玲.生物荧光标记用纳米晶的合成及发光性质[D].兰州大学,2011.
    [148] Qaqish R B, Amiji M M. Synthesis of a fluorescent chitosan derivative and its application for thestudy of chitosan-mucin interactions[J]. Carbohydrate Polymers,1999,38,99-107.
    [149] Son Y J, Jang J, Cho Y, et al. Biodistribution and anti-tumor efficacy of doxorubicin loadedglycol-chitosan nanoaggregates by EPR effect[J]. Journal of Controlled Release,2003,91,135-145.
    [150]赵佳胤.壳聚糖纳米荧光探针的制备、表征和应用[D].浙江大学,2006.
    [151] Schulz A, Hornig S, Liebert T, et al. Evaluation of fluorescent polysaccharide nanoparticles forpH-sensing[J]. Organic&Biomolecular Chemistry,2009,7,1884-1889.
    [152] Klemm D, Heublein B, Fink H, et al. Cellulose: fascinating biopolymer and sustainable rawmaterial[J]. Angewandte Chemie International Edition,2005,44,3358-3393.
    [153] Klemm D, Einfeldt L. Structure design of polysaccharides: novel concepts, selective syntheses, highvalue applications[J]. Macromolecular Symposia,2001,163,35-48.
    [154] Feese E, Sadeghifar H, Gracz H S, et al. Photobactericidal porphyrin-cellulose nanocrystals:synthesis, characterization, and antimicrobial properties[J]. Biomacromolecules,2011,12,3528-3539.
    [155] Dong S, Roman M. Fluorescently labeled cellulose nanocrystals for bioimaging applications[J].Journal of the American Chemical Society,2007,129,13810-13811.
    [156] Yang Q, Pan X. A facile approach for fabricating fluorescent cellulose[J]. Journal of Applied PolymerScience,117,2010,3639-3644.
    [157] berg C T, Carlsson S, Fillion E, et al. Efficient and expedient two-step pyranose-retainingfluorescein conjugation of complex reducing oligosaccharides: galectin oligosaccharide specificitystudies in a fluorescence polarization assay[J]. Bioconjugate Chemistry,2003,14,1289-1297.
    [158] Helbert W, Chanzy H, Husum T L, et al. Fluorescent cellulose microfibrils as substrate for thedetection of cellulose activity[J]. Biomacromolecules,2003,4,481-487.
    [159] Hassan M L, Moorefield C M, Elbatal H S, et al. Fluorescent cellulose nanocrystals viasupramolecular assembly of terpyridine-modified cellulose nanocrystals and terpyridine-modifiedperylene[J]. Materials Science and Engineering B,2012,177,355-358.
    [160] Mahmoud K A, Mena J A, Male K B, et al. Effect of surface charge on the cellular uptake andcytoxicity of fluorescent labeled cellulose nanocrystals[J]. ACS Applied Materials&Interfaces,2010,2,2924-2932.
    [161] Yolanda D, Miguel J, Victoria S, et al. Ocular drug delivery by liposome-chitosan nanoparticlecomplexes (LCS-NP)[J]. Biomaterials,2007,28,1553-1564.
    [162] H rtel S, Diehl H A, Ojeda F. Methyl-beta-cyclodextrins and liposomes as water-soluble carriers forcholesterol incorporation into membranes and its evaluation by a microenzymatic fluorescence assayand membrane fluidity-sensitive dyes[J]. Analytical Biochemistry,1998,258,277-284.
    [163] Man T T, Chris B, Oya A. Evaluation of different buffers on plasmid DNA encapsulation into PLGAmicroparticles[J]. International Journal of Pharmaceutics,2009,370,33-40.
    [164] Jhunjhunwala S, Raimondi G, Thomson A W, et al. Delivery of rapamycin to dendritic cells usingdegradable microparticles[J]. Journal of Controlled Release,2009,133,191-197.
    [165] Eldar-Boock A, Miller K, Sanchis J, et al. Integrin-assisted drug delivery of nano-scaled polymertherapeutics bearing paclitaxel[J]. Biomaterials,2011,32,3862-3874.
    [166] Yu X, Pishko M V. Nanoparticle-based biocompatible and targeted drug delivery: characterizationand in vitro studies[J]. Biomacromolecules,2011,12,3205-3212.
    [167] Kerrian G, Edward T. In vivo studies of polyacrylate nanoparticle emulsions for topical and systemicapplications[J]. Nanomedicine: NBM,2009,5,46-54.
    [168] Mason T G, Wilking J N, Meleson K, et al. Nanoemulsions: formation, structure, and physicalproperties[J]. Journal of Physics: Condensed Matter,2006,18, R635-R666.
    [169] Furumoto K, Yokoe J, Ogawara K, et al. Effect of coupling of albumin onto surface of PEG liposomeon its in vivo disposition[J]. International Journal of Pharmaceutics,2007,329,110-116.
    [170] Young T K, Raktima B, Ulrich B. Liposome encapsulated polyethylenimine/ODN polyplexes forbrain targeting[J]. Journal of Controlled Release,2009,133,230-237.
    [171] Yang Y, Nimisha B, Xu P S, et al. Development of highly porous large PLGA microparticles forpulmonary drug delivery[J]. Biomaterials,2009,30,1947-1953.
    [172] Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles asnanocarriers for drug and gene delivery[J]. Pharmacology&Therapeutics,2006,112,630-648.
    [173] Hideaki T, Yuya K. Preparation of poly(N-isopropylacrylamide) emulsion gels and their drug releasebehaviors[J]. Colloids and Surfaces B: Biointerfaces,2008,67,92-98.
    [174] Riley T N. The prodrug concept and new drug design and development[J]. Journal of ChemicalEducation,1988,947-953.
    [175] Ringsdorf H. Structure and properties of pharmacologically active polymers[J]. Journal of PolymerScience: Polymer Symposia,1975,51,135-153.
    [176] Hagg R, Kratz F. Polymer therapeutics: concepts and application[J]. Angewandte ChemieInternational Edition,2006,45,1198-1215.
    [177] Rautio J. Prodrugs and targeted delivery. Towards better ADME properties[M]. Wiley-VCH VerlagGmbH&Co. KGaA,2011.
    [178] Van S, Das S K, Wang X, et al. Synthesis, characterization, and biological evaluation ofpoly(L-γ-glutamyl-glutamine)-paclitaxel nanoconjugate[J]. Internaitonal Journal of Nanomedicine,2010,5,825-837.
    [179] Zhou P, Li Z, Chau Y. Synthesis, characterization, and in vivo evaluation of poly(ethyleneoxide-co-glycidol)-platinate conjugate[J]. European Journal of Pharmaceutical Sciences,2010,41,464-472.
    [180] Larson N, Ghandehari H. Polymeric conjugates for drug delivery[J]. Chemistry of Materials,2012,24,840-853.
    [181] Stella V J, Nti-Addae K W. Prodrug strategies to overcome poor water solubility[J]. Advanced DrugDelivery Reviews,2007,59,677-694.
    [182] Tegeli V S, Thorat Y S, Chougule G K, et al. Review on concepts and advances in prodrugtechnology[J]. International Journal of Drug Formulation and Research,2010,1,32-57.
    [183] Beaumont K, Webster R, Gardner I, et al. Design of ester prodrugs to enhance oral absorption ofpoorly permeable compounds: challenges to the discovery scientist[J]. Current Drug Metabolism,4,461-485.
