用户名: 密码: 验证码:
表面活性离子液体在水溶液中的聚集行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂是一大类有机化合物,与我们的日常生活密切相关。在实际应用中,表面活性剂往往是复配使用的。表面活性剂与添加剂以及不同种类表面活性剂之间混合形成的体系在结构、形状、性质等方面,与单纯的表面活性剂相比,往往发生了很大的变化。比如单纯的阳离子型或阴离子型表面活性剂在水中形成球形胶束,但是两者以不同浓度复配,从相行为来说,能形成均一相、双水相或者沉淀;从溶液中形成的聚集体方面来说,则含有球形或蠕虫状胶束、囊泡等。除此之外,复配体系在温度、光、电、pH等外界因素影响下还会发生相转变。因此,表面活性剂复配性质的研究,具有重要的理论价值。
     离子液体作为一种新兴的绿色溶剂,由于在众多领域的应用,引起人们广泛的关注。通过增长疏水链的链长,可以使其成为具有表面活性的离子液体,从而构建出不同类型的有序分子聚集体。离子液体参与构筑的有序分子聚集体,既可以将离子液体的特性引入到传统的有序分子聚集体中,有助于改善聚集体的性质,又可以进一步拓展离子液体自身的应用。这类研究不仅丰富了离子液体的种类,也为离子液体应用于不同领域提供了理论依据和技术支持,因此具有重要的意义。
     本文以具有表面活性的离子液体为研究对象,讨论了吡咯烷类的表面活性离子液体分别与外加盐、阴离子型表面活性剂混合时体系的相行为;咪唑类表面活性离子液体和苯丙烯酸混合体系在紫外光照下,相行为发生的变化。论文的内容分为四个部分:
     第一章简介了表面活性剂的溶液性质和具有表面活性的离子液体参与构筑的有序分子聚集体,并重点介绍了蠕虫状胶束的性质及典型的体系。
     第二章研究了表面活性离子液体[C16mim]Br和具有光敏感的物质苯丙烯酸的混合体系。苯丙烯酸具有顺反结构,在紫外光照下反式结构可以转化为顺式结构。紫外光谱图证明了结构的转化,通过核磁谱图可以进一步计算出转化率为60%。而顺式结构在光照下,并不能转化为反式结构,说明苯丙烯酸结构转化是不可逆的。在自然界中,苯丙烯酸主要以反式结构存在,所以本章研究了反式苯丙烯酸(trans-CA)和[C16mim]Br混合体系。当[C16mim]Br浓度在40mmol/L以下时,混合体系中的聚集体为球形胶束,并且和trans-CA的浓度无关;[C16mim]Br浓度在40mmol/L和90mmol/L之间时,体系先是溶液,随着trans-CA的浓度增加到一定程度之后,溶液变为具有粘弹性、双折射现象的均一相,流变数据表明是蠕虫状胶束;在[C16mim]Br浓度超过90mmol/L后,形成沉淀区,但是在trans-CA超过一定浓度之后,体系又转变为有粘弹性的均一相,为蠕虫状胶束。所以从浓度角度来划分,在研究的范围内混合体系分为均一相(球形胶束)、多相区和均一相(蠕虫状胶束)。在紫外光照下,[C16mim]Br和trans-CA形成的蠕虫状胶束可以转化为球形胶束,流变数据和Cryo-TEM都证明了这一变化。这是由于在紫外光照下,trans-CA发生光异构化转变为cis-CA,造成有效截面积αs增大,引起临界堆积参数降低,混合体系从蠕虫状胶束转化为球形胶束。
     第三章讨论了有机盐诱导吡咯烷类表面活性离子液体形成蠕虫状胶束。以吡咯烷离子液体(C16MPB)的对甲苯磺酸钠(NaTos)水溶液为研究体系,固定C16MPB的浓度,改变NaTos浓度,用流变学方法、低温透射电镜和蠕虫状胶束理论模型进行研究讨论。研究表明:C16MPB/NaTos体系形成粘弹性溶液,在剪切速率作用下,初始阶段剪切应力随剪切速率线性增加,然后趋向平台区,且没有屈服应力,属于假塑性流体;在低频时,体系的粘性性质是主要的,到了高频,则表现为弹性性质,符合Maxwell模型;体系的剪切粘度和复合粘度在相应的剪切速率和振荡频率下具有相似值,符合Cox-Merz规则;稳态剪切表现出剪切变稀现象,Cryo-TEM也进一步印证了流变的结果,说明体系形成了蠕虫状胶束。本章的研究工作扩展了表面活性离子液体的应用范围。
     第四章研究了阴阳离子复配体系。阴阳离子表面活性剂复配具有很高的表面活性,可以产生丰富的相行为,但是二者混合又容易产生沉淀,限制了其应用。本章研究了具有表面活性的吡咯烷离子液体(C16MPB)和阴离子表面活性剂十二烷基苯磺酸钠(SDBS)复配体系。研究内容包括两方面:当C16MPB与SDBS混合比例较高时,形成均一相,包括普通溶液和高粘弹性溶液;当二者在等摩尔比例附近时,形成双水相。
     (1)在高摩尔混合比例条件下,C16MPB和SDBS可以形成均一相。当C16MPB与SDBS摩尔比例大于10时,形成无偏光、没有粘弹性的普通溶液;当二者比例在7.3~5之间时,可以形成有粘弹性的溶液,流变数据表明体系的粘弹性符合Maxwell模型。这种粘弹性体系的形成,是带不同电荷的极性头基之间静电作用的结果。
     (2)在等摩尔比例附近很窄的范围内,C16MPB与SDBS形成双水相。双水相的形成时间和浓度有关,浓度越高,形成双水相所需时间也就越长。在实验范围内,最长需要两周才能形成双水相。而形成之后的双水相很稳定,25℃下可以保持一年以上。通过偏光、TEM、DLS、表面张力等手段表征,确认双水相的上下相中都含有囊泡。不同的是上相是表面活性剂富集的以松散的、类似网状结构形式存在的囊泡相,而下相是含有少量分散囊泡的表面活性剂稀溶液。
The self-assembly of surfactant molecules is of fundamental interest and is important in many applications such as nanomaterial synthesis, drug delivery, separation, pharmaceutical formulation, and other dispersant technologies. Recently, the mixed systems of surfactants with salt or other surfactants have received many attentions due to their higher surface activity than individual surfactant. The cationic and anionic surfactants mixed system, generally called catanionic system, is taken as a typical example, which has unique characteristics. Many catanionic systems have their own specialty in forming aggregates with various morphologies. The mixed surfactant systems can also transform from one phase to another phase under external stimuli, such as light, redox reaction, pH. and temperature. Therefore, the study of mixed surfactant systems is valuable in the theoretical research.
     As a novel kind of green solvents, ionic liquids (ILs) have attracted a lot of attentions due to their unique properties. Their physicochemical properties can be easily modulated by suitable selection of cations and anions. An interesting characteristic of ILs is that the cations possess an inherent amphiphilicity, such as1-alkyl-3-methylimidazolium ([C17mim]+),. Therefore, these ILs can exhibit as novel surfactants to self-assemble to form aggregates with specific structure, shape, and properties. The investigations of surface active ILs can enrich the species of ILs and also establish the basis for their applications in different fields. There are four main parts in this dissertation.
     Chapter one is a brief introduction of the research background of this work, in which the basic knowledge of surfactant solution and aggregates of surface active ILs are introduced. Especially, the properties of wormlike micelles and the typical system of formed wormlike micelles are focused on.
     In Chapter two, a photo-responsive system composed of an imidazolium-type surfactant1-hexadecyl-3-methylimidazolium bromide ([C16mim]Br) and a commonly photosensitive aromatic compound cinnamic acid (CA) is investigated. There are several isoforms and analogs of CA in nature. The trans-and cis-forms are two configurational stereoisomers of CA, and trans-CA is the predominate form of natural CA. So in this work, the mixed system of [C16mim]Br and trans-CA is studied.. Under the UV irradiation, trans-CA can transform to cis-CA. UV spectra proves that the structural transformation of CA, and the conversion ratio calculated by the1H NMR spectrum is60%. In aqueous solution, the compounds [C16mim]Br and trans-CA can form three phase regions:homogeneous phase (spherical micelles), heterogeneous phase (precipitation), and homogeneous phase (wormlike micelles). When the concentration of [C16mim]Br and trans-CA reaches a certain value, the mixed system shows highly viscous, viscoelastic, and flow-birefringence phenomenon. All these phenomenon and rheological results indicate the presence of wormlike micelles. After the UV irradiation, the flow-birefringence phenomenon disappears, meanwhile the viscosity drops. The rheological and visual observations indicate a phase transition from long, wormlike micelles to much shorter micelles upon UV irradiation. Cryo-TEM pictures further proves the phase transition intuitively. This transition is due to the molecular photoisomerization of CA molecules from trans-to cis-, which results in the increase of effective cross-sectional. Then the molecular critical packing decreases and wormlike micelles transform to spherical micelles.
     In Chapter three, the formation of wormlike micelle of surface active ILs induced by organic salts in water is investigated. Rheological methods and cryo-TEM measurement were employed to study the viscoelastic properties and formation of wormlike micelles, which are formed by N-hexadecyl-N-methylpyrrolidinium bromide (C16MPB) in aqueous solution in the presence of sodium tosylate (NaTos). The NaTos concentration is varied while the C16MPB concentration is fixed.
     The surface active ILs can form wormlike micelles in the presence of organic salts, which is similar to the conventional ionic surfactants (e.g., alkyltrimethylammonium bromide) in aqueous solution. At low shear rates, the relationship between stress and shear rate is linear. There is almost no stress yield value for the C16MPB/NaTos wormlike micelles, exhibiting pseudoplastic fluids. The modulus G' is initially smaller than G", indicating that the system is more viscous than elastic. Then, as frequency increases, G'> G", showing the elastic behavior. The steady-shear viscosity (η) and the absolute value of the complex viscosity (η*) are superimposed at equivalent values of shear rate(γ) and frequency (ω), suggesting that C16MPB/NaTos wormlike micelles obeys the Cox-Merz rule. The C16MPB/NaTos wormlike micelles also follow the Maxwell behavior. The Cryo-TEM images confirms the formation of wormlike micelles in aqueous solution. The effect of hydrocarbon chain length of ILs on the wormlike micelles formation is also studied.
