用户名: 密码: 验证码:
葛根淀粉基可食性包装膜物化与抗菌性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可食性包装膜能够减少食品的水分散失和营养成分消耗,防止微生物污染,有效延长食品的贮藏保鲜和销售期限,提高其商品价值与市场竞争力,已受到全世界的关注。在众多成膜基材中,淀粉产量丰富、廉价易得、处理简单、易生物降解且具有良好的阻气性能,是最具应用前景的原材料之一。
     葛根作为一种天然药物和保健食品,在我国储量丰富、分布广泛。目前葛根主要被用于提取药用成分,而其中含量丰富的淀粉却随废渣排出,未被有效利用,这既污染环境又浪费资源。若将废弃的淀粉充分回收并加以利用,将会获得更大的综合价值。因此,本论文以葛根淀粉为基材,制备了系列可食性包装膜并研究了相关物化特性,以期拓展葛根淀粉的应用,促进葛根产业的健康发展。
     研究内容及方法分以下四部分:
     一、考察制膜工艺(糊化温度80°C–100°C、糊化时间5min–60min、淀粉糊浓度1%–6%)对葛根淀粉可食性包装膜机械性能、透湿能力的影响;分析甘油含量(0%–40%)和环境相对湿度(50%、75%、100%)变化对葛根淀粉膜的综合影响,指标包括红外光谱、X–射线衍射图谱、热重差热分析、等温吸湿曲线等。结果发现:①本实验在糊化温度100°C、糊化时间15min、淀粉糊液浓度3%、甘油添加量30%的条件下得到了综合性能最优的葛根淀粉膜。②红外光谱表明淀粉C–O–C基团中C–O键对应峰的偏移受甘油含量及相对湿度变化的双重影响。③甘油能够促进葛根淀粉B型结晶的发展且能够与葛根淀粉形成V型结晶;相对湿度升高使得塑化葛根淀粉膜V型结晶峰强度减弱。④葛根淀粉膜的热重曲线可分为水分蒸发、甘油富集相分解和淀粉分解三个阶段,且淀粉分解阶段的活化能随甘油含量的增加而降低。
     二、研究非离子表面活性剂(吐温20、司盘80)对葛根淀粉/抗坏血酸膜液表面张力及润湿性能、抗坏血酸自膜中释放能力、膜结晶情况、表面及内部形貌、机械性能、阻水能力及水溶性等的影响。结果表明:①吐温20及司盘80均可显著降低葛根淀粉/抗坏血酸膜液的表面张力(P<0.05)。②单独加入吐温20可增强膜液在玻璃及石蜡基材上的润湿性,使膜变得更加平整,增大膜的水溶性;单独加入司盘80降低了膜液在石蜡基材上的接触角大小,增强了膜表面的粗糙度;混合表面活性剂增大了葛根淀粉膜的水蒸气透过率。③抗坏血酸从葛根淀粉膜向水中的扩散系数约为2.22×10~(–11)m~2s~(–1),表面活性剂的加入减缓了抗坏血酸的释放速率。④吐温20及司盘80均能有效抑制葛根淀粉B型结晶的发展,吐温20亦与葛根淀粉络合形成V型结晶。
     三、探讨壳聚糖酸溶剂(1%的乙酸、乳酸、苹果酸)对葛根淀粉/壳聚糖复合膜性能的影响及不同储藏环境(25°C常温储藏、–20°C冷冻储藏)下膜性能的变化;考察膜液流动性能、复合膜抗菌效果、分子间作用力、结晶情况、吸湿能力、机械性能、阻水能力、水溶性、颜色等指标。发现:①葛根淀粉/壳聚糖复合膜液是剪切变稀的假塑性流体;以乙酸、乳酸、苹果酸配制的膜液按此顺序表现出假塑性变小、牛顿性增大、稠度降低的规律。②复合膜对大肠杆菌的抑制效果优于对金黄色葡萄球菌的作用。③红外光谱、X–射线衍射分析表明,各成膜组分间具有良好的相容性。④乙酸葛根淀粉/壳聚糖膜的机械强度最大、水溶性最小、颜色最浅;乳酸葛根淀粉/壳聚糖膜的延展性最优;苹果酸葛根淀粉/壳聚糖膜的抗菌性最佳、吸水性最小、阻水性最强。⑤储藏时间显著影响复合膜水分含量、机械性能、阻水能力、颜色及水溶性(P<0.05);冷冻储藏能够延缓复合膜颜色变化,但对复合膜结晶性能、水分含量及水溶性的影响与常温储藏无显著性差异(P>0.05)。
     四、评价加入0.1%吐温20的葛根淀粉/壳聚糖/抗坏血酸复合膜的综合性能,指标包括膜液表面张力、接触角及流动性能、复合膜抗菌效果、抗坏血酸释放性能、机械性能、阻水能力、水溶性及颜色等。①膜液表面张力显著低于同等条件下葛根淀粉/抗坏血酸膜液的表面张力(P<0.05);膜液在玻璃基板上的接触角小于30°,在石蜡基板上的接触角小于90°;壳聚糖酸溶剂未对膜液表面张力及润湿性产生显著影响(P>0.05)。②乙酸葛根淀粉/壳聚糖膜中抗坏血酸释放主要受膜溶胀过程控制,乳酸、苹果酸葛根淀粉/壳聚糖膜中的释放还同时受膜溶蚀过程的影响。③和葛根淀粉/壳聚糖膜相比较,葛根淀粉/壳聚糖/抗坏血酸膜对大肠杆菌及金黄色葡萄球菌的抑制效果更为明显、膜亮度更低、颜色更深。
     研究结果表明,葛根淀粉能够与多种添加剂有效复配,制备性能较为理想的可食性复合包装膜,为拓展葛根淀粉的应用领域提供一定理论支持。
Edible films can reduce moisture loss and nutrient consumption, preventmicrobial contamination, and prolong the shelf life of food products. Edible filmsprovide bright application prospects in improving the market competitiveness of foodproducts and have attracted broad attentions nowadays. Among many naturalbiopolymers for forming edible films, starch is one of the most promising rawmaterials due to its abundance, low cost, simple treatment, biodegradability and goodvapor barrier ability.