    [184] Testa B. Prodrug research: futile or fertile?[J]. Biochemical Pharmacology,2004,68,2097-2106.
    [185] Majumdar S, Sloan K B. Synthesis, hydrolyses and dermal delivery ofN-alkyl-N-alkyloxy-carbonylaminomethyl (NANAOCAM) derivatives of phenol, imide and thiolcontaining drugs[J]. Bioorganic&Medicinal Chemistry Letters,2006,16,3590-3594.
    [186] Rautio J, Nevalainen T, Taipale H, et al. Synthesis and in vitro evaluation of aminoacyloxyalkylesters of2-(6-methoxy-2-naphthyl)propionic acid as novel naproxen prodrugs for dermal drugdelivery[J]. Pharmaceutical Research,1999,16,1172-1178.
    [187] D’souza A J, Topp E M. Release from polymeric prodrugs: linkage and their degradation[J]. Journalof Pharmaceutical Sciences,2004,93,1962-1979.
    [188] Yuan L, Chen W, Hu J, et al. Mechanistic study of the covalent loading of paclitaxel via disulfidelinkers for controlled drug release[J]. Langmuir,2013,29,734-743.
    [189] Rautio J, Kumpulainen H, Heimbach T, et al. Prodrug: design and clinical applications[J]. NatureReviews,2008,7,255-270.
    [190] Jain N K, Mishra V, Mehra N K. Targeted drug delivery to macrophages[J]. Expert Opinion on DrugDelivery,2013,10,353-367.
    [191] Zhang Y, Chan H F, Leong K W. Advanced materials and processing for drug delivery: the past andthe future[J]. Advanced Drug Delivery Reviews,2013,65,104-120.
    [192] Kaneda Y, Tsutsumi Y, Yoshioka Y, et al. The use of PVP as a polymeric carrier to improve theplasma half-life of drugs[J]. Biomaterials,2004,25,3259-3266.
    [193] Kamada H, Tsutsumi Y, Yamamoto Y, et al. Antitumor activity of tumor necrosis factor-α conjugatedwith polyvinylpyrrolidone on solid tumors in mice[J]. Cancer Research,2000,60,6416-6420.
    [194] Yasukawa T, Kimura H, Tabata Y, et al. Targeted delivery of anti-angiogenic agent TNP-470usingwater-soluble polymer in the treatment of choroidal neovascularization[J]. InvestigativeOphthalmology&Visual Science,1999,40,2690-2696.
    [195] Chipman S D, Oldham F B, Pezzoni G, et al. Biological and clinical characterization of paclitaxelpoliglumex (PPX, CT-2103), a macromolecular polymer-drug conjugate[J]. International Journal ofNanomedicine,2006,1,375-383.
    [196] Ljubimova J Y, Fujita M, Ljubimov A V, et al. Poly(malic acid) nanoconjugates containing variousantibodies and oligonucleotides for multitargeting drug delivery[J]. Nanomedicine (London, England),2008,3,247-265.
    [197] Pasut G, Veronese F M. PEG conjugates in clinical development or use as anticancer agents: anoverview[J]. Advanced drug delivery reviews,2009,61,1177-1188.
    [198] Graft N, Bielenberg D R, Kolishetti N, et al. αv3integrin-targeted PLGA-PEG nanoparticles forenhanced anti-tumor efficacy of a Pt(IV) prodrug[J]. ACS Nano,2012,6,4530-4539.
    [199] Liu Z, Robinson J T, Sun X, et al. PEGylated nanographene oxide for delivery of water-insolublecancer drugs[J]. Journal of the American Chemical Society,2008,130,10876-10877.
    [200] Freichels H, Jér me R, Jér me C. Sugar-labeled and PEGylated (bio)degradable polymers intendedfor targeted drug delivery systems[J]. Carbohydrate Polymers,2011,86,1093-1106.
    [201] Kopecek J, Kopecková P. HPMA copolymers: origins, early developments, present, and future[J].Advanced drug delivery reviews,2010,62,122-149.
    [202] Duncan R. Designing polymer conjugates as lysosomotropic nanomedicines[J]. Biochemical SocietyTransactions,2007,35,56-60.
    [203] Vijayalakshmi N, Ray A, Malugin A, et al. Carboxyl-terminated PAMAM-SN38conjugates:synthesis, characterization, and in vitro evaluation[J]. Bioconjugate Chemistry,2010,21,1804-1810.
    [204] Menjoge A R, Kannan R M, Tomalia D A. Dendrimer-based drug and imaging conjugates: designconsiderations for nanomedical applications[J]. Drug Discovery Today,2010,15,171-185.
    [205] Gajbhiye V, Palanirajan V K, Tekade R K, et al. Dendrimers as therapeutic agents: a systematicreview[J]. The Journal of Pharmacy and Pharmacology,2009,61,989-1003.
    [206] Cheng Y, Zhao L, Li Y, et al. Design of biocompatible dendrimers for cancer diagnosis and therapy:current status and future perspectives[J]. Chemical Society Reviews,2011,40,2673-2703.
    [207] De Souza R, Zahedi P, Allen C J, et al. Polymeric drug delivery systems for localized cancerchemotherapy[J]. Drug Delivery,2010,17,365-375.
    [208] Sun H, Meng F, Dias A A, et al. α-Amino acid containing degradable polymers as functionalbiomaterials: rational design, synthetic pathway, and biomedical applications[J]. Biomacromolecules,2011,12,1937-1955.
    [209] Couffin-Hoarau A C, Aubertin A M, Boustta M, et al. Peptide-poly(L-lysine citramide) conjugatesand their in vitro anti-HIV behavior[J]. Biomacromolecules,2009,10,865-876.
    [210] Yang D, Van S, Liu J, et al. Physicochemical properties and biocompatibility of a polymer-paclitaxelconjugate for cancer treatment[J]. International Journal of Nanomedicine,2011,6,2557-2566.
    [211] Metselaar J M, Bruin P, de Boer L W, et al. A novel family of L-amino acid-based biodegradablepolymer-lipid conjugates for the development of long-circulating liposomes with effectivedrug-targeting capacity[J]. Bioconjugate Chemistry,2003,14,1156-1164.
    [212] Kato Y, Onishi H, Machida Y. N-succinyl-chitosan as a drug carrier: water-insoluble andwater-soluble conjugates[J]. Biomaterials,2004,25,907-915.
    [213] Zhang C, Ping Q N, Zhang H J, et al. Synthesis and characterization of water-solubleO-sucinyl-chitosan[J]. European Polymer Journal,2003,39,1629-1634.
    [214] Dhar S, Liu Z, Thomale J, et al. Targeted single-wall carbon nanotube-mediated Pt(IV) prodrugdelivery using folate as a homing device[J]. Journal of the American Chemical Society,2008,130,11467-11476.
    [215] Huttunen K M, Tani N, Juvonen R O, et al. Design, synthesis, and evaluation of novel cyclicphosphates of5-aminosalicylic acid as cytochrome P450-activated prodrugs[J]. MolecularPharmaceutics,2013,10,532-537.
    [216] Lalatsa A, Lee V, Malkinson J P, et al. A prodrug nanoparticle approach for the oral delivery of ahydrophilic peptide, leucine5-enkephalin, to the brain[J]. Molecular Pharmaceutics,2012,9,1665-1680.