     In Chapter four, the mixed system of cationic and anionic surfactants is studied. The mixtures of cationic and anionic surfactant generally have great industrial significance. They exhibit a wide range of unique properties, aggregate morphologies, and interesting phase behaviors. However, except for few systems, most of the mixtures of catanionic surfactant form precipitates or become turbid, which limits their research and application. In this work, we investigated the mixed system of C16MPB and sodium dodecylbenzenes sulfonate (SDBS). The work can be divided into two parts:the homogeneous phase and aqueous two-phase system (ATPS) at different mixture molar ratios. The results are listed below:
     (1) C16MPB and SDBS can form homogeneous phase at high molar ratio. When the molar ratio of C16MPB:SDBS is greater than10, the homogeneous phase is ordinary solutions without polarized light and viscoelasticity. When the ratio of C16MPB: SDBS is between7.3and5. the solution shows high viscoelasticity. Typical rheological results indicate that the viscoelasticity of system follows the Maxwell model. This is due to the strong electrostatic interactions between the oppositely charged headgroups.
     (2) The system of C16MPB/SDBS forms ATPS within a narrow range near equimolar ratio. Time of ATPS formation is related to total concentration of surfactant. The higher the concentrations are, the longer the formation time becomes. The longest formation time of ATPS in experiment range is about two week. The formed ATPS is very stable and can be maintained for more than one year at25℃. All the POM, DLS, TEM, and surface tension results confirm that the aggregates are in the upper phase, and lower phase of ATPS contains vesicles. The possible formation mechanism of ASTP can be explained as follows. When C16MPB and SDBS are mixed at equimolar ratio, vesicles are formed. More and more vesicles aggregate together. Then the aggregated vesicles form a type of network structure containing water and the network structure separates from the original phase. Compared with the other dispersed vesicles, the surface charge of aggregated vesicles is closer to1:1which led to lower density. As a result, the network structure composed of aggregated vesicles formed the upper part of ATPS, while those dispersed vesicles formed the lower part.
引文
[1]赵国玺;朱步瑶.表面活性剂原理[M].北京:中国轻工业出版社,2003.
    [2]Cindman, B.; Wennerstron, H. Topic in current chemistry [J].1980; Vol.87, p1.
    [3]Schik, M. J. Nonionic surfactants:physical chemistry [J]. CRC Press, Florida: 1987; Vol.23.
    [4]Corrin, M. L.; Harkins, W. D. The effect of salts on the critical concentration for the formation of micelles in colloidal electrolytes [J]. J. Am. Chem. Soc.,1947, 69(3):683-688.
    [5]Hamann, B. D. The influence of pressure on the formation of micelles in aqueous solutions of sodium dodecyl sulfate [J]. J. Phys. Chem.,1962,66(7):1359-1361.
    [6]Gunnarsson,G.; Jonsson, B.; Wennerstrom, H. Surfactant association into micelles. An electrostatic approach[J]. J. Phys. Chem.,1980,84(23):3114-3121.
    [7]Shinoda, K.; Hutchionson. Pseudo-phase separation model for thermodynamic calculations on micellar solutions[J]. J. Phys. Chem.,1962,66(4):577-582.
    [8]Mcbain, J. W.; Salmon, C. S. Colloidal electrolytes. Soap solutions and their constitution [J]. J. Am. Chem. Soc.,1920,42(3):426-460.
    [9]Mathews, M. B.; Hirschhorn, E. Solubilization and micelle formation in a hydrocarbon medium [J]. J. Colloid Sci.,1953,8(1):86-96.
    [10]Rosen, M. J.; Hua, X. Y. Surface concentrations and molecular interactions in binary mixtures of surfactants [J]. J. Colloid and Interface Sci.,1982,86(1): 164-172.
    [11]Rosen M, J.; Zhou, Q. Surfactant-surfactant interactions in mixed monolayer and mixed micelle formation [J]. Langmuir,2001.17(12):3532-3537.
    [12]Schwartz, A. M.;Perry. J. W. Surface active agents [M]. New York.1949.
    [13]Kaler. E. W.; Herrington. K. L.:Murthy. A. K.; Zasadzinski. J. A. N. Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science.1989. 245:1371-1374.
    [14]Kaler, E. W.; Herrington, K. L.; Murthy, A. K. Phase behavior and structure of mixtures of anionic and cationic surfactants [J]. J. Phys. Chem.,1992,96(16): 6698-6707.
    [15]Herrington, K. L.:Kaler, E. W.; Miller. D. D.; Zasadzinski. J. A.:Chiruvolu. S. Phase behavior of aqueous mixtures of dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl sulfate (SDS) [J]. J. Phys. Chem,1993,97(51): 13792-13802
    [16]Yatcilla M. T.; Herrington, K. L.; Brasher. L. L.; Kaler, E. W.; Chiruvolu, S.; Zasadzinski, J. A. Phase behavior of aqueous mixtures of cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS) [J]. J. Phys. Chem.,1996,100(14):5874-5879.
    [17]Soderman, O.; Herrington, K. L.; Kaler, E. W.; Miller, D. D. Transition from micelles to vesicles in aqueous mixtures of anionic and cationic surfactant [J]. Langmuir,1997,13(21):5531-5538.
    [18]Iampietro, D.; Kaler, E. W. Phase behavior and microstructure of aqueous mixtures of cetyltrimethylammonium bromide and sodium perfluorohexanoate [J]. Langmuir,1999,15(25):8590-8601.
    [19]Raghavan, S. R.; Fritz, G; Kaler, E. W. Wormlike micelles formed by synergistic self-assembly in mixture of anionic and cationic surfactant [J]. Langmuir,2002, 18(10):3797-3803.
    [20]Bergstrom, M.; Pedersen, J. S. Formation of tablet-shaped and ribbonlike micelles in mixtures of an anionic and a cationic surfactant [J]. Langmuir 1999,15(7): 2250-2253.
    [21]Gonzalez, Y. I.; Stjerndahl, M.; Danino, D.; Kaler, E. W. Spontaneous vesicle formation and phase behavior in mixtures of an anionic surfactant with imidazoline compounds [J]. Langmuir,2004,20(17):7053-7063.
    [22]Zemb. Th.:Dubois. M.:Deme, B. Self-assembly of flat nanodics in salt-free catanionic surfactant solutions [J]. Science.1999(283):816-819.
    [23]Dubois, M; Deme, B.; Gulik-krzywicki, Th. Self-assembly of regular hollow icosahedra in salt-free catanionic surfactant solutions [J]. Nature,2001(411): 672-675.
    [24]Jung, H. T.; Lee, S. Y.; Kaler, E. W.; Coldren, B.; Zasadziski, J. A. Gaussian curvature and the equilibrium among bilayer cylinders, spheres, and discs [J]. Proc. Nat1 Acad. Sci.2002,99(24):15318-15322.
    [25]郝京城.溶液与界面的协同与融合—自组装聚集结构[J].山东大学学报(理学版),2010,45(1):1-9.
    [26]Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers [J]. J. Chem. Soc, Faraday Trans 2:Molecular and Chemical Physics,1976,72:1525-1568.
    [27]Mitchell, D. J.; Ninham, B. W. Micelles, vesicles and microemulsions [J]. J. Chem. Soc, Faraday Trans 2:Molecular and Chemical Physics,1981,77(4): 601-629.
    [28]李汝雄.绿色溶剂—离子液体的合成与应用[M].北京:化学工业出版社, 2004.
    [29]Tait, S.; Osteryoung, R. A. Infrared study of ambient-temperature chloroaluminates as a function of melt acidity [J]. Inorg. Chem.,1984,23: 4352-4360.
    [30]Bonhote, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M. Hydrophobic, highly conductive ambient-temperature molten salts [J]. Inorg. Chem.,1996,35:1168-1178.
    [31]Sun, J.; Forsyth, M.; MacFarlane, D. R. Room-temperature molten salts based on the quaternary ammonium ion [J]. J. Phys. Chem. B,1998,102(36):8858-8864.
    [32]MacFarlane, D. R.; Meakin, P.; Sun, J.; Amini, N.; Forsyth, M. Pyrrolidinium imides:a new family of molten salts and conductive plastic crystal phases [J]. J. Phys. Chem. B,1999.103(12):4164-4170.
    [33]Davis Jr. J. H.; Forrester. K. J. Thiazolium-ion based organic ionic liquids (OILs).1.2 Novel OILs which promote the benzoin condensation [J]. Tetrahedron Lett.,1999,40:1621-1622.
    [34]Matsumoto, H.; Matsuda, T.; Miyazaki, Y. Room temperature molten salts based on trialkylsulfonium cations and bis(trifluoromethylsulfonyl)imide [J]. Chem. Lett.,2000.29:1430-1431.
    [35]Wang, Y. Y.; Li, W.; Xu, C. D.; Dai, L. Y. Preparation and characterization of a novel benzimidazolium br(?)nsted acid ionic liquid and its application in the synthesis of arylic esters [J]. Chin. J. Chem.,2007,25:68-71.
    [36]Brigouleix, C.; Anouti, M.; Jacquemin. J.; Caillon-Caravanier, M.; Galiano, H.; Lemordant, D. Physicochemical characterization of morpholinium cation based protic ionic liquids used as electrolytes [J]. J. Phys. Chem. B,2010,114(5): 1757-1766.
    [37]Lee, S. G. Functionalized imidazolium salt for task-specific ionic liquids and their applications [J]. Chem Commun,2006(10):1049-1063.
    [38]Gordon, C. M.; Holbrey, J. D.; Kennedy, A. R.; Seddon, K. R. Ionic liquid crystals: Hexafluorophosphate salts [J]. J. Mater. Chem.,1998,8(12):2627-2636.
    [39]Dzyuba, S. V.; Bartsch, R. A. Influence of structure variations in 1-alky 1-3-methylimidazolium hexafluorophosphates and bis(trifluoromethylsulfonyl) imides on physical properties of the ionic liquids [J]. J. Chem. Phys. Chem.,2002,3(1),161-169.