     Kudzu as a natural medicine and healthy food is widely distributed in China.Kudzu is mainly used to extract medicinal ingredients now, whereas a great amount ofstarch rich in its root is just discharged, which not only spoils the environment butalso wastes resources. If the starch can be recovered and effectively utilized, it willget more comprehensive values. Therefore, in order to expaned the application filedsof kudzu starch and promote the healthy development of kudzu industry, thephysiochemical properties of kudzu starch based edible films were studied in thispaper. The main research methods and contents are as follows:
     (1) The influences of film–forming processes (pasting temperature from80°Cto100°C, gelatinization time from5min to60min, starch concentration from1%to6%) on mechanical property and water vapor permeability of kudzu starch edible filmwere studied; The effects of glycerol content (from0%to40%) and relative humidity(50%,75%, and100%) on the comprehensive properties (including FT–IR, XRD,TG–DTA, water sorption isotherms and so on) of the films were also evaluated. Theresults showed that:①The film showed the best performance when we chose thepasting temperature of100°C, gelatinization time of15min, starch concentration of3%, and glycerol content of30%.②FT–IR displayed that the shift of peakcorresponding to C–O in C–O–C group was affected by dual factors of glycerol content and relative humidity.③The intensity of B–type crystal diffraction enhancedgradually as glycerol content increased, and glycerol could form V–type crystal withkudzu starch; the intensity of diffraction peak relating to V–type crystal weakenedwith the increase of relative humidity.④TG curve of kudzu starch film presented3degradation steps representing water evaporation, degradation of the glycerol–richphase, and starch degradation, respectively. The activation energy value relating to themain starch degradation step was found to be negative linear with glycerol content.
     (2) The effects of surfactant (tween20and span80) on the surface tension andwettability of kudzu starch/ascorbic acid film–forming solution, the release behaviorof ascorbic acid from film to water, as well as the crystal structure, microstructure,mechanical property, water vapor permeability and solubility of the film wereevaluated. It was found that:①Each surfactant effectively decreased the surfacetension of the film–forming solution (P<0.05).②Only adding tween20improved thewettability of film–forming solution on both glass and paraffin wax substrates,smoothened the film’s surface, and enhanced the film’s solubility; Adding span80alone reduced the contact angle of film–forming solution on paraffin wax substratebut enhanced the surface roughness of the film; the use of blended–surfactantincreased the film’s water vapor permeability;③The diffusion coefficient ofwater–soluble ascorbic acid from kudzu starch/ascorbic acid film to water was about2.22×10~(–11)m~2s~(–1), and each surfactant could delay the release of ascorbic acid.④The addition of surfactant decreased the B–type crystal structure of the film, andadding tween20promoted the formation of V–type crystal.
     (3) Effects of acid types (acetic acid, lactic acid and malic acid at concentrationof1%) and storage conditions (25°C and–20°C, respectively) on the properties ofkudzu starch/chitosan composite film were investigated, including the fluidity offilm–forming solution, antibacterial activity, functional group interaction, crystalstructure, water sorption ability, mechanical property, water vapor barrier ability,solubility and color index of the resulting film. The data displayed that:①Thefilm–forming solution belonged to shear–thinning fluid. When chose acetic acid,lactic acid, and malic acid as solvent, the pseudoplasticity of film–forming solutiondeclined, newtonianism increased, and consistency decreased following the aboveorder.②The antibacterial effect of the composite film was stronger against E. colithan against S. aureus.③The film–forming component was compatible with eachother as evidenced by FT–IR and XRD spectra.④The composite film choosing acetic acid as solvent presented the strongest mechanical property, the smallestsolubility, and the lightest yellowness. The film mading from lactic acid solutiondisplayed the greatest flexible property. The film using malic acid as solvent showedthe best antibacterial activity and water barrier property, and the lowest water sorptionability.⑤Storage time significantly affected film’s water content, mechanicalproperty, water barrier ability, color and solubility (P <0.05); subzero temperaturedelayed the color changes of the film during storage. However, storage temperaturedid not influence the crystallization, water content, mechanical property and solubilityof the film (P>0.05).
     (4) The overall performance of kudzu starch/chitosan/ascorbic acid compositefilm with addition of0.1%tween20was evaluated, including surface tension, contactangle and fluidity of the film–forming solution, the antibacterial activity, releasebehavior of ascorbic acid, mechanical propertiy, water vapor permeability, solubility,and color index of the film.①Surface tension of kudzu starch/chitosan/ascorbic acidfilm–forming solution was significantly lower than the value of kudzu starch/ascorbicacid film–forming solution under the same experiment condition (P<0.05); the contactangle of the film–forming solution on the glass substrate was less than30°, and thecontact angle was less than90°on solid paraffin substrate; acid solvent type did notsignificantly affect the surface tension and wettability of film–forming solution(P>0.05).②The release of ascorbic acid from film choosing acetic acid as solventwas mainly controlled by film swelling process, and the release behavior of ascorbicacid from film made from lactic acid or malic acid was affected by thefilm–dissolution as well.③As compared with kudzu starch/chitosan composite film,the antibacterial ability was better, and the color was darker of kudzu starch/chitosan/ascorbic acid film.