    [217] Luo Y, Ziebell M R, Prestwich G D. A hyaluronic acid-taxol bioconjugate targeted to cancer cells[J].Biomacromolecules,2000,1,208-218.
    [218] Wu X M, Branford-White C J, Zhu L M, et al. Ester prodrug-loaded electrospun cellulose acetatefiber mats as transdermal drug delivery systems[J]. Journal of Materials Science. Materials inmedicine,2010,21,2403-2411.
    [219] Lin N, Huang J, Chang P R, et al. Effect of polysaccharide nanocrystals on structure, properties, anddrug release kinetics of alginate-based microspheres[J]. Colloids and Surfaces B: Biointerfaces,2011,85,270-279.
    [220] Xu F J, Zhu Y, Liu F S, et al. Comb-shaped conjugates comprising hydroxypropyl cellulosebackbones and low-molecular-weight poly(N-isopropylacryamide) side chains for smart hydrogels:synthesis, characterization, and biomedical applications[J]. Bioconjugate Chemistry,2010,21,456-464.
    [221] Villanova J C O, Ayres E, Carvalho S M, et al. Pharmaceutical acrylic beads obtained by suspensionpolymerization containing cellulose nanowhiskers as excipient for drug delivery[J]. European Journalof Pharmaceutical Sciences,2011,42,406-415.
    [222] Sievens-Figueroa L, Bhakay A, Jerez-Rozo J I, et al. Preparation and characterization ofhydroxypropyl methyl cellulose films containing stable BCS class II drug nanoparticles forpharmaceutical applications[J]. International Journal of Pharmaceutics,2012,423,496-508.
    [223] Jackson J K, Letchford K, Wasserman B Z, et al. The use of nanocrystalline cellulose for the bindingand controlled release of drugs[J]. International Journal of Nanomedicine,2011,6,321-330.
    [224] Wang H, Roman M. Formation and properties of chitosan-cellulose nanocrystalpolyelectrolyte-macroin complexes for drug delivery applications[J]. Biomacromolecules,2011,12,1585-1593.
    [225] Sivakumar B, Aswathy R G, Nagaoka Y, et al. Multifunctional carboxymethyl cellulose-basedmagnetic nanovector as a theragnostic system for folate receptor targeted chemotherapy, imaging, andhyperthermia against cancer[J]. Langmuir,2013,29,3453-3466.
    [226] Zhu L, Kumar V, Banker G S. Examination of oxidized cellulose as a macromolecular prodrug carrier:preparation and characterization of an oxidized cellulose-phenylpropanolamine conjugate[J].International Journal of Pharmaceutics,2001,223,35-47.
    [227] Verma S, Kumar V, Mishra D N, et al. Colon targeted drug delivery: current and novel perspectives[J].International Journal of Pharmaceutical Sciences and Research,2012,3,1274-1284.
    [228] Chourasia M K, Jain S K. Pharmaceutical approaches to colon targeted drug delivery systems[J].Journal of Pharmacy and Pharmaceutical Sciences,2003,6,33-66.
    [229] Patel M, Shah T, Amin A. Therapeutic opportunities in colon-specfic drug-delivery systems[J].Critical Reviews in Therapeutic Drug Carrier Systems,2007,24,147-202.
    [230] Sinha V R, Kumria R. Microbially triggered drug delivery to the colon[J]. European Journal ofPharmaceutical Sciences,2003,18,3-18.
    [231] Jose S, Dhanya K, Cinu T A, et al. Colon targeted drug delivery: different approaches[J]. Journal ofYoung Pharmacists,2009,1,13-19.
    [232] Kumar R S, Kumar M, Ganesh G N, et al. Formulation and evaluation of pectin-hydroxypropylmethylcellulose coated curcumin pellets for colon delivery[J]. Asian Journal of Pharmaceutics,2009,3,138-142.
    [233] Wang M J, Xie Y L, Zheng Q D, et al. A novel, potential microflora-activated carrier for acolon-specific delivery system and its characteristics[J]. Industrial&Engineering Chemistry Research,2009,48,5276-5284.
    [234] Charasson V, Bellott R, Meynard D, et al. Pharmacogenetics of human carboxylesterase2, an enzymeinvolved in the activation of irinotecan into SN-38[J]. Clinical Pharmacology and Therapeutics,2004,76,528-535.
    [235] Qi M, Wang P, Wu D. A novel pH-and time-dependent system for colonic drug delivery[J]. DrugDevelopment and Industrial Pharmacy,2003,29,661-667.
    [236] Takaya T, Ikeda C, Imagawa N, et al. Development of a colon delivery capsule and thepharmacological activity of recombinant human granulocyte colony-stimulating factor (rhG-CSF) inbeagle dogs[J]. Journal of Pharmacy and Pharmacology,1995,47,474-478.
    [237] Xu C, Zhang J S, Mo Y, et al. Calcium pectinate capsules for colon-specific drug delivery[J]. DrugDevelopment and Industrial Pharmacy,2005,31,127-134.
    [238] Chourasia M K, Jain S K. Pharmaceutical approaches to colon targeted drug delivery systems[J].Journal of Pharmacy and Pharmacology,2003,6,33-66.
    [239] Moore W E C, Holdeman L V. Discussion of current bacteriological investigations of the relationshipbetween intestinal flora, diet and colon cancer[J]. Cancer Research,1975,35,3418-3420.
    [240] Cummings J H, Englyst H N. Fermentaiton in the human large intestine and available substrates[J].The American Journal of Clinical Nutrition,1987,45,1243-1247.
    [241] Levitt M D, Hirsh P, Fetzer C A, et al. H2excretion after ingestion of complex carbohydrates[J].Gastroenterology,1987,92,383-389.
    [242] Hong S, Yum S, Yoo H J, et al. Colon-targeted cell-permeable NFκB inhibitory peptide is orallyactive against experimental colitis[J]. Molecular Pharmaceutics,2012,9,1310-1319.
    [243] Kenawy E R, Aly E S, Abdel-Hay F I, et al. Synthesis and microbial degradation of azopolymers forpossible applications for colon specific drug delivery I[J]. Journal of Saudi Chemical Society,2011,15,327-335.
    [244] Sengel-Türk C T, Hascicek C, Dogan A L, et al. Preparation and in vitro evaluation ofmeloxicam-loaded PLGA nanoparticles on HT-29human colon adenocarcinoma cells[J]. DrugDevelopment and Industrial Pharmacy,2012,38,1107-1116.
    [245] Shah N, Shah T, Amin A. Polysaccharides: a targeting strategy for colonic drug delivery[J]. ExpertOpinion on Drug Delivery,2011,8,779-796.
    [246] Minko T. Drug targeting to the colon with lectins and neoglyco-conjugates[J]. Advanced DrugDelivery Reviews,2004,56,491-509.
    [247] Wei H, Qing D, De-Ying C, et al. Pectin/Ethylcellulose as film coatings for colon-specific drugdelivery: preparation and in vitro evaluation using5-fluorouracil pellets[J]. PDA Journal ofPharmaceutical Science and Technology,2007,61,121-130.
    [248] Cai X, Yang L Q, Zhang L M, et al. Synthesis and anaerobic biodegradation ofindomethacin-conjugated cellulose ethers used for colon-specific drug delivery[J]. BioresourceTechnology,2009,100,4164-4170.