    [40]Heintz, A.; Kulikov, D. V.; Verevkin, S. P. Thermodynamic Properties of Mixtures Containing Ionic Liquids.1. Activity Coefficients at Infinite Dilution of Alkanes, Alkenes, and Alkylbenzenes in 4-Methyl-n-butylpyridinium Tetrafluoroborate Using Gas-Liquid Chromatography [J]. J. Chem. Eng. Data.,2001,46: 1526-1529.
    [41]Heintz. A.; Kulikov, D. V.; Verevkin, S. P. Thermodynamic Properties of Mixtures Containing Ionic Liquids.2. Activity Coefficients at Infinite Dilution of Hydrocarbons and Polar Solutes in 1-Methyl-3-ethyl-imidazolium Bis(trifluoromethyl-sulfonyl) Amide and in 1,2-Dimethyl-3-ethyl-imidazolium Bis(trifluoromethyl-sulfonyl) Amide Using Gas-Liquid Chromatography [J]. J. Chem. Eng. Data.,2002,47:894-899.
    [42]Heintz, A.; Lehmann, J. K.; Wertz, C. Thermodynamic Properties of Mixtures Containing Ionic Liquids.3. Liquid-Liquid Equilibria of Binary Mixtures of 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide with Propan-1-ol, Butan-1-ol, and Pentan-l-ol[J]. J. Chem. Eng. Data.,2003,48:472-474.
    [43]田中华;华责;王键吉;刘琴.室温离子液体物理化学性质研究进展[J],化学通报,2004,67:1-10.
    [44]Buzzeo, M. C.; Evans, R. G.; Compton, R. G. Non-haloaluminate room-temperature ionic liquids in electrochemistry — a review [J]. ChemPhysChem,2004,5(8):1106-1120.
    [45]Bowers, J.; Butts, C. P.; Martin, P. J.; Vergara-Gutierrez, M. C.; Heenan, R. K. Aggregation behavior of aqueous solutions of ionic liquids [J]. Langmuir,2004, 20(6):2191-2198.
    [46]Miskolczy, Z.; Sebok-Nagy, K.; Biczok, L.; Goktiirk, S. Aggregation and micelle formation of ionic liquids in aqueous solution [J]. Chem. Phys. Lett.,2004, 400(4-6):296-300.
    [47]Jiao, J. J.; Dong, B.; Zhang, H. N.; Zhao, Y. Y; Wang, X. Q.; Wang, R.; Yu, L. Aggregation behaviors of dodecyl sulfate-based anionic surface active ionic liquids in water [J]. J. Phys. Chem. B,2012,116(3):958-965.
    [48]El Seoud, O. A.; Pires, P. A. R.; Abdel-Moghny, T.; Bastos, E. L. Synthesis and micellar properties of surface-active ionic liquids:1-alkyl-3-methylimidazolium chlorides [J]. J. Colloid Interface Sci.,2007,313(1):296-304.
    [49]Inoue, T.; Ebina, H.; Dong, B.; Zheng, L. Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution [J]. J. Colloid Interface Sci., 2007,314(1):236-241.
    [50]Blesic. M.; Marques, M. H.; Plechkova, N. V.; Seddon. K. R.; Rebelo, L. P. N.; Lopes. A. Self-aggregation of ionic liquids:micelle formation in aqueous solution [J]. Green Chem.,2007.9(5):481-490.
    [51]Jungnickel, C.; Luczak, J.:Ranke, J.; Fernandez. J. F.; Muller. A.; Thoming. J. Micelle formation of imidazolium ionic liquids in aqueous solution [J]. Colloids Surf. A,2008,316(1-3):278-284.
    [52]Wang, J. J.; Wang, H. Y; Zhang. S. L.:Zhang, H. C.; Zhao, Y Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C4mim][BF4] and [Cnmim]Br (n= 4.6,8.10,12) in aqueous solutions [J]. J. Phys. Chem. B, 2007,111(22):6181-6188.
    [53]Vanyur, R.; Biczok, L.; Miskolczy. Z. Micelle formation of l-alkyl-3-methylimidazolium bromide ionic liquids in aqueous solution [J]. Colloids Surf. A.2007,299(1-3):256-261.
    [54]Goodchild, I.; Collier, L.; Millar, S. L.; Prokes. I.; Lord, J. C. D.; Butts, C. P.; Bowers, J.; Webster, J. R. P.; Heenan, R. K. Structural studies of the phase, aggregation and surface behaviour of 1-alkyl-3-methylimidazolium halide+water mixtures [J]. J. Colloid Interface Sci.,2007,307(2):455-468.
    [55]Wang, H. Y.; Wang, J. J.; Zhang, S. B.; Xuan, X. P. Structure effects of anions and cations on the aggregation behavior of ionic liquid in aqueous solutions [J]. J. Phys. Chem. B,2008,112(51):16682-16689.
    [56]Vaghela, N. M.; Sastry, N. V.; Aswal, V. K. Surface active and aggregation behavior of methylimidazolium-based ionic liquid of type [Cnmim][X], n=4,6,8 and [X]=Cl-, Br-, and I- in water [J]. Colloid. Polym. Sci.,2011,289(3):309-322.
    [57]Dong, B.; Li, N.; Zheng, L. Q.; Yu, L.; Inoue, T. Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution [J]. Langmuir,2007, 23(8):4178-4182.
    [58]Dong, B.; Zhao, X. Y.; Zheng, L. Q.; Zhang, J.; Li, N.; Inoue, T. Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution: Micellization and characterization of micelle microenvironment [J]. Colloids Surf. A,2008,317(1-3):666-672.
    [59]Dong. B.; Zhang, J.; Zheng, L.; Wang, S.; Li, X.; Inoue, T. Salt-induced viscoelastic wormlike micelles formed in surface active ionic liquid aqueous solution [J]. J. Colloid Interface Sci.,2008,319(1):338-343.
    [60]Baker, G. A.; Pandey, S.; Baker, S. N. A new class of cationic surfactants inspired by N-alkyl-N-methyl pyrrolidinium ionic liquids [J]. Analyst,2004,129(10): 890-892.
    [61]Schnee. V. P.; Baker, G. A.; Rauk, E.; Palmer. C. P. Electrokinetic chromatographic characterization of novel pseudo-phases based on N-alkyl-N-methylpyrrolidinium ionic liquid type surfactants [J]. Electrophoresis. 2006,27(21):4141-4148.
    [62]Tariq, M.; Podgorsek, A.; Ferguson. J. L.; Lopes, A.; Costa Gomes. M. F.; Padua, A. A. H.; Rebelo, L. P. N.; Canongia Lopes, J. N. Characteristics of aggregation in aqueous solutions of dialkylpyrrolidinium bromides [J]. J. Colloid Interface Sci. 2011,360(2):606-616.
    [63]Zhao, M. W.; Zheng, L. Q. Micelle formation by N-alkyl-N-methylpyrrolidinium bromide in aqueous solution [J]. Phys. Chem. Chem. Phys.,2011,13:1332-1337.
    [64]Blesic, M.; Lopes, A.; Melo, E.; Petrovski, Z.; Plechkova, N. V.; Canongia Lopes, J. N.; Seddon, K R.; Rebelo, L. P. N. On the self-aggregation and fluorescence quenching aptitude of surfactant ionic liquids [J]. J. Phys. Chem. B.; 2008, 112(29):8645-8650.
    [65]Cornellas, A.; Perez, L.; Comelles, F.; Ribosa, I.; Manresa, A. Teresa Garcia, M. Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution [J]. J. Colloid Interface Sci.,2011,355(1): 164-171.
    [66]Mukherjee, P.; Crank, J. A.; Sharma, P. S.; Wijeratne, A. B.; Adhikary, R.; Bose, S.; Armstrong, D. W.; Petrich, J. W. Dynamic solvation in phosphonium ionic liquids: comparison of bulk and micellar systems and considerations for the construction of the solvation correlation function, C(t) [J]. J. Phys. Chem. B,2008,112(11): 3390-3396.
    [67]Anderson, J. L.; Ding. R.; Ellern, A.; Armstrong, D. W. Structure and properties of high stability geminal dicationic ionic liquids [J]. J. Am. Chem. Soc.2005. 127(2):593-604.
    [68]Ding, Y. S.; Zha. M; Zhang, J.; Wang, S. S. Synthesis, characterization and properties of geminal imidazolium ionic liquids [J]. Colloids Surf. A,2007, 298(3):201-205.
    [69]Baltazar. Q. Q.; Chandawalla, J.; Sawyer. K.:Anderson, J. L. Interfacial and micellar properties of imidazolium-based monocationic and dicationic ionic liquids [J]. Colloids Surf. A,2007,302(1-3):150-156.
    [70]Ao, M.; Xu, G.; Zhu, Y.; Bai, Y. Synthesis and properties of ionic liquid-type gemini imidazolium surfactants [J]. J. Colloid Interface Sci..2008.326(2): 490-495.
    [71]Ao. M.; Huang, P.; Xu, G.; Yang, X.; Wang, Y. Aggregation and thermodynamic properties of ionic liquid-type gemini imidazolium surfactants with different spacer length [J]. Colloid. Polym. Sci.,2009,287(4):395-402.
    [72]Kolbeck, C.; Killian, M.; Maier, F.; Paape, N.; Wasserscheid, P.; Steinruck, H. P. Surface characterization of functionalized imidazolium-based ionic liquids [J]. Langmuir,2008,24(19):9500-9507.
    [73]Brown, P.; Butts, C.; Dyer, R.; Eastoe, J.; Grillo, I.; Guittard, F.; Rogers, S.; Heenan, R. Anionic surfactants and surfactant ionic liquids with quaternary ammonium counterions [J]. Langmuir,2011,27(8):4563-4571.
    [74]Burns, C. T.; Lee, S.; Seifert, S.; Firestone, M. A. Thiophene-based ionic liquids: synthesis, physical properties, self-assembly, and oxidative polymerization [J]. Polym. Adv. Technol.,2008,19(10):1369-1382.
    [75]Chamiot, B.; Rizzi, C.; Gaillon, L.; Sirieix-Plenet, J.; Lelievre, J. Redox-switched amphiphilic ionic liquid behavior in aqueous solution [J]. Langmuir,2009,25(3): 1311-1315.