     The results showed that kuzu starch can form relatively desired compositepackaging film by effectively blending with a variety of additives, and this manuscriptprovided some theoretical supports for expanding the application area of kuzu starch.
引文
[1]李凌芳.小麦醇溶蛋白膜的制备与性能研究[硕士学位论文].杭州:浙江大学,2008.
    [2]宫志强.可食性明胶-壳聚糖复合膜的制备及性能研究[硕士学位论文].济南:山东轻工业学院,2008.
    [3]王静平.添加海藻酸钠的可食性淀粉膜的研究[硕士学位论文].天津:天津大学,2007.
    [4] Avérous, L., Fringant, C., Moro, L. Starch-based biodegradable materials suitablefor thermoforming packaging. Starch/Staerke,2001,53(8):368-371.
    [5]姜燕,张昕,石晶,等.超声波处理玉米磷酸酯淀粉膜液对膜性能的影响.农业机械学报,2007,38(12):105-108.
    [6]于密军.柠檬酸改性豌豆淀粉的研究[硕士学位论文].天津:天津大学,2008.
    [7]吴颖.新型淀粉膜的制备及其结构和性能的研究[博士学位论文].天津:天津大学,2009.
    [8]李悦,李艳菊.国内外葛根功能食品研究进展.食品研究与开发,2007,28(12):174-177.
    [9]张锄亮.木生葛根栽培技术.农技服务,2003,11:16.
    [10]卢凤珠,刘力,徐一忠.从文献分析看我国葛根研究进展.江西林业科技,2004,1:32-34+42.
    [11]高愿军,熊卫东.食品包装.北京:化学工业出版社,2004.
    [12]徐中岳,何小维,罗志刚,等.多糖可食性包装膜的研究进展.食品研究与开发,2008,29(7):179-182.
    [13]Talja, R. A., Peura, M., Serimaa, R., et al. Effect of amylose content on physicaland mechanical properties of potato-starch-based edible films.Biomacromolecules,2008,9(2):658-663.
    [14]Mali, S., Grossmann, M. V. E., García, M. A., et al. Effects of controlled storageon thermal, mechanical and barrier properties of plasticized films from differentstarch sources. Journal of Food Engineering,2006,75(4):453-460.
    [15]García, N. L., Famá, L., Dufresne, A., et al. A comparison between thephysico-chemical properties of tuber and cereal starches. Food ResearchInternational,2009,42(8):976-982.
    [16]Paes, S. S., Yakimets, I., Mitchell, J. R. Influence of gelatinization process onfunctional properties of cassava starch films. Food Hydrocolloids,2008,22(5):788-797.
    [17]Alves, V. D., Mali, S., Beléia, A., et al. Effect of glycerol and amyloseenrichment on cassava starch film properties. Journal of Food Engineering,2007,78(3):941-946.
    [18]Dias, A. B., Müller, C. M. O., Larotonda, F. D. S., et al. Biodegradable filmsbased on rice starch and rice flour. Journal of Cereal Science,2010,51(2):213-219.
    [19]Mali, S., Grossmann, M. V. E., García, M. A., et al. Barrier, mechanical andoptical properties of plasticized yam starch films. Carbohydrate Polymers,2004,56(2):129-135.
    [20]Galdeano, M. C., Grossmann, M. V. E., Mali, S., et al. Effects of productionprocess and plasticizers on stability of films and sheets of oat starch. MaterialsScience and Engineering C,2009,29(2):492-498.
    [21]Romero-Bastida, C. A., Bello-Pérez, L. A., García, M. A., et al. Physicochemicaland microstructural characterization of films prepared by thermal and coldgelatinization from non-conventional sources of starches. Carbohydrate Polymers,2005,60(2):235-244.
    [22]谌小立,赵国华.影响可食性淀粉膜性能的因素研究.食品与发酵工业,2008,34(2):100-103.
    [23]Liu, Z., Han, J. H. Film-forming characteristics of starches. Journal of FoodScience,2005,70(1): E31-E36.
    [24]Rindlav-Westling,., Stading, M.,Gatenholm, P. Crystallinity and morphologyin films of starch, amylose and amylopectin blends. Biomacromolecules,2002,3(1):84-91.
    [25]Stading, M., Rindlav-Westling,., Gatenholm, P. Humidity-induced structuraltransitions in amylose and amylopectin films. Carbohydrate Polymers,2001,45(3):209-217.
    [26]姜闻博,乔秀颖,唐忠柱,等.乙酰化淀粉的塑化和性能研究.高分子学报,2006,2(1):97-101.
    [27]Bhandari, B. R., Roos, Y. H. Dissolution of sucrose crystals in the anhydroussorbitol melt. Carbohydrate Research,2003,338(4):361-367.
    [28]Noel, T. R., Parker, R., Ring, S. G. Effect of molecular structure and watercontent on the dielectric relaxation behaviour of amorphous low molecularweight carbohydrates above and below their glass transition. CarbohydrateResearch,2000,329(4):839-845.
    [29]Pouplin, M., Redl, A., Gontard, N. Glass transition of wheat gluten plasticizedwith water, glycerol, or sorbitol. Journal of Agricultural and Food Chemistry,1999,47(2):538-543.