    [249] Hussain M A, Badshah M, Iqbal M S, et al. HPMC-salicylate conjugates as macromolecular prodrugs:design, characterization, and nano-rods formation[J]. Journal of Polymer Science Part A: PolymerChemistry,47,4202-4208.
    [1] George J, Sreekala M S, Thomas S. A review on interface modification and characterization of naturalfiber reinforced plastic composites[J]. Polymer Engineering and Science,2001,41,1471-1485.
    [2] Nogi M, Iwamoto S, Nakagaito A N, et al. Optically Transparent Nanofiber Paper[J]. AdvancedMaterials,2009,20,1-4.
    [3] Siqueira G, Bras J, Dufresne A. Cellulosic bionanocomposites: A review of preparation, properties andapplications[J]. Polymers,2010,2,28-765.
    [4] La Mantia F P, Morreale M. Green composites: a brief review[J]. Composites Part A: Applied Scienceand Manufacturing,2011,42,579-588.
    [5] Bondeson D, Mathew A, Oksman K. Optimization of the isolation of nanocrystals from microcrystallinecellulose by acid hydrolysis[J]. Cellulose,2006,13,171-180.
    [6] Beck-Candanedo S, Roman M, Gray D G. Effect of reaction conditions on the properties and behaviorof wood cellulose nanocrystal suspensions[J]. Biomacromolecules,2005,6,1048-1054.
    [7] Goussé C, Chanzy H, Cerrada M L, et al. Surface silylation of cellulose microfibrils: preparation andrheological properties[J]. Polymer,2004,45,1569-1575.
    [8] Ifuku S, Nogi M, Abe K, et al. Surface modification of bacterial cellulose nanofibers for propertyenhancement of optically transparent composites: dependence on acetyl-Group DS.Biomacromolecules,2007,8,1973-1978.
    [9] Segal L, Creely J.J, Martin A E, et al. An empirical method for estimating the degree of crystallinity ofnative cellulose using the X-ray diffractometer[J]. Textile Research Journal,1959,29,786-794.
    [10] Li J J. Name reactions: a collection of detailed mechanisms and synthetic applications[M]. SpringerBerlin Heidelberg New York,2003.
    [11]施宇,邓宝祥,王华锋.固体酸SO42-/MoO3-TiO2-SiO2催化合成硬脂酸月桂酯[J].天津工业大学学报,2011,30,66-69.
    [12] Guzowski J P Jr, Delaney E J, Humora M J, et al. Understanding and control of dimethyl sulfate in amanufacturing process: kinetic modeling of a Fischer esterification catalyzed by H2SO4[J]. OrganicProcess Research&Development,2012,16,232-239.
    [13] Berlioz S, Molina-Boisseau S, Nishiyama Y, et al. Gas-phase surface esterification of cellulosemicrofibrils and whiskers[J]. Biomacromolecules,2009,10,2144-2151.
    [14] Zhao H, Feng X, Gao H. Ultrasonic technique for extracting nanofibers from nature materials[J].Applied Physics Letters,2007,90,073112.
    [15] Faria Tischer P C S, Sierakowski M R, Westfahl Jr H, et al. Nanostructural reorganization of bacterialcellulose by ultrasonic treatment[J]. Biomacromolecules,2010,11,1217-1224.
    [16] Wu S, Yu X, Hu Z, et al. Optimizing aerobic biodegradation of dichloromethane using responsesurface methodology[J]. Journal of Environmental Sciences,2009,21,1276-1283.
    [17] Majumder A, Singh A, Goyal A. Application of response surface methodology for glucan productionfrom Leuconostoc dextranicum and its structural characterization[J]. Carbohydrate Polymers,2009,75,150-156.
    [18] Khattar J I S, Shailza. Optimization of Cd2+removal by the cyanobacterium Synechocystis Pevalekiiusing the response surface methodology[J]. Process Biochemistry,2009,44,118-121.
    [19]侯成敏,陈文宁,陈玉放等.糖类结构的光谱分析的特点[J].天然产物研究与开发,2012,24,556-561.
    [20] Heinze T, Liebert T, Koschella A. Esterification of Polysaccharides[M]. Springer Berlin HeidelbergNew York,2006.
    [21] Ibrahim M M., El-Zawawy W K, Nassar M A. Synthesis and characterization of polyvinylalcohol/nanospherical cellulose particle films[J]. Carbohydrate Polymers,2010,79,694-699.
    [22] Lin N, Huang J, Chang P R, et al. Surface acetylation of cellulose nanocrystal and its reinforcingfunction in poly(lactic acid)[J]. Carbohydrate Polymers,2011,83,1834-1842.
    [23] Kono H, Yunoki S, Shikano T, et al. CP/MAS13C NMR study of cellulose and cellulose derivatives.1.Complete assignment of the CP/MAS13C NMR spectrum of the native cellulose[J]. Journal of TheAmerican Chemical Society,2002,124,7506-7511.
    [24] Zhang K, Brendler E, Geissler A, et al. Synthesis and spectroscopic analysis of cellulose sulfates withregulable total degrees of substitution and sulfation patterns via13C NMR and FT Ramanspectroscopy[J]. Polymer,2011,52,26-32.
    [25] Lennholm H, Larsson T, Iversen T. Determination of cellulose Iαand I in lignocellulosic materials[J].Carbohydrate Research,1994,261,119-131.
    [26]肖青,万金泉,王艳. CP/MAS13C NMR技术对木浆纤维微观结构的研究[J].化学学报,2009,67,2629-2634.
    [27]张会,邵秋娟,何建新等.竹纤维素纳米晶须的结构与性质[J].纤维素科学与技术,2012,20,27-33.
    [28] Wickholm K, Larsson P T, Iversen T. Assignment of non-crystalline forms in cellulose I by CP/MAS13C NMR spectroscopy[J]. Carbohydrate Research,1998,312,123-129.
    [29] Larsson P T, Wickholm K, Iversen T. A CP/MAS13C NMR investigation of molecular ordering incelluloses[J]. Carbohydrate Research,1997,302,19-25.
    [30]肖青. CP/MAS13C NMR在研究二次纤维衰变机理中的应用[J].北京联合大学学报(自然科学版),2008,22,35-39.
    [31] Freire C S R, Silvestre A J D, Pascoal Neto C, et al. Controlled heterogeneous modification ofcellulose fibers with fatty acids: Effect of reaction conditions on the extent of esterification and fiberproperties[J]. Journal of Applied Polymer Science,2006,100,1093-1102.
    [32] Heux L, Dinand E, Vignon M R. Structural aspects in ultrathin cellulose microfibrils followed by13CCP/MAS NMR[J]. Carbohydrate Polymers,1999,40,115-124.
    [33] Maunu S, Liitia T, Kauliomaki S, et al.13C CP/MAS NMR investigations of cellulose polymorphs indifferent pulps[J]. Cellulose,2000,7,147-159.
    [34] He J, Tang Y, Wang S. Differences in morphological characteristics of bamboo fibres and other naturalcellulose fibres: studies on X-ray diffraction, solid state13C-CP/MAS NMR, and second derivativeFTIR spectroscopy data[J]. Indian Polymer Journal,2007,16,807-818.
    [35] Rondeau-Mouro C, Bouchet B, Pontoire B, et al. Structural features and potential texturisingproperties of lemon and maize cellulose microfibrils[J]. Carbohydrate Polymers,2003,53,241-252.