    [76]Srinivasa Rao, K.; Singh, T.; Trivedi, T. J.; Kumar, A. Aggregation behavior of amino acid ionic liquid surfactants in squeous media [J]. J. Phys. Chem. B,2011, 115(47):13847-13853.
    [77]Dong. B.; Gao. Y. A.:Su, Y. J.; Zheng. L. Q.; Xu. J. K.:Inoue. T. Self-Aggregation behavior of fluorescent carbazole-tailed imidazolium ionic liquids in aqueous solutions [J]. J. Phys. Chem. B,2010,114(1):340-348.
    [78]Li, X. W.; Gao, Y. A.; Liu, J.; Zheng, L. Q.; Tung, C. H. Adsorption and aggregation behavior of a chiral long-chained ionic liquid in aqueous solution [J]. J. Colloid Interface Sci.,2010,343:94-101.
    [79]Thomaier, S.; Kunz, W. Aggregates in mixtures of ionic liquids [J]. J. Mol. Liq., 2007,130(1-3):104-107.
    [80]Li, N.; Zhang, S. H.; Zheng, L. Q.; Dong, B.; Li, X. W.; Yu, L. Aggregation behavior of long-chain ionic liquids in an ionic liquid [J]. Phys. Chem. Chem. Phys.,2008,10(30):4375-4377.
    [81]Kang, W. P.; Dong, B.; Gao, Y. A.; Zheng, L. Q. Aggregation behavior of long-chain imidazolium ionic liquids in ethylammonium nitrate [J]. Colloid. Polys. Sci.,2010,288(12-13):1225-1232.
    [82]Shi, L. J.; Zhao, M. W.; Zheng, L. Q. Micelle formation by N-alkyl-N-methylpyrrolidinium bromide in ethylammonium nitrate [J]. Colloids Surf. A,2011,392(1):305-312.
    [83]Shi, L. J.; Zheng, L. Q. Aggregation behavior of surface active imidazolium ionic liquids in ethylammonium nitrate:effect of alkyl chain length, cations, and counterions [J]. J. Phys. Chem. B,2012,116(7):2162-2172.
    [84]Singh, K.; Gerrard Marangoni, D.; Quinn, J. G.; Singer, R. D. Spontaneous vesicle formation with an ionic liquid amphiphile [J]. J. Colloid Interface Sci.,2009, 335(1):105-111.
    [85]Yuan, J.; Bai, X. T.; Zhao, M. W.; Zheng, L. Q. C12mimBr ionic liquid/SDS vesicle formation and use as template for the synthesis of hollow silica spheres [J] Langmuir.2010,26(13):11726-11731.
    [86]Zhao, Y. R.; Chen, X.; Jing, B.; Wang, X. D.; Ma, F. M. Novel gel phase formed by mixing a cationic surfactive ionic liquid C16mimCl and an anionic surfactant SDS in aqueous solution [J]. J. Phys. Chem. B.2009.113(4):983-988.
    [87]Lin, Y. Y; Qiao. Y.; Yan. Y.:Huang. J. B. Thermo-responsive viscoelastic wormlike micelle to elastic hydrogel transition in dual-component systems [J]. Soft Matter,2009,5(16):3047-3053.
    [88]Yan, H.; Zhao, M. W.; Zheng, L. Q. A hydrogel formed by cetylpyrrolidinium bromide and sodium salicylate [J]. Colloids Surf. A,2011,392(1):205-212.
    [89]Bowlas. C.; Bruce. D.; Seddon. K. Liquid-crystalline ionic liquids [J]. Chem. Commun.,1996:1625-1626.
    [90]Ma, K.; Somashekhar, B. S.; Nagana Gowda, G. A.; Khetrapal, C. L.; Weiss, R. G. Induced amphotropic and thermotropic ionic liquid crystallinity in phosphonium halides:"lubrication" by hydroxyl groups [J]. Langmuir,2008,24 (6):2746-2758.
    [91]Ringstrand, B.; Monobe H.; Kaszynski, P. Anion-driven mesogenicity:ionic liquid crystals based on the [closo-l-CB9H10]-1 cluster [J]. J. Mater. Chem.,2009,19 (27):4805-4812.
    [92]Bleasdale, T. A.; Tiddy, G. J. T.; Wyn-Jones, E. Cubic phase formation in polar nonaqueous solvents [J]. J. Phys. Chem.,1991,95:5385-5386.
    [93]Firestone, M. A.; Dzielawa, J. A.; Zapol, P.; Curtiss, L. A.; Seifert, S.; Dietz, M. L Lyotropic liquid-crystalline gel formation in a room-temperature ionic liquid [J]. Langmuir,2002,18 (20):7258-7260.
    [94]Firestone, M. A.; Rickert, P. G.; Seifert, S.; Dietz, M. L. Anion effects on ionogel formation in N,N'-dialkylimidazolium-based ionic liquids [J]. Inorg. Chim. Acta, 2004,357 (13):3991-3998.
    [95]Inoue, T.; Dong, B.; Zheng, L. Q. Phase behavior of binary mixture of 1-dodecyl-3-methylimidazolium bromide and water revealed by differential scanning calorimetry and polarized optical microscopy [J]. J. Colloid Interface Sci.,2007,307 (2):578-581.
    [96]Zhang, G. D.; Chen, X.; Zhao, Y. R.; Xie, Y. Z.; Qiu, H. Y. Effects of alcohols and counterions on the phase behavior of 1-octyl-3-methylimidazolium chloride aqueous solution [J]. J. Phys. Chem. B,2007,111 (40):11708-11713.
    [97]Li. C. H.; He, J. H.; Liu. J. H.; Yu, Z. Q.; Zhang, Q. L.; He, C. X.; Hong, W. L. Self-assembly of lyotropic liquid crystal phase in ternary systems of 1,2-dimethyl-3-hexadecylimidazolium bromide/1-decanol/water [J]. J. Colloid Interface Sci.,2010,342(2):354-360.
    [98]Zhang, J.; Dong, B.; Zheng, L. Q.; Li, N.; Li, X. W. Lyotropic liquid crystalline phases formed in ternary mixtures of 1-cetyl-3-methylimidazolium bromide/p-xylene/water:A SAXS, POM, and rheology study [J]. J. Colloid Interface Sci.,2008,321 (1):159-165.
    [99]Zech, O.; Thomaier, S.; Bauduin, P.; Ruck, T.; Touraud, D.; Kunz, W. Microemulsions with an ionic liquid surfactant and room temperature ionic liquids as polar pseudo-phase [J]. J. Phys. Chem. B,2009,113 (2):465-473.
    [100]Li, X. W.; Zhang, J.; Zheng, L. Q.; Chen, B.; Wu, L. Z.; Lv, F. F.; Dong, B.; Tung, C-H. Microemulsions of N-alkylimidazolium ionic liquid and their performance as microreactors for the photocycloaddition of 9-substituted anthracenes [J]. Langmuir,2009,25(10):5484-5490.
    [101]Yang, J. Viscoelastic wormlike micelles and their applications [J]. Curr. Opin. Colloid Interface Sci.,2002,7(5-6):276-281.
    [102]Dreiss, C. A. Wormlike micelles:where do we stand? Recent developments, linear rheology and scattering techniques [J]. Soft Matter,2007,3(8):956-970.
    [103]Magid, L. J.; Gee, J. C.; Talmon, Y. A cryogenic transmission electron microscopy study of counterion effects on hexadecyltrimethylammonium dichlorobenzoate micelles [J]. Langmuir,1990,6(10):1609-1613.
    [104]Magid, L. J.; Li, Z.; Butler, P. D. Flexibility of elongated sodium dodecyl sulfate micelles in aqueous sodium chloride:a small-angle neutron scattering study [J]. Langmuir,2000,16(26):10028-10036.
    [105]Das, N. C.; Cao, H.; Kaiser, H.; Warren, G. T.; Gladden, J. R.; Sokol, P. E. Shape and size of highly concentrated micelles in CTAB/NaSal solutions by small angle neutron scattering(SANS) [J]. Langmuir,2012,28(33):11962-11968.
    [106]May, S.:Bohbot, Y.; Ben-Shaul. A. Molecular theory of bending elasticity and branching of cylindrical micelles [J]. J. Phys. Chem. B.1997.101 (43):8648-8657.
    [107]Safran. S. A. Statistical thermodynamics of soft surfaces [J]. Surf. Sci..2002. 500(1-3):127-146.
    [108]Arleth, L.; Bergstrom, M.; Pederson, J. S. Small-angle neutron study of the growth behavior, flexibility, and intermicellar interactions of wormlike SDS micelles in NaBr aqueous solutions [J]. Langmuir,2002,18(14):5343-5353.
    [109]Schubert, B. A.; Kaler, E. W.; Wagner, N. J. The microstructure and rheology of mixed cationic/aniomic wormlike micelles [J]. Langmuir,2003.19(10): 4079-4089.
    [110]Sommer, B. A.; Pedersen, J. S.; Egelhaaf, S. U.; Cannavacciuolo, L.; Kohlbrecher. J.; Schurtenberger. P. Wormlike micelles as "equilibrium polyelectrolytes":light and neutron scattering experiments[J]. Langmuir,2002.18(7):2495-2505.
    [111]Berlrpsch, H. V.; Harnau, L.; Reineker, P. Persistence length of wormlike micelles from dynamic light scattering [J]. J. Phys. Chem. B,1998,102(39):7518-7522.
    [112]Lauw, Y; Leermakers, F. A. M.; Cohen Stuart, M. A. Self-consistent-field prediction for the persistence length of wormlike micelles of nonionic surfactant [J]. J. Phys. Chem. B,2003,107(39):10912-10918.
    [113]Svaneborg, C.; Pedersen, J. S. Monte carlo simulations and analysis of scattering from neutral and poly electrolyte pdymer and polymer-like system [J]. Curr. Opin. Colloid Interface Sci.,2004,8(6):507-514.
    [114]Mylonas, Y.; Staikos, G.; Ullner, M. Chain conformation and intermolecular interaction of partially neutralized poly (acrylic acid) in dilute aqueous solutions [J]. Polymer,1999,40(24),6841-6847.