    [30]Simperler, A., Kornherr, A., Chopra, R., et al. Glass transition temperature ofglucose, sucrose, and trehalose: An experimental and in silico study. Journal ofPhysical Chemistry B,2006,110(39):19678-19684.
    [31]Talja, R. A. Preparation and characterization of potato starch films plasticizedwith polyols. Helsinki: University of Helsinki,2007:7.
    [32]Dai, H., Chang, P. R., Geng, F., et al. Preparation and properties of starch-basedfilm using N,N-bis(2-hydroxyethyl)formamide as a new plasticizer. CarbohydratePolymers,2010,79(2):306-311.
    [33]Dai, H., Yu, J., Geng, F., et al. Preparation and properties of starch-based filmusing N-(2-hydroxyethyl)formamide as a new plasticizer. Polymer-PlasticsTechnology and Engineering,2009,48(8):866-870.
    [34]Tarvainen, M., Sutinen, R., Peltonen, S., et al. Enhanced film-forming propertiesfor ethyl cellulose and starch acetate using n-alkenyl succinic anhydrides as novelplasticizers. European Journal of Pharmaceutical Sciences,2003,19(5):363-371.
    [35]Bertuzzi, M. A., Castro Vidaurre, E. F., Armada, M., et al. Water vaporpermeability of edible starch based films. Journal of Food Engineering,2007,80(3):972-978.
    [36]荣瑞萍,杨莹.增塑剂与淀粉浆膜性能的关系.棉纺织技术,2009,37(2):20-22.
    [37]Flores, S., Famá, L., Rojas, A. M., et al. Physical properties of tapioca-starchedible films: Influence of filmmaking and potassium sorbate. Food ResearchInternational,2007,40(2):257-265.
    [38]Zhang, Y., Han, J. H. Plasticization of pea starch films with monosaccharides andpolyols. Journal of Food Science,2006,71(6): E253-E261.
    [39]Godbillot, L., Dole, P., Joly, C., et al. Analysis of water binding in starchplasticized films. Food Chemistry,2006,96(3):380-386.
    [40]Bergo, P. V. A., Carvalho, R. A., Sobral, P. J. A., et al. Physical properties ofedible films based on cassava starch as affected by the plasticizer concentration.Packaging Technology and Science,2008,21(2):85-89.
    [41]Talja, R. A., Helén, H., Roos, Y. H., et al. Effect of various polyols and polyolcontents on physical and mechanical properties of potato starch-based films.Carbohydrate Polymers,2007,67(3):288-295.
    [42]Mali, S., Sakanaka, L. S., Yamashita, F., et al. Water sorption and mechanicalproperties of cassava starch films and their relation to plasticizing effect.Carbohydrate Polymers,2005,60(3):283-289.
    [43]Zhang, Y., Han, J. H. Mechanical and thermal characteristics of pea starch filmsplasticized with monosaccharides and polyols. Journal of Food Science,2006,71(2): E109-E118.
    [44]Mathew, A. P., Dufresne, A. Plasticized waxy maize starch: Effect of polyols andrelative humidity on material properties. Biomacromolecules,2002,3(5):1101-1108.
    [45]Müller, C. M. O., Laurindo, J. B., Yamashita, F. Effect of cellulose fibersaddition on the mechanical properties and water vapor barrier of starch-basedfilms. Food Hydrocolloids,2009,23(5):1328-1333.
    [46]Phattaraporn, T., Waranyou, S., Fazilah, A., et al. Characteristics and propertiesof rice starch films reinforced with palm pressed fibers. International FoodResearch Journal,2010,17(3):537-547.
    [47]Famá, L., Gerschenson, L., Goyanes, S. Starch-vegetable fibre composites toprotect food products. Carbohydrate Polymers,2009,75(2):230-235.
    [48]Liu, D., Zhong, T., Chang, P. R., et al. Starch composites reinforced by bamboocellulosic crystals. Bioresource Technology,2010,101(7):2529-2536.
    [49]Chen, Y., Liu, C., Chang, P. R., et al. Pea starch-based composite films with peahull fibers and pea hull fiber-derived nanowhiskers. Polymer Engineering andScience,2009,49(2):369-378.
    [50]Orts, W. J., Shey, J., Imam, S. H., et al. Application of cellulose microfibrils inpolymer nanocomposites. Journal of Polymers and the Environment,2005,13(4):301-306.
    [51]Park, S. I., Daeschel, M. A., Zhao, Y. Functional properties of antimicrobiallysozyme-chitosan composite films. Journal of Food Science,2004,69(8):M215-M221.
    [52]Xiao, C., Zhu, L., Luo, W., et al. Combined action of pure oxygen pretreatmentand chitosan coating incorporated with rosemary extracts on the quality offresh-cut pears. Food Chemistry,2010,121(4):1003-1009.
    [53]Bourtoom, T., Chinnan, M. S. Preparation and properties of rice starch-chitosanblend biodegradable film. LWT-Food Science and Technology,2008,41(9):1633-1641.
    [54]Liu, F., Qin, B., He, L., et al. Novel starch/chitosan blending membrane:Antibacterial, permeable and mechanical properties. Carbohydrate Polymers,2009,78(1):146-150.
    [55]Vásconez, M. B., Flores, S. K., Campos, C. A., et al. Antimicrobial activity andphysical properties of chitosan-tapioca starch based edible films and coatings.Food Research International,2009,42(7):762-769.
    [56]Xu, Y. X., Kim, K. M., Hanna, M. A., et al. Chitosan-starch composite film:Preparation and characterization. Industrial Crops and Products,2005,21(2):185-192.