    [36] Alemdar A, Sain M. Isolation and characterization of nanofibers from agricultural residues-wheatstraw and soy hulls[J]. Bioresource Technology,2008,99,1664-1671.
    [37] Oh S Y, Yoo D I, Shin Y, et al. Crystalline structure analysis of cellulose treated with sodiumhydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy[J]. CarbohydrateResearch,2005,340,2376-2391.
    [38] Bodirlau R, Teaca C A, Spiridon I. Chemical modification of beech wood: Effect on thermalstability[J]. Bioresource Technology,2008,3,789-800.
    [39] Adebajo M O, Frost R L, Kloprogge J T K, et al. Raman spectroscopic investigation of acetylation ofraw cotton[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2006,64,448-453.
    [40] Zafeiropoulos N E, Dijon G G, Baillie C A. A study of the effect of surface treatments on the tensilestrength of flax fibres: Part I. Application of Gaussian statistics[J]. Composites Part A,2007,38,621–628.
    [41] Sun X F, Sun R C. Comparative study of acetylation of rice straw fiber with or without catalysts[J].Wood and Fiber Science,2002,34,306-317.
    [42] Freire C S R, Silvestre A J D, Neto C P, et al. Surface characterization by XPS, contact anglemeasurements and ToF-SIMS of cellulose fibers partially esterified with fatty acids[J]. Journal ofColloid and Interface Science,2006,301,205-209.
    [43]张景强,林鹿,何北海等.不同结晶指数纤维素的X射线光电子能谱分析[J].林产化学与工业,2009,29,30-34.
    [44] Dorris G M, Gray D G. The surface analysis of paper and wood fiber by ESCA (1). Application tocellulose and lignin[J]. Cellulose Chemistry and Technology,1978,12,9-23.
    [45]曲萍,王璇,崔晓霞等.棒状纳米纤维素仿生矿化及光谱分析[J].光谱学与光谱分析,2012,32,1418-1422.
    [46] Liu H, Liu D, Yao F, et al. Fabrication and properties of transparent polymethylmethacrylate/cellulosenanocrystals composites[J]. Bioresource Technology,2010,101,5685-5692.
    [47] Zhang L N, Ruan D, Zhou J P. Structure and properties of regenerated cellulose films prepared fromcotton linters in NaOH/urea aqueous solution[J]. Ind. Eng. Chem. Res.2001,40,5923–5928.
    [48] Tingaut P, Zimmermann T, Lopez-Suevos F. Synthesis and characterization of bionanocomposites withtunable properties from poly(lactic acid) and acetylated microfibrillated cellulose[J].Biomacromolecules,2010,11,454-464.
    [49] Sassi J F, Chanzy H. Ultrastructural aspects of the acetylation of cellulose[J]. Cellulose,1995,2,111-127.
    [50] Hill C A S, Abdul Khalil H P, Hale M D. A study of the potential of acetylation to improve theproperties of plant fibres[J]. Industrial Crops and Products,1998,8,53-63.
    [51] Kadla J F, Korehei R. Effect of hydrophilic and hydrophobic interactions on the rheological behaviorand microstructure of a ternary cellulose acetate System[J]. Biomacromolecules,2010,11,1074-1081.
    [52] Appaw C, Gilbert R D, Khan S A, et al. Viscoelastic behavior of cellulose acetate in a mixed solventsystem[J]. Biomacromolecules,2007,8,1541-1547.
    [1] Striegel A M. Influence of anomeric configuration on mechanochemical degradation of polysaccharides:cellulose versus amylase[J]. Biomacromolecules,2007,8,3944-3949.
    [2] Kobayashi H, Ito Y, Komanoya T, et al. Synthesis of sugar alcohols by hydrolytic hydrogenation ofcellulose over supported metal catalysts[J]. Green Chemistry,2011,13,326-333.
    [3] Tomé L C, Pinto R J B, Trovatti E, et al. Transparent bionanocomposites with improved propertiesprepared from acetylated bacterial cellulose and poly(lactic acid) through a simple approach[J]. GreenChemistry,2011,13,419-427.
    [4] Qiu W, Zhang F, Endo T, et al. Milling-induced esterification between cellulose and maleatedpolypropylene[J]. Journal of Applied Polymer Science,2004,91,1703-1709.
    [5] J rres M, Mersmann S, Raabe G, et al. Organocatalytic solvent-free hydrogen bonding-mediatedasymmetric Michael additions under ball milling conditions[J]. Green Chemistry,2013, DOI:10.1039/C2GC36906K
    [6] Huang P, Wu M, Kuga S, et al. One-step dispersion of cellulose nanofibers by mechanochemicalesterification in an organic solvent[J]. ChemSusChem,2012,5,2319-2322.
    [7]胡飞.粉体机械力化学与淀粉微细化发展概况[J].化学工业与工程,2003,20,372-376.
    [8] Zhang W, Zhang X, Liang M, et al. Mechanochemical preparation of surface-acetylated cellulosepowder to enhance mechanical properties of cellulose-filler-reinforced NR vulcanizates[J].Composites Science and Technology,2008,2479-2484.
    [9] Liao Z, Huang Z, Hu H, et al. Microscopic structure and properties changes of cassava stillage residuepretreated by mechanical activation[J]. Bioresource Technology,2011,102,7953-7958.
    [10] Bruckmann A, Krebs A, Bolm C. Organocatalytic reactions: effects of ball milling, microwave andultrasound irradiation[J]. Green Chemistry,2008,2008,10,1131-1141.
    [11] Abagyan G V, Butyagin P Y. Mechanochemical initiation of free-radical reactions in polysaccharides[J].Polymer Science U.S.S.R.,1984,26,1466-1474.
    [12]马超,赵林,卢灿辉等.固相力化学改性高聚物的方法研究[J].高分子通报,2011,(8),48-52.
    [13]李冷,曾宪滨.粉碎机械力化学的进展及其在材料开发中的应用[J].武汉工业大学学报,1993,15,23-26.
    [14]卢灿辉,王琪.聚合物固体粉碎过程中力化学效应的应用[J].高分子材料科学与工程,2001,17,11-15.
    [15]殷海荣,武丽华,陈福.机械力化学合成纳米晶体的研究[J].化工新型材料,2005,33,36-38.
    [16] Liu L, Cheng L, Huang L, et al. Enzymatic treatment of mechanochemical modified natural bamboofibers[J]. Fibers and Polymers,2012,13,600-605.
    [17] Jeon I, Shin Y, Sohn G, et al. Edge-carboxylated grapheme nanosheets via ball milling[J]. PNAS,2012,109,5588-5593.
    [18]阎立峰,李婉,刘绍阳等.固体超强酸SO42-/Fe2O3催化绿色合成醋酸纤维素[J].中国科学技术大学学报,2006,36,422-425.
    [19] Zhang W, Li C, Liang M, et al. Preparation of carboxylate-functionalized cellulose via solvent-freemechanochemistry and its characterization as a biosorbent for removal of Pb2+from aqueoussolution[J]. Journal of Hazardous Materials,2010,181,468-473.
    [20] Huang Z, Liang X, Hu H, et al. Influence of mechanical activation on the graft copolymerization ofsugarcane bagasse and acrylic acid[J]. Polymer Degradation and Stability,2009,94,1737-1745.
    [21] Wang Y, Chen R, Wang K, et al. Fast, solvent-free and hydrogen-bonding-mediated asymmetricMichael addition in a ball mill[J]. Green Chemistry,2012,14,893-895.