    [115]Gittes, F.; Mickey, B.; Nettleton, J.; Howard, J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape [J]. J. Cell. Biol., 1993(4),120:923-934.
    [116]Magid, L. J. The surfactant-polyelectrolyte analogy J. Phys. Chem. B,1998, 102(21):4064-4074.
    [117]Oda, R.; Panizza, P.; Schmutz, M.; Lequeux, F. Direct evidence of the shear-induced structure of wormlike micelles:gemini surfactant [J]. Langmuir, 1997.13(24):6407-6412.
    [118]Hu, Y. T.; Boltenhagen, P.; Pine. D. J. Shear thickening in low-concentration solutions of wormlike micelles. I. Direct visualization of transient behavior and phase transition [J]. J. Rheol.,1998,42(5):1185-1208.
    [119]Marin-Santibanez, B. M.; Perez-Gonzalez, J.; Vargas, L.; Rodriguez-Gonzalez, F.; Huelsz, G. Rheometry-PIV of shear-thickening wormlike micelles [J]. Langmuir, 2006,22(9):4015-4026.
    [120]Qiao, Y; Lin, Y. Y.; Wang, Y. J.; Li, Z. B.; Huang, J. B. Metal-driven viscoelastic wormlike micelles in anionic/zwitterionic surfactant systems and template-directed synthesis of dendritic siliver nano structures [J]. Langmuir,2011, 27(5):1718-1723.
    [121]Acharya, D. P.; Kunieda, H. Wormlike micelles in mixed surfactant solutions [J]. Adv. Colloid Interface Sci.,2006,123-126:401-413.
    [122]Cates, M. E. Dynamics of living polymers and flexible surfactant micelles:scaling laws for dilution [J]. J. Phys. (France),1988,49(8):1593-1600.
    [123]Reiss-Husson, F.; Luzzati, V. The structure of the micellar solution of some amphiphilic compounds in pure water as determined by absolute small-angle X-ray scattering techniques [J]. J. Phys. Chem.,1964,8(12):3504-3511.
    [124]Candau, S. J.; Hirsch, E.; Zana, R. Light scatterin investigations of the behavior of semidilute aqueous micellar solutions of cetyltrimethylammonium bromide: analogy with semidilute polymer solutions [J]. J. Colloid Interface Sci.,1985, 105(2):521-528.
    [125]Soltero, J. F. A.; Puig, J. E.; Manero, O. Rheology of the cetyltrimethylammonium tosilate-water system.2. linear viscoelastic regime [J]. Langmuir,1996,12(11): 2654-2662.
    [126]Porte, G.; Poggi, Y.; Appell, J.; Maret, G. Large micelles in concentrated solutions. The second critical micellar concentration [J]. J. Phys. Chem.,1984,88(23): 5713-5720.
    [127]Alfaro. J.:Landazuri. G.; Gonzalez-Alvarez. A.:Macias. E. R.:Fernandez, V. V. A.:Schulz. P. C.:Rodriguez. J. L.:Soltero. J. F. A. Phase and rheological behavior of the hexadecyl(trimethyl)azanium; 2-hydroxybenzoate/water system [J]. J. Colloid and Interface Sci.,2010,351(1):171-179.
    [128]Cates, M. E.; Camdau, S. J. Statics and dynamic of wormlike surfactant micelles [J]. J. Phys.:Condens. Matter,1990,2:6869-6892.
    [129]Kern, F.:Lemarechal. P.; Camdau, S. J.; Cates. M. E. Rheological properties of semidilute and concentration aqueous-solutions of cetyl-trimethylammonium bromide in the presence of potassium-bromide [J]. Langmuir,1992,8(2): 437-440.
    [130]Helgeson, M. E.; Hodgdon, T. K.; Kaler, E. W.; Wagner, N. J. A systematic study of equilibrium structure, thermodynamics, and rheology of aqueous CTAB/NaNO3 wormlike micelles [J]. J. Colloid and Interface Sci.,2010,349(1): 1-12.
    [131]Macias, E. R.; Bautista, F.; Perez-Lopez, J. H.; Schulz, P. C.; Gradzielski, M.; Manero, O.; Puig, J.E.; Escalante, J. I. Effect of ionic strength on rheological behavior of polymer-like cetyltrimethylammonium tosylate micellar solutions [J]. Soft Matter,2011,7(5):2094-2102.
    [132]Lu, T.; Xia, L. G.; Wang, X. D.; Wang, A. Q.; Zhang, T. A dually effective inorganic salt at inducing obvious viscoelastic behavior of both cationic and anionic surfactant solutions [J].Langmuir,2011,27(16):9815-9822.
    [133]Imai, S.; Shikata, T. Viscoelastic behavior of surfactant threadlike micellar solutions:effect of additives 3 [J]. J. Colloid and Interface Sci.,2001,244(2): 399-404.
    [134]Hassan, P. A.; Raghavan, S. R.; Kaler, E. W.; Microstructural changes in SDSmicelles induced by hydrotropic salt [J]. Langmuir,2002,18(7):2543-2548.
    [135]Davies, T. S.; Ketner, A. M.; Raghavan, S. R. Self-assembly of surfactant vesicles that transform into viscoelastic wormlike micelles micelles upon heating [J]. J. Am. Chem. Soc.,2006,128(20):6669-6675.
    [136]Ketner, A. M.; Kumar, R.; Davies, T. S.; Elder, P. W.; Raghavan, S. R. A simple class of photorheological fluids:surfactant solutions with viscosity tunable by light [J]. J. Am. Chem. Soc.2007,129(6):1553-1559.
    [137]Lin, Y. Y.; Han, X.; Huang, J. B.; Fu. H. L.; Yu, C. A facil route to design pH-responsive viscoelastic wormlike micelles:smart use of hydrotropes [J]. J. Colloid and Interface Sci.,2009,330(2):449-455.
    [138]Singh, M.; Ford, C.; Agarwal, V.; Fritz, G.; Bose, A.; John, V. T.; Mcpherson, G. L. Structure evolution in cationic micelles upon incorporation of a polar organic dopant [J]. Langmuir,2004,20(23):9931-9937.
    [139]Miyake, M.; Einaga, Y. Characteristics of wormlike pentaoxyethylene decyl ether C10E5 micelles containing n-dodecanol [J]. J. Phys. Chem. B,2007.111(3): 535-542.
    [140]Aramaki, K.; Hoshida, S.; Arima, S. Effect of carbon length of cosurfactant on the rheological properties of nonionic wormlike micellar solutions formed by a sugar surfactant and monohydroxy alcohols [J]. Colloids Surf, A,2010,366(1-3): 58-62.
    [141]Bernheim-groswasser, A.; Wachtel, E.; Talmon, Y. Micellar growth network formation, and criticality in aqueous solutions of the nonionic surfactant C12E5 [J]. Langmuir,2000,16(9):4131-4140.
    [142]Guo, P.; Guo, R. Ionic liquid induced transition from wormlike to rod or spherical micelles in mixed nonionic surfactant systems [J]. J. Chem. Eng. Date,2010, 55(9):3590-3597.
    [143]Ericsson, C. A.; Soderman O.; Ulvenlund, S. Aggregate morphology and flow behaviour of micellar alkylglycoside solutions [J]. Colloid Polym, Sci.,2005, 283(12):1313-1320.
    [144]Shrestha, R. G.; Abezgauz, L.; Danino, D.; Sakai, K.; Sakai, H.; Abe, M. Structure and dynamics of poly(oxyethylene) cholesteryl ether wormlike micelles: rheometry, SAXS, and cryo-TEM studies [J]. Langmuir,2011,27(21): 12877-12883.
    [145]Shrestha. L. K.; Yamamoto, M.; Arima. S.; Aramaki. K. Charge-free reverse wormlike micelles in nonaqueous media [J]. Langmuir.2011.27(6):2340-2348.
    [146]Koehler, R. D.; Raghavan. S. R.; Kaler. E. W. Microstructure and dynamics of wormlike micellar solutions formed by mixing cationicand anionic surfactant [J] J. Phys. Chem. B,2000,104(47):11035-11044.
    [147]Ziserman, L.; Abezgauz, L.; Ramon, O.; Raghavan, S. R.; Danion, D. Origins of the viscosity peak in wormlike micellar solutions.1. Mixed catanionic surfactant. A cryo-transmission electron microscopy study [J]. Langmuir,2009,25(18): 10483-10489.
    [148]Koshy, P.; Aswal, V. K.; Venkatesh, M.; Hassan, P. A.; Unusual scaling in the rheology of branched wormlike micelles formed by cetyltrimethylammonium bromide and sodium oleate [J]. J. Phys. Chem. B,2011,115(37):10817-10825.
    [149]Yin, H. Q.; Lin, Y. Y.; Huang, J. B. Microstructures and rheological dynamics of viscoelastic solutions in a catanionic surfactant system [J]. J. Colloid and Interface Sci.,2009,338(1):177-183.
    [150]Rodriguez, C.; Acharya, D. P.; Hattori, K.; Sakai, T.; Kunieda, H. Phase and rheological behavior of surfactant/novel alkanolamide/water system [J]. Langmuir, 2003,19(21):8692-8696.
    [151]Acharya, D. P.; Hattori, K.; Sakai, T.; Kunieda, H. Phase and rheological behavior of salt-free alkyltrimethylammonium bromide/alkanoyl-N-methylethanolamide/water systems [J]. Langmuir,2003, 19(22):9173-9178.
    [152]Shiloach, A.; Blankschtein, D. Measurement and prediction of ionic/nonionic mixed micelles formation and growth [J]. Langmuir,1998,14(25):7166-7182.
    [153]Hoffmann, H. In:Herb, C. A.; Prud'homme, R. K. editors. Structure and flow in surfactant solutions. ACS symposium series, vol.578, Washington, DC:American Chemical Society; 1994, p:2-31.
    [154]Wang, D.; Dong, R. H.; Long, P. F.; Hao, J. C. Photo-induced phase transition from multilamellar vesicles to wormlike micelles [J]. Soft Matter,2011.7(22): 10713-10719.
    [155]Song, A. X.; Hao. J. C. Highly viscous wormlike micellar phase formed from the mixed AOT/C14DMAO/H2O system [J]. J. Colloid and Interface Sci.,2011, 353(1):231-236.