    [57]田春美,钟秋平.木薯淀粉/壳聚糖可食复合膜的制备及性能研究.食品研究与开发,2006,27(7):25-29.
    [58]Shen, X. L., Wu, J. M., Chen, Y., et al. Antimicrobial and physical properties ofsweet potato starch films incorporated with potassium sorbate or chitosan. FoodHydrocolloids,2010,24(4):285-290.
    [59]Durango, A. M., Soares, N. F. F., Benevides, S., et al. Development andevaluation of an edible antimicrobial film based on yam starch and chitosan.Packaging Technology and Science,2006,19(1):55-59.
    [60]Salleh, E., Muhamad, I. I. Starch-based antimicrobial films incorporated withlauric acid and chitosan. AIP Conference Proceedings,2010,1217:432-436.
    [61]Kampeerapappun, P., Aht-ong, D., Pentrakoon, D., et al. Preparation of cassavastarch/montmorillonite composite film. Carbohydrate Polymers,2007,67(2):155-163.
    [62]Wu, Y., Geng, F., Chang, P. R., et al. Effect of agar on the microstructure andperformance of potato starch film. Carbohydrate Polymers,2009,76(2):299-304.
    [63]Chen, C. H., Lai, L. S. Mechanical and water vapor barrier properties of tapiocastarch/decolorized hsian-tsao leaf gum films in the presence of plasticizer. FoodHydrocolloids,2008,22(8):1584-1595.
    [64]Chen, J., Liu, C., Chen, Y., et al. Structural characterization and properties ofstarch/konjac glucomannan blend films. Carbohydrate Polymers,2008,74(4):946-952.
    [65]Veiga-Santos, P., Oliveira, L. M., Cereda, M. P., et al. Mechanical properties,hydrophilicity and water activity of starch-gum films: Effect of additives anddeacetylated xanthan gum. Food Hydrocolloids,2005,19(2):341-349.
    [66]Jagannath, J. H., Nanjappa, C., Das Gupta, D. K., et al. Mechanical and barrierproperties of edible starch-protein-based films. Journal of Applied PolymerScience,2003,88(1):64-71.
    [67]Soares, R. M. D., Scremin, F. F., Soldi, V. Thermal stability of biodegradablefilms based on soy protein and corn starch. Macromolecular Symposia,2005,229(1):258-265.
    [68]Chen, C. H., Kuo, W. S., Lai, L. S. Effect of surfactants on water barrier andphysical properties of tapioca starch/decolorized hsian-tsao leaf gum films. FoodHydrocolloids,2009,23(3):714-721.
    [69]Rodríguez, M., Osés, J., Ziani, K., et al. Combined effect of plasticizers andsurfactants on the physical properties of starch based edible films. Food ResearchInternational,2006,39(8):840-846.
    [70]Bourtoom, T., Chinnan, M. S. Improvement of water barrier property of ricestarch-chitosan composite film incorporated with lipids. Food Science andTechnology International,2009,15(2):149-158.
    [71]李欣欣,马中苏,石晶,等.脂质-马铃薯淀粉基可食包装膜储藏性能研究.食品科学,2007,28(3):345-349.
    [72]李欣欣,宋艳翎,马中苏,等.脂质-马铃薯淀粉基可食包装膜的研究.食品工业科技,2004,25(12):101-102+104.
    [73]Jagannath, J. H., Radhika, M., Nanjappa, C., et al. Antimicrobial, mechanical,barrier, and thermal properties of starch-casein based, neem (Melia azardirachta)extract containing film. Journal of Applied Polymer Science,2006,101(6):3948-3954.
    [74]Corrales, M., Han, J. H., Tauscher, B. Antimicrobial properties of grape seedextracts and their effectiveness after incorporation into pea starch films.International Journal of Food Science and Technology,2009,44(2):425-433.
    [75]Sanjurjo, K., Flores, S., Gerschenson, L., et al. Study of the performance of nisinsupported in edible films. Food Research International,2006,39(6):749-754.
    [76]王相友,石启龙,王娟,等.双孢蘑菇护色保鲜技术研究.农业工程学报,2004,20(6):205-208.
    [77]郑吉祥,莫亿伟,胡一鸿,等.抗坏血酸对采后荔枝的保鲜效果.湖南农业大学学报(自然科学版),2009,35(3):278-283.
    [78]罗红艺,李玲,吴迪,等.两种保鲜剂对非洲菊切花的保鲜效应.贵州农业科学,2006,34(6):25-27.
    [79]叶倩,梁月荣,陈瑞鸿.绿茶饮料护色技术的研究进展.茶叶,2006,32(1):18-22.
    [80]欧阳杰.清洗、护色、包装等条件对鲜切豆类蔬菜品质保持的研究[硕士学位论文].上海:上海海洋大学,2008.
    [81]曾文兵.可食性复合涂膜保鲜剂对延长鲜切苹果货架期的研究.食品科学,2006,27(2):262-265.
    [82]Ayranci, E., Tunc, S. A method for the measurement of the oxygen permeabilityand the development of edible films to reduce the rate of oxidative reactions infresh foods. Food Chemistry,2003,80(3):423-431.
    [83]Ouattara, B., Giroux, M., Yefsah, R., et al. Microbiological and biochemicalcharacteristics of ground beef as affected by gamma irradiation, food additivesand edible coating film. Radiation Physics and Chemistry,2002,63(3-6):299-304.