    [22] Introzzi L, Blomfeldt T O J, Trabattoni S, et al. Ultrasound-assisted pullulan/montmorillonitebionanocomposite coating with high oxygen barrier properties[J]. Langmuir,2012,28,11206-11214.
    [23] Wong S, Kasapis S, Tan Y M. Bacterial and plant cellulose modification using ultrasound irradiation[J].Carbohydrate Polymers,2009,77,280-287.
    [24] Faria Tischer P C S, Sierakowski M R, Westfahl Jr. H, et al. Nanostructural reorganization of bacterialcellulose by ultrasonic treatment[J]. Biomacromolecules,2010,11,1217-1224.
    [25] Huang Z, Lu J, Li X, et al. Effect of mechanical activation on physic-chemical properties and structureof cassava starch[J]. Carbohydrate Polymers,2007,128-135.
    [26] Liu D, Zhong T, Chang P R, et al. Starch composites reinforced by bamboo cellulosic crystals[J].Bioresource Technology,2010,101,2529-2536.
    [27] Tomé L C, Brand o L, Mendes A M, et al. Preparation and characterization of bacterial cellulosemembranes with tailored surface and barrier properties[J]. Cellulose,2010,17,1203-1211.
    [1] Kalaskar D M, Ulijn R V, Gough J E, et al. Characterisation of amino acid modified cellulose surfacesusing ToF-SIMS and XPS[J]. Cellulose,2010,17,747-756.
    [2] Kalaskar D M, Gough J E, Ulijin R V, et al. Controlling cell morphology on amino acid-modifiedcellulose[J]. Soft Matter,2008,4,1059-1065.
    [3] Khan F Z, Shiotsuki M, Sanda F, et al. Synthesis and properties of amino acid esters of hydroxypropylcellulose[J]. Journal of Polymer Science Part A: Polymer Chemistry,2008,46,2326-2334.
    [4] Ikeuchi Y, Khan F Z, Onishi N, et al. Amino acid-functionalized ethyl cellulose: synthesis,characterization, and gas permeation properties[J]. Journal of Polymer Science Part A: PolymerChemistry,2010,48,3986-3993.
    [5] Barazzouk S, Daneault C. Spectroscopic characterization of oxidized nanocellulose grafted withfluorescent amino acids[J]. Cellulose,2011,18,643-653.
    [6]杜秀敏. Fmoc系列保护氨基酸的制备研究[D].南京工业大学,2004.
    [7] Granitza D, Beyermann M, Wenschuh H, et al. Efficient acylation of hydroxyl functions by means ofFmoc amino acid fluorides[J]. Journal of the Chemical Society, Chemical Communications,1995,0,2223-2224.
    [8] Alila S, Ferraria A M, do Rego A M B, et al. Controlled surface modification of cellulose fibers byamino derivatives using N,N’-carbonyldiimidazole as activator[J]. Carbohydrate Polymers,2009,77,,553-562.
    [9]谢钦钦,辛梅华,李明春等. PH响应水溶性荧光标记壳聚糖的制备及表征[J].化工进展,2010,29,1943-1946.
    [10]宋怀河,陈晓红,刘朗等.重质稠环芳烃的固体核磁共振光谱研究[J].化学学报,2001,59,1130-1134.
    [11] Kontturi E, Thüne P C, Niemantsverdriet J W. Novel method for preparing cellulose model surfaces byspin coating[J]. Polymer,2003,44,3621-3625.
    [12] Kontturi E, Thüne P C, Niemantsverdriet J W. Cellulose model surfaces-simplified preparation by spincoating and characterization by X-ray photoelectron spectroscopy, infrared spectroscopy, and atomicforce microscopy[J]. Langmuir,2003,19,5735-5741.
    [13] Habibi Y, Foulon L, Aguié-Béghin V, Molinari M, et al. Langmuir-Blodgett films of cellulosenanocrystals: preparation and characterization[J]. Journal of Colloid and Interface Science,2007,316,388-397.
    [14] Jansen R J J, van Bekkum H. XPS of nitrogen-containing functional groups on activated carbon[J].Carbon,1995,33,1021-1027.
    [15] Zubavichus Y, Zharnikov M, Shaporenko A, et al. Soft X-ray induced decomposition of phenylalanineand tyrosine: a comparative study[J]. The Journal of Physical Chemistry A,2004,108,4557-4565.
    [16]金洗郎.新型荧光素DNA荧光探针的合成及荧光性能的测定[D].西北大学,2011.
    [17]武祥龙.新型单克隆抗体荧光探针和pH值荧光探针的合成及免疫荧光组织化学应用[D].西北大学,2010.
    [1] Shiose Y, Kuga H, Ohki H, et al. Systematic research of peptide spacers controlling drug release frommacromolecular prodrug system, carboxymethyldextran polyalcohol-peptide-drug conjugates[J].Bioconjugate Chemistry,2009,20,60-70.
    [2] Huynh V T, Quek J Y, de Souza P L, et al. Block copolymer micelles with pendant bifunctional chelatorfor platinum drugs: effect of spacer length on the viability of tumor cells[J]. Biomacromolecules,2012,13,1010-1023.
    [3] Lutz J F, B rner H G. Modern trends in polymer bioconjugates design[J]. Progress in Polymer Science,2008,33,1-39.
    [4] Zhang H, Cai Z, Sun Y, et al. Folate-conjugated-cyclodextrin from click chemistry strategy and fortumor-targeted drug delivery[J]. Journal of Biomedical Materials Research A,2012,100,2441-2449.
    [5] Geng Q, Sun S, Gong T, et al. Peptide-drug conjugate linked via a disulfide bond for kidney targeteddrug delivery[J]. Bioconjugate Chemistry,2012,23,1200-1210.
    [6] Homma A, Sato H, Okamachi A, et al. Novel hyaluronic acid-methotrexate conjugates for osteoarthritistreatment[J]. Bioorganic&Medicinal Chemistry,2009,17,4647-4656.
    [7]曾戎.多糖基高分子-药物轭合物的设计、合成、表征和评价[M].华南理工大学出版社,2011.
    [8] Mocanu G, Airinei A, Carpov A. Macromolecular drug conjugates. V. Theophylline-dextran[J]. Journalof Controlled Release,1996,40,1-9.
    [9] Peppas N A. Analysis of Fickian and non-Fickian drug release from polymers[J]. Pharmaceutica actaHelvetiae,1985,60,110-111.
    [10]吕凤娇,许小平.阿霉素纳米粒体外释放模型的拟合研究[J].计算机与应用化学,2010,27,915-918.
    [11] Deng F, Liu Y. Study of the interaction between tosufloxacin tosylate and bovine serum albumin bymulti-spectroscopic methods[J]. Journal of Luminescence,2012,132,443-448.
    [12] Galindo-Rodríguez S A, Allémann E, Fessi H, et al. Polymeric nanoparticles for oral delivery of drugsand vaccines: a critical evaluation of in vivo studies[J]. Critical Reviews in Therapeutic Drug CarrierSystems,2005,22,419-463.
    [1] Mundargi R C, Babu V R, Rangaswamy V, et al. Nano/micro technologies for deliveringmacromolecular therapeutics using poly(D, L-lactide-co-glycolide) and its derivatives[J]. Journal ofControlled Release,2008,125,193-209.