    [156]Kumar, R.; Kalur, G. C.; Ziserman, L.; Danino, D.; Raghavan, S. R.; Wormlike micelles of a C22-tailed zwitterionic betaine surfactant:from viscoelastic solutions to elastic gels [J]. Langmuir,2007,23(26):12849-12856.
    [157]Sarmiento-Comez, E.; Lopez-Diaz, D.; Castillo, R. Microrheology and characteristic lengths in wormlike micelles made of a zwitterionic surfactant and SDS in brine [J]. J. Phys. Chem. B,2010,114(38):12193-12202.
    [158]Pei, X. M.; Zhao, J. X.; Ye, Y. Z.; You, Y.; Wei, X. L. Wormlike micelles and gel reinforced by hydrogen bonding in aqueous cationic gemini surfactant systems [J]. Soft Matter,2011,7(6):2953-2960.
    [159]Pei, X. M.; Zhao, J. X.; Wei, X. L. Wormlike micelles formed by mixed cationic and anionic Gemini surfactants in aqueous solution [J]. J. Colloid and Interface Sci.,2011,356(1):176-181.
    [160]Tung, S. H.; Huang, Y. E.; Raghavan, S. R. A new reverse wormlike micellar system:mixture of bile salt and lecithin in organic liquids [J]. J. Am. Chem. Soc., 2006,128(17):5751-5756.
    [161]Kumar, R.; Ketner, A. M.; Raghavan, S. R. Nonaqueous photorheological fluid based on light-responsive reverse wormlike micelles [J]. Langmuir,2010,26(8): 5405-5411.
    [162]Shrestha, R. G.; Shrestha, L. K.; Aramaki, K. Formation of wormlike micelle in a mixed amino-acid based anionic surfactant and cationic surfactant system [J]. J. Colloid and Interface Sci.,2007,311(1):276-284.
    [163]Shrestha, R. G.; Shrestha, L. K.; Matsunaga, T.; Shibayama, M.; Aramaki, K. Lipophilic tail architecture and molecular structure of neutralizing agent for the controlled Rheology of viscoelastic fluid in amino acid-based anionic surfactant system [J[. Langumir,2011,27(6):2229-2236.
    [1]Yen, G. C.; Chen, Y. L.; Sun, F. M.; Chiang, Y. L.; Lu, S. H.; Weng, C. J. Acomparative study on the effectiveness of cis-and trans-of cinnamic acid treatments for inhibiting invasive of human lung adenocarcinoma cells [J]. Eur. J. Pharm. Sci.,2011,44(3):281-287.
    [2]Yang, J. Viscoelastic wormlike micelles and their applications, Curr. Opin. Colloid Interface Sci.,2002,7 (3-4):276-281.
    [3]张永民;郭赞如;张继超;冯玉军;王碧清;王九霞.智能型蠕虫状胶束体系[J].化学进展,2011,23(10):2012-2020.
    [4]Sakai, H.; Orihara, Y.; Kodashima, H.; Matsumura, A.; Ohkubo, T.; Tsuchiya, K.; Abe, M. Photoinduced reversible change of fluid viscosity [J]. J. Am. Chem. Soc., 2005,127(39):13454-13455.
    [5]Liu, Y. Y.; Cheng, X. H.; Qiao, Y.; Yu, C. L.; Li, Z. B.; Yan, Y.; Huang, J. B. Creation of photo-modulated multi-state and multi-scale molecular assemblies via binary-state molecular switch [J]. Soft Matter,2010,6(5):902-908.
    [6]Ketner,A. M.;Kumar,R.; Davies. T,S.; Elder, P. W.; Raghavan, S. R. A simple class of photorheological fluids:surfactant solutions with viscosity tunable by light [J]. J. Am. Chem. Soc.,2007,129(6):1553-1559.
    [7]Kumar, R.; Raghavan, S. R. Photogelling fluids based on light-activated growth of zwitterionic wormlike micelles [J]. Soft Matter,2009,5(4):797-803.
    [8]Kumar, R.; Ketner, A. M.; Raghavan, S. R. Nonaqueous photorheological fluid based on light-responsive reverse wormlike micelles [J]. Langmuir,2010,26(8): 5405-5411.
    [9]Wang, D.; Dong, R. H.; Long, P. F.; Hao, J. C. Photo-induced phase transition from multilamellar vesicles to wormlike micelles [J]. Soft Matter,2011,7(22): 10713-10719.
    [10]Lin,Y.Y.; Qiao, Y.; Yan, Y.; Huang, J. B. Thermo-responsive viscoelastic wormlike micelle to elastic hydrogel transition in dual-component systems [J]. Soft Matter,2009,5(16):3047-3053.
    [11]Dong, B.; Zhang, J.; Zheng, L. Q.; Wang, S. Q.; Li, X. W.; Inoue, T. Salt-induced viscoelastic wormlike micelles formed in surface active ionic liquid aqueous solution, J. Colloid Interface Sci.,2008,319 (2):338-343.
    [12]Dupont, J.; Consorti, C. S.; Suarez, P. A. Z.; de Souza, R. F.; Fulmer, S. L. Richardson, D. P.; Smith, T. E.; Wolff, S. Preparation of 1-butyl-3-methyl imidazolium-based room temperature ionic liquids [J]. Org Synth,2002.79(): 236-239.
    [13]Larson, R. G. The structure and rheology of complex fluids [M]. Oxford University Press:New York,1999.
    [14]Kort, R.; Vonk, H.; Xu, X.; Crielaard, W. D.; Hellingwerf. K. J. Evidence for trans-cis isomerization of the p-coumaric acid chromophore as the photochemical basis of the photocycle of photoactive yellow protein [J]. FEBS lett,1996,382 (1-2):73-78.
    [15]Khatory, A.; Lequeux, F.; Kern, F.:Candau, S. J. Linear and nonlinear viscoelasticity of semidilute solutions of wormlike micelles at high salt content [J]. Langmuir,1993,9(6):1456-1464.
    [16]Karlson. L.;Nilsson. S.; Thuresson, K. Rheology of an aqueous solution of an end-capped poly (ethylene glycol) polymer at high concentration [J]. Colloid Polym Sci,1999,277(8):798-804.
    [17]Ali, A. A.; Makhloufi, R. Effect of organic organic salts on micellar growth and structure studied by rheology [J]. Colloid Polym. Sci.,1999,277(2-3):270-275.
    [18]Lin, Z. Branched worm-like micelles and their networks [J]. Langmuir,1996. 12(7):1729-1737.
    [19]Granek, R. Cates, M. E. Stress relaxation in living polymers:results from a poisson renewal model [J]. J. Chem. Phys.,1992.96 (12):4758-4767.
    [20]Cates, M. E. Nonlinear viscoelasticity of wormlike micelles (and other reversibly breakable polymers) [J]. J. Chem. Phys.,1990,94(1):371-375.
    [21]Guo, P.; Guo, R. Ionic liquid induced transition from wormlike to rod or spherical micelles in mixed nonionic surfactant systems [J]. J. Chem. Eng. Data, 2010,55 (9):3590-3597.
    [22]Israelalachvili, J. N. Intermolecular and surface force [M].2nd edn. Academic press,1992.
    [23]Tanford, C. Micelle shape and size [J]. J. Phs. Chem,,1972,76(21):3020-3024.
    [24]Dong, B.; Gao, Y. A.; Su, Y. J.; Zheng, L. Q.; Xu, J. K.; Inous, T. Self-aggregation behavior of fluorescent carbazole-tailed imidazolium ionic liquid in aqueous solutions [J]. J. Chem. Phys. B,2010,114(1):340-348.
    [25]Lee, C. T.; Smith, K. A.; Hatton, T. A. Photoreversible viscosity changes and gelation in mixtures of hydrophobically modified polyelectrolytes and photosensitive surfactants [J]. Macromolecules,2004,37 (14):5397-5405.
    [1]Rehage, H.; Hoffmann, H. Rheological properties of viscoelastic surfactant system [J]. J. Phys. Chem..1988.92 (16):4712-4719.
    [2]Imae, T.:Abe. A.; Ikeda, S. Viscosity behavior of semiflexible rodlike micelles of alkyltrimethylammonium halides in dilute and semidilute solutions [J]. J. Phys. Chem..1988,92(6):1548-1553.
    [3]Clausen, T. M.; Vinson, P. K.; Minter, J. R.; Davis, H.T.; Talmon, Y.; Miller. W. G. Viscoelastic micellar solutions:microscopy and rheology [J]. J. Phys. Chem.. 1992.96(1):474-484.
    [4]Walker. L. M. Rheology and structure of worm-like micelles [J]. Curr. Opin Colloid Interface Sci.,2001,6(5-6):451-456.
    [5]Berret. J. F. Rheology of wormlike micelles:equilibrium properties and shear banding transitions. In:Weiss, R. G.; Terech, P. editors. Molecular gels. Material with self-assembled fibrillar networks [M], Springer:The Netherland.2006,6: 667-720.
    [6]Ezrahi, S.; Tuval, E.; A serin, A. Properties, main application and perspectives of wormlike micelles [J]. Adv Colloid Interface Sci.,2006,128-130:77-102.
    [7]Zhao, M.W.; Zheng, L. Q. Micelle formation by N-alkyl-N-methylpyrrolidinium bromide in aqueous solution [J]. Phys. Chem. Chem. Phys.,2011,13(4: 1332-1337.
    [8]Lin, Y. Y.; Qiao, Y; Yan, Y; Huang, J. B. Thermo-responsive viscoelastic wormlike micelle to elastic hydrogel transition in dual-component systems [J]. Soft Matter,2009,5(16):3047-3053.
    [9]Dong, B.; Zhang, J.; Zheng, L.; Wang, S.; Li, X.; Inoue, T. Salt-induced viscoelastic wormlike micelles formed in surface active ionic liquid aqueous solution [J]. J. Colloid Interface Sci.,2008,319(1):338-343.
    [10]Zhao, M. W.; Gao, Y. A.; Zheng, L. Q. Liquid crystalline phase of the amphiphilic ionic liquid N-hexadecyl-N-methylpyrrolidinium bromide formed in the ionic liquid ethylammonium nitrate and in water [J]. J. Phys. Chem. B,2010,114(35): 11382-11389.