    [84]Atarés, L., Pérez-Masiá, R., Chiralt, A. The role of some antioxidants in theHPMC film properties and lipid protection in coated toasted almonds. Journal ofFood Engineering,104(4):649-656.
    [85]郑皓,赵冉.不同品种葛根产地及化学成分分析研究.中医药管理杂志,2006,14(4):51-53.
    [86]钟海雁,韩军,苏勇,等.从葛根渣中酶法制备膳食纤维.作物学报,2005,31(12):1606-1610.
    [87]周红英.野葛与甘葛藤化学成分及淀粉理化特性和光合特性的研究[硕士学位论文].泰安:山东农业大学,2008.
    [88]程杰顺.葛粉冲溶特性的研究[硕士学位论文].合肥:合肥工业大学,2003.
    [89]常虹,周家华,兰彦平,等.葛根淀粉提取工艺研究.现代食品科技,2009,25(5):523-526.
    [90]Geng, Z., Zongdao, C., Yimin, W. Physicochemical properties of lotus (Nelumbonucifera Gaertn.) and kudzu (pueraria hirsute matsum.) starches. InternationalJournal of Food Science and Technology,2007,42(12):1449-1455.
    [91]Du, X. F., Xu, S. Y., Wang, Z. The morphology and characterization of starchfrom Pueraria lobata (Willd.) Ohwi. International Journal of Food Science andTechnology,2002,37(6):697-701.
    [92]赵世光.葛根淀粉的酶法改性及化学改性—速溶即食葛粉的研制[硕士学位论文].合肥:安徽农业大学,2003.
    [93]王光慈,陈宗道,包先进,等.葛根淀粉的形态结构及特性研究.西南农业大学学报,1996,18(1):91-94.
    [94]上官兵.速溶即食葛粉加工工艺的研究[硕士学位论文].北京:中国农业大学,2006.
    [95]杜先锋,许时婴,王璋.淀粉糊的透明度及其影响因素的研究.农业工程学报,2002,18(1):129-131+134.
    [96]杜先锋,许时婴,王璋.淀粉凝胶力学性能的研究.农业工程学报,2001,17(2):16-19.
    [97]张峥婧,吕峰.无糖葛粉果冻的研制.中国食品工业,2009,11:54-56.
    [98]关郁芳,麻成金,黄群,等.葛粉果糕的研制.食品与发酵科技,2010,46(3):101-103.
    [99]王满君.水性胶体对葛根粉丝加工特性及品质的影响[硕士学位论文].合肥:合肥工业大学.
    [100]周雅琳.葛根淀粉型油脂模拟物的研究[硕士学位论文].重庆:西南农业大学,2003.
    [101]樊镇棣.高含量抗性淀粉的制备及其生理功能的研究[硕士学位论文].南昌:南昌大学,2007.
    [102]张丽霞,周剑忠,谢一芝,等.葛根淀粉发酵生产酒精的研究.江苏农业科学,2008,5:242-244.
    [103]王春怡,杨方明,李卫民,等.不同来源的粉葛中总黄酮和葛根素的含量测定.时珍国医国药,2008,19(11):2772-2773.
    [104]Talja, R. A., Helén, H., Roos, Y. H., et al. Effect of type and content of binarypolyol mixtures on physical and mechanical properties of starch-based ediblefilms. Carbohydrate Polymers,2008,71(2):269-276.
    [105]Chen, C. H., Kuo, W. S., Lai, L. S. Water barrier and physical properties ofstarch/decolorized hsian-tsao leaf gum films: Impact of surfactant lamination.Food Hydrocolloids,2010,24(2-3):200-207.
    [106]黄洪媛,王金华,石庆楠,等.马铃薯的品质分析及利用评价.贵州农业科学,2010,38(11):24-28.
    [107]顾娟.荞麦淀粉理化特性及消化性研究[硕士学位论文].无锡:江南大学,2010.
    [108]赵萍,巩慧玲,赵瑛.不同品种马铃薯淀粉及其直链淀粉、支链淀粉含量的测定.兰州理工大学学报,2004,30(1):76-78.
    [109]张海艳,高荣岐,董树亭,等.不同类型玉米发育过程中淀粉糊化特性的比较.中国粮油学报,2010,25(9):13-16+22.
    [110]Ma, X. F., Yu, J. G. The effects of plasticizers containing amide groups on theproperties of thermoplastic starch. Starch-Starke,2004,56(11):545-551.
    [111]黄祖强,胡华宇,童张法,等.玉米淀粉的机械活化及其流变特性研究.食品与机械,2006(1):50-52+65.
    [112]林志荣,高群玉.淀粉的湿热处理及其发展前景.粮食与饲料工业,2005,8:22-23.
    [113]Wu, Y., Chen, Z. X., Li, X. X., et al. Effect of tea polyphenols on theretrogradation of rice starch. Food Research International,2009,42(2):221-225.
    [114]Rui, S., Quanyong, L., Tao, D., et al. Ageing of soft thermoplastic starch withhigh glycerol content. Journal of Applied Polymer Science,2007,103(1):574-86.
    [115]Galdeano, M. C., Mali, S., Grossmann, M. V. E., et al. Effects of plasticizers onthe properties of oat starch films. Materials Science&Engineering C-Biomimeticand Supramolecular Systems,2009,29(2):532-538.
    [116]Sreedhar, B., Sairam, M., Chattopadhyay, D. K., et al. Thermal, mechanical, andsurface characterization of starch-poly(vinyl alcohol) blends andborax-crosslinked films. Journal of Applied Polymer Science,2005,96(4):1313-1322.