    [2] Liang H F, Chen S C, Chen M C, et al. Paclitaxel-loaded poly(γ-glutamic acid)-poly(lactide)nanoparticles as a targeted drug delivery system against cultured HepG2cells[J]. BioconjugateChemistry,2006,17,291-299.
    [3] Liang H F, Chen C T, Chen S C, et al.Paclitaxel-loaded poly(γ-glutamic acid)-poly(lactide)nanoparticles as a targeted drug delivery system for the treatment of liver cancer[J]. Biomaterials,2006,27,2051-2059.
    [4] Avqoustakis K. Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation,properties and possible applications in drug delivery[J]. Current Drug Delivery,2004,1,321-333.
    [5] Thakkar H, Sharma R K, Mishra A K, et al. Albumin microspheres as carriers for the antiarthritic drugcelecoxib[J]. AAPS PharmSciTech,2005,6, E65-73.
    [6] Agnihotri S A, Mallikarjuna N N, Aminabhavi T M. Recent advances on chitosan-based micro andnanoparticles in drug delivery[J]. Journal of Controlled Release,2004,100,5-28.
    [7] Nogueira D R, Tavano L, Mitjans M, et al. In vitro antitumor activity of methotrexate via pH-sensitivechitosan nanoparticles[J]. Biomaterials,2013,11,2758-2772.
    [8] Kulkarni A R, Soppimath K S, Aminabhavi T M, et al. In vitro release kinetics of cefadroxil-loadedsodium alginate interpenetrating network beads[J]. European Journal of Pharmaceutics andBiopharmaceutics,2001,52,127-133.
    [9] Mallikarjuna B, Madhusudana R, Siraj S, et al. Sodium alginate/poly(ethylene oxide) blend hydrogelmembranes for controlled release of valganciclovir hydrochloride[J]. Design Monomers and Polymers,2013,2,151-159.
    [10] Patel R, Patel J. Novel technologies of oral controlled release drug delivery system[J]. SystematicReviews in Pharmacy,2010,2,128-131.
    [11] Chaturvedi K, Kulkarni A R, Aminabhavi T M. Blend microspheres of poly(3-hydroxybutyrate) andcellulose acetate phthalate for colon delivery of5-fluorouracil[J]. Industrial&Engineering ChemistryResearch,2011,50,10414-10423.
    [12] Reddy L H. Drug delivery to tumours: recent strategies. Journal of Pharmacy and Pharmacology,2005,57,1231-1242.
    [13] Desai K G H, Mallery S R, Schwendeman S P. Formulation and characterization of injectablepoly(DL-lactide-co-glycolide) implants loaded with N-acetylcysteine, a MMP inhibitor[J].Pharmaceutical Research,2008,25,586-597.
    [14] Holpuch A S, Hummel G J, Tong M, et al. Nanoparticles for local drug delivery to the oral mucosa:proof of principle studies[J]. Pharmaceutical Research,2010,27,1224-1236.
    [15] Mallery S R, Stoner G D, Larsen P E, et al. Formulation and in-vitro and in-vivo evaluation of amucoadhesive gel containing freeze dried black raspberries: implications for oral cancerchemoprevention[J]. Pharmaceutical Research,2007,24,728-737.
    [16] Shumway B S, Kresty L A, Larsen P E, et al. Effects of a topically applied bioadhesive berry gel onloss of heterozygosity indices in premalignant oral lesions[J]. Clinical Cancer Research,2008,14,2421-2430.
    [17] Ugalde C M, Liu Z, Ren C, et al. Distribution of anthocyanins delivered from a bioadhesive blackraspberry gel following topical intraoral application in normal healthy volunteers, PharmaceuticalResearch,2009,26,977-986.
    [18] Lee J W, Park J, Robinson H. Bioadhesive-based dosage forms: the next generation[J]. Journal ofPharmaceutical Sciences,2000,89,850-866.
    [19] Peh K K, Wong C F. Polymeric films as a vehicle for buccal delivery: swelling, mechanical andbioadhesive properties[J]. Journal of Pharmaceutical Science,1999,2,53-61.
    [20] Fulgêncio G de O, Viana F A B, Ribeiro R R, et al. New mucoadhesive chitosan film for ophthalmicdrug delivery of timolol maleate: in vivo evaluation[J]. Journal of Ocular Pharmacology andTherapeutics,2012,28,350-358.
    [21] Bernkop-Schnürch A.“Mucoadhesive polymers”. In: Polymeric Biomaterials,2nd ed.; Dumitriu S,Eds, Marcel Dekker, New York,2001,147-164
    [22] Warkul N, Robinson J R.“Drug delivery via mucosal routes”. In: Polymeric Biomaterials,2nd ed.;Dumitriu S, Eds, Marcel Dekker, New York,2001,1031-1062.
    [23] Peppas N A, Huang Y. Nanoscale technology of mucoadhesive interactions[J]. Advanced DrugDelivery Reviews,2004,56,1675-1687.
    [24] Edsman K, H qerstr m H. Pharmaceutical applications of mucoadhesion for the non-oral routes[J].Journal of Pharmacy and Pharmacology,2005,57,3-22.
    [25] Avachat A M, Gujar K N, Wagh K V. Development and evaluation of tamarind seed xyloglucan-basedmucoadhesive buccal films of rizatriptan benzoate[J]. Carbohydrate Polymers,2013,2,537-542.
    [26] Morales J O, McConville J T. Manufacture and characterization of mucoadhesive buccal films[J].European Journal of Pharmaceutics and Biopharmaceutics,2011,2,187-199.
    [27]白莉.黄芩苷口腔缓释膜的制备及性能[D].武汉理工大学,2007.
    [28] Wong C F, Yen K H, Peh K K. Formulation and evaluation of controlled release Eudragit buccalpatches[J]. International Journal of Pharmaceutics,1999,178,11-22.
    [29] Yehia S A, El-Gazayerly O N, Basalious E B. Fluconazole mucoadhesive buccal films: in vitro/in vivoperformance[J]. Current Drug Delivery,2009,6,17-27.
    [30]张迎庆,糜志远,陈祺等.新型甲硝唑口腔缓释膜的制备及体外释放[J].化学与生物工程,2008,25,69-70,76.
    [31] Czaja W K, Young D J, Kawecki M, et al. The future prospects of microbial cellulose in biomedicalapplication[J]. Biomacromolecules,2007,8,1-12.
    [32] Rahmat D, Müller C, Barthelmes J, et al. Thiolated hydroxyethyl cellulose: design and in vitroevaluation of mucoadhesive and permeation enhancing nanoparticles[J]. European Journal ofPharmaceutics and Biopharmaceutics,2013,83,149-155.
    [33] Mishra M, Mishra B. Mucoadhesive microparticles as potential carriers in inhalation delivery ofdoxycycline hyclate: a comparative study[J]. Acta Pharmaceutica Sinica B,2012,2,518-526.
    [34] Kesavan K, Nath G, Pandit J K. Preparation and in vitro antibacterial evaluation of gatifloxacinmucoadhesive gellan system[J]. DARU,2010,18,237-246.
    [35] Gandhi P A, Patel M R, Patel K R, et al. A review article on mucoadhesive buccal drug deliverysystem[J]. International Journal of Pharmaceutical research and development,2011,3,159-173.
    [36] Brown E E, Laborie M G. Bioengineering bacterial cellulose/poly(ethylene oxide) nanocomposites[J].Biomacromolecules,2007,8,3074-3081.