    [11]Yan. H.; Zhao, M. W.; Zheng, L. Q. A hydrogel formed by cetylpyrrolidinium bromide and sodium salicylate [J]. Colloids Surf. A,2011.392(1):205-212.
    [12]Goossens. K.:Lava. K.:Nockemann. P.:Hecke. K. V.:Meervelt. L. V; Driesen. K.; Gcrller-Walrand. C.;Binnemans, K.; Cardinaels, T. Pyrrolidinium ionic liquid crystals [J]. Chem. Eur. J.,2009,15 (3):656-674.
    [13]Schubert, B. A.; Kaler, E. W.; Wagner, N. J. The microstructure and rheology of mixed cationic/anionic wormlike micelles [J]. Langmuir 2003,19(10): 4079-4089.
    [14]Ali. A. A.; Makhloufi, R. Effect of organic salts on micellar growth and structure studied by rheology [J]. Colloid. Polym. Sci.,1999,277 ():270-275.
    [15]Diat, O.; Roux, D.; Nallet, F.; Effect of shear on lyotropic lamellar phase [J]. J. Phys.Ⅱ France,1993,3(9):1427-1452.
    [16]Soltero, J. F. A.; Bautisa, F.; Puig, J. E. Rheology of cetyltrimethylammonium p-toluenesulfonate-water system.3. nonlinear viscoelasticity [J]. Langmuir,1999, 15(5):1604-1642.
    [17]Cappelaere, E.; Cressly, R.; Makhloufi, R.; Decruppe, J. P. Temperature and flow-induced viscosity transitions for CTAB surfactant solutions [J]. Rheologica Acta,1994,33(5):431-437.
    [18]张晋.类脂立方液晶及咪唑类离子液液晶的研究.山东大学博士学位论文, 2008年,13页.
    [19]Acharya, D. P.; Kunieda, H.; Shiba, Y.; Aratani, K. Phase and rheological behavior of novel gemini-type surfactant systems [J]. J. Phys. Chem. B,2004,108(5): 1790-1797.
    [20]Cates, M. E. Reptation of living polymers:dynamic of entangled polymers in the presence of reversible chain-scission reactions [J]. Macromolecules,1987,20(9): 2289-2296.
    [21]Granek, R. Cates, M. E. Stress relaxation in living polymers:results from a poisson renewal model [J]. J. Chem. Phys.,1992,96 (12):4758-4767.
    [22]Pei, X. M. Zhao, J. X. Ye, Y. Z. You, Y. Wei, X. L. Wormlike micelles and gels reinforced by hydrogen bonding in aqueous cationic gemini surfactant systems [J]. Soft Matter,2001,7 (6):2953-2960.
    [23]Durrschmidt. T.; Hoffmann. H. Organogels from ABA triblock copolymers [J]. Colloid Polym. Sci.,2001,279(10):1005-1012.
    [24]Fukada. K.; Suzuki, E.; Seimiya, T. Rheological properties of sodium hyaluronate in decyltrimethylammonium bromide aqueous solutions [J]. Langmuir,1999, 15(12):4217-4221.
    [25]Mu, J. H.; Li, G. Z.; Jia, X. L. Rheological properities and microstructures of anionic micellar solutions in the presence of different inorganic salt [J]. J. Phys. Chem. B,2002,106(44):11685-11693.
    [26]Song, A. X.; Hao, J. C. Highly viscous wormlike micellar phase formed from the mixed AOT/C,4DMAO/H2O system [J]. J. Colloid and Interface Sci.,2011, 353(1):231-236.
    [27]Miyoshi, E.; Nishinari, K. Non-Newtonian flow behaviour of gellan gum aqueous solutions [J]. Colloid. Polym. Sci.,1999,277 (2-3):727-734.
    [28]Acharya, D. P.; Hattori, K.; Sakai, T.; Kunieda, H. Phase and rheological behavior of salt-free alkyltrimethylammonium bromide/alkanoyl-N-methylethanolamide/water systems [J]. Langmuir,2003,19 (22) 9173-9178.
    [29]Magid, L. J. The surfactant-polyelectrolyte analogy [J]. J. Phys. Chem. B,1998, 102 (21):4064-4074.
    [30]Yin, H. Q.; Lin, Y. Y; Huang, J. B. Microstructures and rheological dynamics of viscoelastic solutions in a catanionic surfactant system [J]. J. Colloid Interface Sci.,2009,338(1):177-183.
    [31]Pei, X. M; Zhao, J. X.; Wei, X. L. Wormlike micelles formed by mixed cationic and anionic gemini surfactants in aqueous solution [J]. J. Colloid Interface Sci., 2011,356(1):176-181.
    [32]Willenbacher, N.; Oelachlaeger, C.; Schopferer, M.; Broad bandwidth optical and mechanical rheometry of wormlike micelle solutions [J]. Phys. Rev. Lett.,2007, 99 (6):068302.
    [33]Raghavan, S. R.; Kaler. E. W. Highly Viscoelastic Wormlike Micellar Solutions Formed by Cationic Surfactants with Long Unsaturated Tails [J]. Langmuir,2001. 17 (2):300-306.
    [34]Ferry, J. D. Viscoelastic properties of polymers [M]. John Wiley & Sons. New-York,1980.
    [35]Zana, F. K.; Candau, S. J. Rheological properties of semidilute and concentrated aqueous solutions of cetyltrimethylamrnonium chloride in the presence of sodium salicylate and sodium chloride [J]. Langmuir,1991,7(7):1344-1351.
    [36]Soltero, J. F. A.; Puig, J. E.; Manero, O. Rheology of the cetyltrimethylammonium tosilate-water system.2. linear viscoelastic regime [J]. Langmuir,1996,12(11): 2654-2662.
    [37]Kern, F.; Lequeux, F.; Zana, R.; K.; Candau, S. J. Dynamical properties of salt-free viscoelastic micellar solutions [J]. Langmuir,1994,10(6):1714-1723.
    [38]Tanford, C. The hydrophobic effect [M]. Wiley, New York,1980.
    [39]Tanford, C. Micelle shape and size [J]. J. Phys. Chem.,1972,76(21):3020-3024.
    [40]Nagarajan, R. Molecular packing parameter and surfactant self-assembly:the neglected role of the surfactant tail [J]. Langmuir,2002,18(1):31-38.
    [1]Hoyer, H.W.; Marmo, A.:Zoellner, M. Some colloidal properties of decyl-and dodecyltrimethylammonium dodecyl sulfate [J]. J. Phys. Chem.,1961,65(10): 804-806.
    [2]Yu, Z. J.; Zhao, G. X. The physicochemical properties of aqueous mixtures of cationic-anionic surfactants:Ⅱ. Micelle growth pattern of equimolar mixtures [J]. J. Colloid and Interface Sci.,1989,130(2):421-431.
    [3]郝京城.溶液与界面的协同与融合—自组装聚集结构[J].山东大学学报(理学版),2010,45(1):1-9.
    [4]Majhi, P. R.; Blume. A. Temperature-induced micelle-vesicle transitions in DMPC-SDS and DMPC-DTAB mixtures studied by calorimetry and dynamic lighe scattering [J]. J. Phys. Chem. B,2002,106(41):10753-10763.
    [5]Yin, H. Q.; Mao, M. Huang, J. B.; Fu, H. L. Two-phase region in the DTAB/SL mixed surfactant system [J]. Langmuir,2002.18(24):9198-9203.
    [6]Bucak, S.; Robinson, B. H. Kinetics of induced vesicle breakdown for cationic and catanionic systems [J]. Langmuir,2002,18(22):8288-8294.
    [7]Talhout, R.; Engberts, J. B. F. N. Self-assembly in mixture of sodium alkyl sulfates and alkyltrimethylammonium bromides:aggregation behavior and catalytic properties [J]. Langmuir,1997,13(19):5001-5006.
    [8]Kaler, E. W.; Herrington, K. L.; Murthy, A. K.; Zasadzinski, J.A.N. Phase behavior and structure of mixture of anionic and cationic surfactant [J]. J. Phys. Chem.,1992,96(16):6698-6707.
    [9]Alikhan, O. R. Alkyl chain symmetry effects in mixed cationic-anionic surfactant systems [J]. J. Colloid and Interface Sci.,1996,182(1):95-109.
    [10]Baker, C. A.; Saul, D.; Tiddy, G. J. T.; Wheeler, B. A.; Willis, E. Phase structure, nuclear magnetic resonance and rheological properties of viscoelastic sodium dodecyl sulphate and trimethylammonium bromide mixture [J]. J. Chem. Soc., Faraday Trans I,1974,70:154-162.
    [11]Koehler, R. D.; Raghavan, S. R.; Kaler, E. W. Microstructure and dynamics of wormlike micellar solutions formed by mixing cationic and anionic surfactants [J]. J. Phys. Chem. B,2000,104(47):11035-11044.
    [12]Raghavan, S. R.; Fritz, G.; Kaler, E. W. Wormlike micelles formed by synergistic self-assembly in mixture of anionic and cationic surfactant [J]. Langmuir,2002, 18(10):3797-3803.
    [13]Yin, H. Q.; Lin, Y. Y; Huang, J. B. Microstructures and rheological dynamics of viscoelastic solutions in a catanionic surfactant system [J]. J. Colloid and Interface Sci.,2009,338(1):177-183.
    [14]Goossens. K.; Lava. K.:Nockemann. P.:Hecke. K. V.:Meervelt. L. V.; Driesen. K.; Gcrller-Walrand, C.; Binnemans,K.; Cardinaels, T. Pyrrolidinium ionic liquid crystals [J]. Chem. Eur. J.,2009,15 (3):656-674.
    [15]Bruinsma, R.; Gelbart, W.; Shaul, A. B. Flow-induced gelation of living (micellar) polymers [J]. J. Chem. Phys.,1992,96(10):7710-7727.
    [16]Hofmann, S.; Hofmann, H. Shear-induced micellar structure in ternary surfactant mixture:the influence of the structure of the micellar interface [J]. J. Phys. Chem. B,1998,102(29):5614-5624.