    [117]Myllarinen, P., Partanen, R., Seppala, J., et al. Effect of glycerol on behaviour ofamylose and amylopectin films. Carbohydrate Polymers,2002,50(4):355-361.
    [118]Ziani, K., Oses, J., Coma, V., et al. Effect of the presence of glycerol and Tween20on the chemical and physical properties of films based on chitosan withdifferent degree of deacetylation. Lwt-Food Science and Technology,2008,41(10):2159-2165.
    [119]Bastos, D. D., Araujo, K. G. D., Leao, M. Ascorbic acid retaining using a newcalcium alginate-Capsul based edible film. Journal of Microencapsulation,2009,26(2):97-103.
    [120]黄德民,宋成满.乳化剂与面粉中大分子物质的相互作用及其应用.冷饮与速冻食品工业,2005,11(3):22-25+30.
    [121]Mondragon, M., Arroyo, K., Romero-Garcia, J. Biocomposites of thermoplasticstarch with surfactant. Carbohydrate Polymers,2008,74(2):201-208.
    [122]Flores, S., Conte, A., Campos, C., et al. Mass transport properties oftapioca-based active edible films. Journal of Food Engineering,2007,81(3):580-586.
    [123]Gemili, S., Yemenicioglu, A., Altinkaya, S. A. Development of antioxidant foodpackaging materials with controlled release properties. Journal of FoodEngineering,2010,96(3):325-332.
    [124]Ozdemir, M., Floros, J. D. Analysis and modeling of potassium sorbate diffusionthrough edible whey protein films. Journal of Food Engineering,2001,47(2):149-155.
    [125]Andreuccetti, C., Carvalho, R. A., Galicia-García, T., et al. Effect of surfactantson the functional properties of gelatin-based edible films. Journal of FoodEngineering,2011,103(2):129-136.
    [126]http://www.wcoat.com/blog/34797/viewspace-33455.html.
    [127]http://wenku.baidu.com/view/a83544d97f1922791688e82a.html.
    [128]Zactiti, E. M., Kieckbusch, T. G. Release of potassium sorbate from active filmsof sodium alginate crosslinked with calcium chloride. Packaging Technology andScience,2009,22(6):349-358.
    [129]Mondragón, M., Arroyo, K., Romero-García, J. Biocomposites of thermoplasticstarch with surfactant. Carbohydrate Polymers,2008,74(2):201-208.
    [130]Kokoszka, S., Debeaufort, F., Hambleton, A., et al. Protein and glycerol contentsaffect physico-chemical properties of soy protein isolate-based edible films.Innovative Food Science and Emerging Technologies,2010,11(3):503-510.
    [131]Villalobos, R., Hernández-Mu oz, P., Chiralt, A. Effect of surfactants on watersorption and barrier properties of hydroxypropyl methylcellulose films. FoodHydrocolloids,2006,20(4):502-509.
    [132]Chen, P. H., Kuo, T. Y., Liu, F. H., et al. Use of dicarboxylic acids to improveand diversify the material properties of porous chitosan membranes. Journal ofAgricultural and Food Chemistry,2008,56(19):9015-9021.
    [133]Kim, K. M., Son, J. H., Kim, S. K., et al. Properties of chitosan films as afunction of pH and solvent type. Journal of Food Science,2006,71(3):E119-E124.
    [134]Ritthidej, G. C., Phaechamud, T., Koizumi, T. Moist heat treatment onphysicochemical change of chitosan salt films. International Journal ofPharmaceutics,2002,232(1-2):11-22.
    [135]Park, S. Y., Marsh, K. S., Rhim, J. W. Characteristics of different molecularweight chitosan films affected by the type of organic solvents. Journal of FoodScience,2002,67(1):194-197.
    [136]Chen, R. H., Chen, W. Y., Wang, S. T., et al. Changes in the Mark-Houwinkhydrodynamic volume of chitosan molecules in solutions of different organicacids, at different temperatures and ionic strengths. Carbohydrate Polymers,2009,78(4):902-907.
    [137]Bajpai, S. K., Chand, N.,Chaurasia, V. Investigation of water vapor permeabilityand antimicrobial property of Zinc Oxide nanoparticles-loaded chitosan-basededible film. Journal of Applied Polymer Science,2010,115(2):674-683.
    [138]王永伟.水相沉淀法制备丙烯腈/丙烯酰胺共聚物及其性能研究[硕士学位论文].济南:山东大学,2010.
    [139]黄祖强,童张法,黎铉海,等.机械活化对木薯淀粉的溶解度及流变学特性的影响.高校化学工程学报,2006,20(3):449-454.
    [140]谭洪卓,谷文英,刘敦华,等.甘薯淀粉糊与绿豆淀粉糊流变行为的共性与区别.农业工程学报,2006,22(7):32-37.
    [141]Chung, Y. C., Chen, C. Y. Antibacterial characteristics and activity ofacid-soluble chitosan. Bioresource Technology,2008,99(8):2806-2814.
    [142]Malinowska-Pańczyk, E., Ko odziejska, I., Murawska, D., et al. The combinedeffect of moderate pressure and chitosan on Escherichia coli and Staphylococcusaureus cells suspended in a buffer and on natural microflora of apple juice andminced pork. Food Technology and Biotechnology,2009,47(2):202-209.
    [143]Simpson, B. K., Gagné, N., Ashie, I. N. A., et al. Utilization of chitosan forpreservation of raw shrimp (Pandalus borealis). Food Biotechnology,1997,11(1):25-44.