    [37] Shen Q, Liu D. Cellulose/poly(ethylene glycol) blend and its controllable drug release behaviors invitro[J]. Carbohydrate Polymers,2007,69,293-298.
    [38] Ponader S, Brandt H, Vairaktaris E, et al. In vivo performance of osteoactivated cellulose-basedscaffolds in bony critical-size defects[J]. Advanced Engineering Materials,2009,11, B89-B97.
    [39] Haroun A A, Gamal-Eldeen A, Harding D R K. Preparation, characterization and in vitro biologicalstudy of biomimetic three-dimensional gelatin-montmorillonite/cellulose scaffold for tissueengineering[J]. Journal of Materials Science: Materials in Medicine,2009,20,2527-2540.
    [40] Müller F A, Müller L, Hofmann I, et al. Cellulose-based scaffold materials for cartilage tissueengineering[J]. Biomaterials,2006,27,3955-3963.
    [41] Wang Z, Hu Q, Dai X, et al. Preparation and characterization of cellulose fiber/chitosan composites[J].Polymer Composites,2009,30,1517-1522.
    [42]刘佃森.温度和pH双敏性药物膜的制备及缓释性能研究[D].东华大学,2006.
    [43] Stummer S, Salar-Behzadi S, Unger F M, et al. Application of shellac for the development of probioticformulations[J]. Food Research International,2010,43,1312-1320.
    [44] Barnes C E. Chemical nature of shellac[J]. Industrial&Engineering Chemistry,1938,30,449-451.
    [45]董勤,邱坚,和润喜等.不同类型紫胶的红外光谱鉴别[J].光谱学与光谱分析,2004,24,585-587.
    [46] Daber R, Stayrook S, Rosenberg A, et al. Structural analysis of lac repressor bound to allostericeffectors[J]. Journal of Molecular Biology,2007,370,609-619.
    [47] Singh J P, Jaiswal A K, Monobrullah M, et al. Effect of selected pesticides on larval mortality of theneuropteran predator, Chrysopa lacciperda Kimmins of the lac insect, Kerria lacca (Kerr)[J]. Journalof Asia-Pacific Entomology,2010,13,69-72.
    [48] Kato K, Marui T, Kasai S, et al. Artificial control of transgene expression in chlamydomonasreinhardtii chloroplast using the lac regulation system from Escherichia coli[J]. Journal of Bioscienceand Bioengineering,2007,104,207-213.
    [49] Chairat M, Rattanaphani S, Bremner J B, et al. Adsorption kinetic study of lac dyeing on cotton[J].Dyes and Pigments,2008,76,435-439.
    [50] Antic D, Blagojevic B, Ducic M, et al. Treatment of cattle hides with shellac-in-ethanol solution toreduce bacterial transferability: a preliminary study[J]. Meat Science,2010,85,77-81.
    [51] Sandhya. Modified atmosphere packing of fresh produce: current status and future needs[J].LWT-Food Science and Technology,2010,43,381-392.
    [52] Hult E, Iotti M, Lenes M. Efficient approach to high barrier packing using microfibrillar cellulose andshellac[J]. Cellulose,2010,17,575-586.
    [53] Qussi B, Suess W G. The influence of different plasticizers and polymers on the mechanical andthermal properties, porosity and drug permeability of free shellac films[J]. Durg Development&Industrial Pharmacy,2006,32,403-412.
    [54] Limmatvapirat S, Limmatvapirat C, Puttipipatkhachorn S, et al. Modulation of drug release kinetics ofshellac-based matrix tablets by in-situ polymerization through annealing process[J]. European Journalof Pharmaceutics and Biopharmaceutics,2008,69,1004-1013.
    [55]朱铁梁,张磊,张莉等.黄芩苷水溶性栓剂的制备及体外释放特性研究[J].中国实验方剂学杂志,2010,16,1-3.
    [56] Chen Y, Hui H, Yang H, et al. Wogonoside induces cell cycle arrest and differentiation by affectingexpression and subcellular localization of PLSCRl in AML cells[J]. Blood,2013, doi:10.1182/blood-2012-11-466219.
    [57] Gal J, Fovet Y, Adib-Yadzi M. About a synthetic saliva for in vitro studies[J]. Talanta,2001,53,1103-1115.
    [58] Anlar S, Capan Y, Hincal A. Physico-chemical and bioadhesive properties of polyacrylic acidpolymers[J]. Pharmazie,1993,48,285-287.
    [59] Edgar K J. Cellulose esters in drug delivery[J]. Cellulose,2007,14,49-64.
    [60] Nafee N A, Ismail F A, Boraie N A, et al. Mucoadhesive buccal patches of miconazole nitrate: invitro/in vivo performance and effect of ageing[J]. International Journal of Pharmaceutics,2003,264,1-14.
    [61] Dodou D, Breedveld P, Wieringa P A. Mucoadhesives in the gastrointestinal tract: revisiting theliterature for novel applications[J]. European Journal of Pharmaceutics and Biopharmaceutics,2005,60,1-16.
    [62]陈思,丁平田.生物黏附制剂的研究进展[J].沈阳药科大学学报,2012,29,165-170.
    [63]高翔,潘五九.生物黏附制剂黏附聚合物的国内外研究进展[J].黑龙江医药,2010,23,604-606.
    [64] Dubolazov A V, Nurkeeva Z S, Mun G A, et al. Design of mucoadhesive polymeric films based onblends of poly(acrylic acid) and (hydroxypropyl)cellulose[J]. Biomacromolecules,2006,7,1637-1643.
    [65] Sriamornsak P, Thirawong N, Korkerd K. Swelling, erosion and release behavior of alginate-basedmatrix tablets[J]. European Journal of Pharmaceutics and Biopharmaceutics,2007,66,435-450.
    [66] Siepmann J, Peppas N A. Modeling of drug release from delivery systems based on hydroxypropylmetylcellulose (HPMC)[J]. Advanced Drug Delivery Reviews,2001,48,139-157.
    [67] Sriamornsak P, Thirawong N, Weerapol Y, et al. Swelling and erosion of pectin matrix tablets and theirimpact on drug relearse behavior[J]. European Journal of Pharmaceutics and Biopharmaceutics,2007,67,211-219.
    [68] Cui F, He C, Yin L, et al. Nanoparticles incorporated in bilaminated films: a smart drug deliverysystem for oral formulations[J]. Biomacromolecules,2007,8,2845-2850.
    [69] Prati S, Sciutto G, Mazzeo R, et al. Application of ATR-far-infrared spectroscopy to the analysis ofnatural resins[J]. Analytical and Bioanalytical Chemistry,2011,399,3081-3091.
    [70]刘世平,张弘,周梅村等.微波皂化法制备紫胶桐酸[J].食品科学,2011,32,79-84.
    [71]李凯,周梅村,张弘等.紫胶树脂溶解性及其钠盐的理化性质[J].食品科学,2010,31,159-164.
    [72] Corrigan D O, Healy A M, Corrigan O I. The effect of spray drying solutions of polyethylene glycol(PEG) and lactose/PEG on their physicochemical properties[J]. International Journal of Pharmaceutics,2002,235,193-205.
    [73]张树鹏.聚乙二醇/功能化石墨烯层状纳米复合材料热稳定性的提高[J].化学学报,2012,70,1394-1400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700