    [17]Yin, H. Q.; Lei, S.; Zhu, S. B.; Huang, J. B. Micelle-to-vesicle transition induced by organic additives in catanionic surfactant system [J]. Chem. Eur. J.,2006, 12(10):2825-2835.
    [18]Lerouge, S.; Berret, J. F. Shear-induced transitions and instabilities in surfactant wormlike micelles [J]. Adv. Polys. Sci.,2010,230(1):1-71.
    [19]Dong, B.; Zhang, J.; Zheng, L.; Wang, S.; Li, X.; Inoue, T. Salt-induced viscoelastic wormlike micelles formed in surface active ionic liquid aqueous solution [J]. J. Colloid Interface Sci.,2008,319(1):338-343.
    [20]Lu, T.; Xia, L. G.; Wang, X. D.; Wang, A. Q.; Zhang, T. A dually effective inorganic salt at inducing obvious viscoelastic behavior of both cationic and anionic surfactant solutions [J].Langmuir,2011,27(16):9815-9822.
    [21]Schubert, B. A.; Kaler, E. W.; Wagner, N. J. The microstructure and rheology of mixed cationic/aniomic wormlike micelles [J]. Langmuir,2003,19(10): 4079-4089.
    [22]Varade, D.; Ushiyama, K.; Shrestha, L. K.; Aramaki, K. Wormlike micelles in tween-80/CmEO3 mixed nonionic surfactant systems in aqueous media [J]. J. Colloid Interface Sci.,2007,312(2):489-497.
    [23]Fischer, P.; Rehage, H. Rheological master curves of viscoelastic surfactant solutions by varying the solvent viscosity and temperature [J]. Langmuir,1997, 13(26):7012-7020.
    [24]Munchow,G.; Schonfeld, F.;Hardt, S.; Graf,K. Protein diffusion across the interface in aqueous two-phase systems [J]. Langmuir.2008,24 (16):8547-8553.
    [25]Zhang,Y. J.;Mao,H. B.; Cremer,P.S. Probing the mechanism of aqueous two-phase system formation for α-elastin on-chip [J]. J. Am. Chem. Soc.,2003,125 (50):15630-15635.
    [26]Albertsson, P. A. Partition of cell particles and macromolecules [M]. J. Wiley & Sons:New York,1986.
    [27]Zaslavsky, B.Y. Aqueous two-phase partitioning:physical chemistry and bioanalytical applications [M]. Marcel Dekker:New York,1994.
    [28]Baxter, S. M.;Sperry, P. R. Fu, Z. W. Partitioning of polymer and inorganic colloids in two-phase aqueous polymer systems [J]. Langmuir,1997,13 (15): 3948-3952.
    [29]Hansson, P.; Schneider, S.; Lindman, B. Phase separation in polyelectrolyte gels Interacting with surfactants of opposite charge [J]. J. Phys. Chem. B 106 (2002) 9777-9793.
    [30]Yan, Y.; Li, L.; Hoffmann, H. Clouding:origin of phase separation in oppositely charged polyelectrolyte/surfactant mixed solutions [J]. J. Phys. Chem. B,2006, 110(4):1949-1954.
    [31]Mao, M.; Huang, J. B.; Zhu, B.Y.; Ye, J. P. The transition from vesicles to micelles induced by octane in aqueous surfactant two-phase systems [J]. J. Phys. Chem. B, 2002,106(1):219-225.
    [32]Kamei, D. T.; Wang, D. I. C.; Blankschtein, D. Fundamental investigation of protein partitioning in two-phase mixed (nonionic/ionic) micellar systems [J]. Langmuir,2002,18 (8):3047-3057.
    [33]Gutowski, K. E.; Broker, G. A.; Willauer, H. D.; Huddleston, J. G.; Swatloski, R. P.; Holbrey, J. D.; Rogers, R. D. Controlling the aqueous miscibility of ionic liquids:aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations [J]. J. Am. Chem. Soc.,2003,125 (22):6632-6633.
    [34]Neves. C. M. S. S.; Ventura. S. P. M.; Freire, M. G.; Marrucho. I. M.; Coutinho. J. A. P. Evaluation of cation influence on the formation and extraction capability of ionic-liquid-based aqueous biphasic systems [J]. J. Phys. Chem. B.2009.113 (15): 5194-5199.
    [35]Ventura, S. P. M.; Neves, C. M. S. S.; Freire, M. G.; Marrucho, I. M.; Oliveira,J.; Coutinho, J. A. P. Evaluation of anion influence on the formation and extraction capacity of ionic-liquid-based aqueous biphasic systems [J]. J. Phys. Chem. B, 2009,113 (27):9304-9310.
    [36]Rogers, R. D.; Bauer, C. B. Partitioning behavior of group 1 and group 2 cations in poly (ethylene glycol)-based aqueous biphasic system [J]. J. Chromatogr., B, 1996,680 (1-2):237-241.
    [37]Willauer, H. D.; Huddleston, J. G.; Rogers, R. D. Solute partitioning in aqueous biphasic system composed of polyethylene glycol and salt:the partitioning of small neutral organic species [J]. Ind. Eng. Chem. Res.,2002,41 (7):1892-1904.
    [38]Helfrich, M. R.; EI-Kouedi, M.; Etherton, M. R.; Keating, C. D. Partitioning and assembly of metal particles and their bioconju-gates in aqueous two-phase system [J]. Langmuir.2005,21 (18):8478-8486.
    [39]Li, C. X.; Han, J.; Wang, Y.; Yan, Y. S.; Pan, J. M.; Xu, X.H.; Zhang, Z. L. Phase behavior for the aqueous two-phase systems containing the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate and kosmotropic salts [J]. J. Chem. Eng. Data,2010,55 (3):1087-1092.
    [40]Zhao, G. X.; Xiao, J. X. Aqueous two-phase system of the aqueous mixtures of cationic-anionic surfactants [J]. J. Colloid Interface Sci.,1996,177(2):513-518.
    [41]Wang, K.; Yin, H. Q.; Sha, W.; Huang, J. B.; Fu, H. L. Temperature-sensitive aqueous surfactant two-phase system formation in cationic-anionic surfactant systems [J]. J. Phys. Chem. B,2007,111 (45):12997-13005.
    [42]Shang, Y. Z.; Liu, H. L.; Hu, Y; Prausnitz, J. M. Phase behavior and microstructures of the Gemini (12-3-12,2Br-)-SDS-H2O ternary [J]. Colloids Surf., A,2007,294 (1-3):203-211.
    [43]Nan, Y. Q.; Hao. L. S.; Salt-induced phase inversion in aqueous cationic/anionic surfactant two-phase systems [J]. J. Phys. Chem. B.2008.112 (39):12326-12337.
    [44]Lu. T.:Li. Z. H.:Huang, J. B.; Fu, H. L.; Aqueous surfactant two-phase systems in a mixture of cationic Gemini and anionic surfactants [J]. Langmuir.2008,24 (19): 10723-10728.
    [45]Yatcilla, M.T.; Herrington, K. L.; Brasher, L. L.; Kaler, E. W.; Chiruvolu, S.; Zasadzinski, J. A. Phase behavior of aqueous mixture of cetyltrimethylammonium (CTAB) and sodium octyl sulfate (SDS) [J]. J. Phys. Chem..1996.100(14): 5874-5879.
    [46]Nan. Y Q.; Liu, H. L.; Hu, Y. Composition, microstructure and rheology of aqueous two-phase cationic/anionic surfactant system [J]. Colloid Surf., A.2006, 277(1-3):230-238.
    [47]Dong, R. H.; Weng, R.; Dou, Y. Y; Zhang, L.; Hao, J. C. Preparation of calcium oxalate by vesicle modification in the catanionic surfactant system CDS/TTABr/H2O [J]. J. Phys. Chem. B,2010,114 (6):2131-2139.
    [48]Chen, L.; Xiao, J. X.; Ruan, K.; Ma, J. M. Homogeneous solutions of equimolar mixed cationic-anionic surfactants [J]. Langmuir,2002,18 (20):7250-7252.
    [49]Chen, L.; Xiao, J. X.; Ma. J. M. Striking differences between alkyl sulfate and alkyl sulfonate when mixed with cationic surfactants [J]. Colloid. Polym. Sci., 2004,282 (5) 524-529.
    [50]Chen, L.; Xiao, J. X.; Ma, J. M. Aqueous two-phase system of catanionic surfactant mixture formed by adding salts [J]. Acta Phys.-Chim. Sin.,2003,19 (7):577-579.
    [51]胡尚林;贾晓非;戴乐蓉.辛基三甲基溴化铵和辛基硫酸钠混合水溶液的相行为[J].物理化学学报,2002,18(10):920-923.
    [52]Wei, X. L.; Wei, Z. B.; Wang, X. H.; Wang, Z. N.; Sun, D. Z.; Liu, J.; Zhao, H. H. Phase behavior of new aqueous two-phase systems:1-butyl-3-methylimidazolium tetrafluoroborate+anionic surfactants+water [J]. Soft Matter,2011,7(11): 5200-5207.
    [53]肖进新,赵国玺.正、负离子表面活性剂混合水溶液的相行为[J]物理化学学报,1995.11(9):818-823.
    [54]Nan, Y. Q.;Liu. H. L.; Hu, Y. Aqueous two-phase systems of cetyltrimethylammonium bromide and sodium dodecyl sulfonate mixtures without and with potassium chloride added [J]. Colloid Surf., A,2005,269(1-3):101-111.
    [55]Hao, L. S.; Hu, P.; Nan, Y. Q. Salt effect on the rheological properties of the aqueous mixed cationic and anionic surfactant systems [J]. Colloid Surf, A,2010, 361(1-3):187-195.
    [56]朱步瑶;张镤;黄建滨;赵国玺.脂肪酸盐-烷基吡啶盐混合体系的双水相[J].物理化学学报,1999,15(2):110-115.
    [57]Nan, Y. Q.; Liu, H. L.; Hu, Y. Interfactial tension in phase-separated aqueous cationic/anionic surfactant mixtures [J]. J. Colloid Interface Sci.,2006,293(2): 464-474.
    [58]Drye, T. J.; Gates, M. E. Living networks:the role of cross-links in entangled surfactantsolutions [J]. J. Chem. Phys.,1992,96(2):1367-1375.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700