    [144]Lund, B. M., Baird-Parker, T. C., Gould, G. W. The microbiological safety andquality of food.2000: Gaithersburg, MD: Aspen,1324.
    [145]Padan, E., Zilberstein, D., Rottenberg, H. The proton electrochemical gradient inEscherichia coli cells. European Journal of Biochemistry,1976,63(2):533-541.
    [146]Sabaa, M. W., Mohamed, N. A., Mohamed, R. R., et al. Synthesis,characterization and antimicrobial activity of poly (N-vinyl imidazole) graftedcarboxymethyl chitosan. Carbohydrate Polymers,2010,79(4):998-1005.
    [147]Huang, C., Chen, Y. Coagulation of colloidal particles in water by chitosan.Journal of Chemical Technology and Biotechnology,1996,66(3):227-232.
    [148]Domard, A., Rinaudo, M., Terrassin, C. Adsorption of chitosan and aquaternized derivative on kaolin. Journal of Applied Polymer Science,1989,38(10):1799-1806.
    [149]Jou, C. H., Lin, S. M., Yun, L., et al. Biofunctional properties of polyester fibersgrafted with chitosan and collagen. Polymers for Advanced Technologies,2007,18(3):235-239.
    [150]Pranoto, Y., Rakshit, S. K., Salokhe, V. M. Enhancing antimicrobial activity ofchitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT-Food Science and Technology,2005,38(8):859-865.
    [151]Pushpadass, H. A., Marx, D. B., Hanna, M. A. Effects of Extrusion Temperatureand Plasticizers on the Physical and Functional Properties of Starch Films.Starch-Starke,2008,60(10):527-538.
    [152]Wang, H. Y., Huang, M. F. Preparation, characterization and performances ofbiodegradable thermoplastic starch. Polymers for Advanced Technologies,2007,18:910-915.
    [153]Mathew, S., Brahmakumar, M., Abraham, T. E. Microstructural imaging andcharacterization of the mechanical, chemical, thermal, and swelling properties ofstarch-chitosan blend films. Biopolymers,2006,82(2):176-187.
    [154]Sebti, I., Chollet, E., Degraeve, P., et al. Water sensitivity, antimicrobial, andphysicochemical analyses of edible films based on HPMC and/or chitosan.Journal of Agricultural and Food Chemistry,2007,55(3):693-699.
    [155]Deng, Y., Zhu, L. W., Luo, W., et al. Changes in physical properties of chitosanfilms at subzero temperatures. Italian Journal of Food Science,2009,21(4):487-497.
    [156]Kanatt, S. R., Chander, R., Sharma, A. Chitosan glucose complex-A novel foodpreservative. Food Chemistry,2008,106(2):521-528.
    [157]Kerch, G., Korkhov, V. Effect of storage time and temperature on structure,mechanical and barrier properties of chitosan-based films. European FoodResearch and Technology,2010,232(1):17-22.
    [158]Butler, B. L., Vergano, P. J., Testin, R. F., et al. Mechanical and barrierproperties of edible chitosan films as affected by composition and storage.Journal of Food Science,1996,61(5):953-955+961.
    [159]Osés, J., Fernández-Pan, I., Mendoza, M., et al. Stability of the mechanicalproperties of edible films based on whey protein isolate during storage atdifferent relative humidity. Food Hydrocolloids,2009,23(1):125-131.
    [160]冯守爱,林宝凤,梁兴泉,等.壳聚糖保鲜膜界面润湿特性的研究.化工技术与开发,2004,33(2):1-3.
    [161]Garstecki, P., Fuerstman, M. J., Whitesides, G. M. Nonlinear dynamics of aflow-focusing bubble generator: An inverted dripping faucet. Physical ReviewLetters,2005,94(23):1-4.
    [162]Tajkarimi, M., Ibrahim, S. A. Antimicrobial activity of ascorbic acid alone or incombination with lactic acid on Escherichia coli O157:H7in laboratory mediumand carrot juice. Food Control,2011,22(6):801-804.
    [163]Liu, H., Du, Y., Wang, X., et al. Interaction between chitosan and alkylβ-D-glucopyranoside and its effect on their antimicrobial activity. CarbohydratePolymers,2004,56(2):243-250.
    [164]刘慧.壳聚糖及其表面活性剂复合物的抗菌性与抗菌机理的研究[硕士学位论文].武汉:武汉大学,2004.
    [165]León, P. G., Lamanna, M. E., Gerschenson, L. N., et al. Influence ofcomposition of edible films based on gellan polymers on l-(+)-ascorbic acidstability. Food Research International,2008,41(6):667-675.
    [166]León, P. G., Rojas, A. M. Gellan gum films as carriers of l-(+)-ascorbic acid.Food Research International,2007,40(5):565-575.
    [167]Bastos, D. d. S., Araújo, K. G. d. L., Le o, M. H. M. d. R. Ascorbic acidretaining using a new calcium alginate-Capsul based edible film. Journal ofMicroencapsulation,2009,26(2):97-103.
    [168]Seacheol, M., Krochta, J. M. Ascorbic acid-containing whey protein filmcoatings for control of oxidation. Journal of Agricultural and Food Chemistry,2007,55(8):2964-2969.
    [169]张妍,王可兴,潘思轶.外源因子对贮藏橙汁色泽影响研究.食品科学,2006,27(11):74-77.
    [170]Choi, M. H., Kim, G. H., Lee, H. S. Effects of ascorbic acid retention on juicecolor and pigment stability in blood orange (Citrus sinensis) juice duringrefrigerated storage. Food Research International,2002,35(8):753-759.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700