用户名: 密码: 验证码:
常染色体显性遗传非综合征型耳聋及Pfeiffer综合征分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耳聋是一类严重影响人类生活质量的常见疾病,在所有耳聋患者中遗传性耳聋约占60%,主要表现为单基因遗传病,偶为双基因复合突变致病。由环境因素(如医疗因素、环境暴露、创伤、药物等)或基因与环境共同作用所致。
     本研究应用单核苷酸多态和微卫星标记作为遗传标记,分别在两个常染色体显性遗传非综合征型低频感音神经性耳聋大家系中定位及筛查出致病基因,在低—中频感音神经性耳聋散发患者中进行了WFS1基因第5、8外显子的突变筛查,并对一罕见的Pfeiffer综合征患者进行了致病基因筛查。主要研究发现概述如下:
     1.常染色体显性遗传非综合征型耳聋家系及低—中频感音神经性耳聋散发病例致病基因研究
     HB-S037家系为一个5代相传的耳聋大家系,耳聋患者的听力学表型为迟发性、渐进性、以低频听力下降为主的感音神经性耳聋。选取SNP作为遗传标记,应用Affymetrix 5.0 SNP芯片进行全基因组扫描及连锁分析,将HB-S037家系的致病基因初步定位于第11号染色体11q13.4-14.1之间(最大LOD值=4.346),选取初步定位区域内及附近的12个微卫星标记进行精细定位及单倍型分析,将致病基因定位于微卫星标记D11S987和D11S4172之间的区域(最大LOD值=4.18),与已知的DFNA11位点重叠。对定位区域内候选基因MY07A的49个外显子直接测序发现,在MY07A第17外显子有一个新的突变位点c.2011G>A,该位点突变与此家系疾病表型共分离,并引起编码第671位的甘氨酸替换为丝氨酸(G671S),该位点在多物种之间保守,100个听力正常人未发现此突变。通过蛋白质分子三维结构计算机模拟分析:该突变位于myosin蛋白头部换能区域。换能区域第727位苯丙氨酸(F727)与中转环第477位酪氨酸(Y477)和第482位异亮氨酸(I482)相互作用构成了保守的“疏水口袋”,该突变导致编码第671位的无侧链的甘氨酸替换为带有侧链的丝氨酸,并通过其侧链影响保守的“疏水口袋”结构,对临近的中转环第477位酪氨酸产生了立体阻碍作用,由此导致myosin蛋白结构、功能的变化。下一步的功能研究有利于阐明DFNA11的发病机制。
     BJ-L046家系是一个5代相传的耳聋大家系,耳聋患者的听力学表型为迟发性、渐进性、以低频听力下降为主的感音神经性耳聋。选取SNP作为遗传标记,利用Affymetrix 6.0 SNP基因芯片进行全基因组扫描连锁分析,将BJ-L046家系的致病基因定位于第4号染色体4p9.85-12.35之间的区域(最大LOD值=2.11),与已知的DFNA6/14/38位点重叠。对定位区域内候选基因WFS1的8个外显子直接测序,发现第8外显子有一个新的突变位点,即c.2086 C>T的杂合突变,该位点突变与此家系疾病表型共分离,并引起编码第696位的组氨酸替换为酪氨酸(H696Y),该突变位点在多物种之间保守,100个听力正常人中未发现此突变。
     本研究还选取了解放军总医院聋病分子诊断中心2002年~2010年收集的37名散发低—中频感音神经性耳聋患者DNA样品,进行WFS1基因第5和第8外显子测序突变筛查。发现1例患者WFS1第8外显子的新突变,即c.2108G>A的杂合突变,该突变引起编码第703位的精氨酸替换为组氨酸(R703H),该突变位点在多物种之间保守,100个听力正常人中未发现此突变。证实在低--中频感音神经性耳聋散发患者中进行WFS1基因热点突变筛查的必要性。
     2. Pfeiffer综合征致病基因的筛查及分子机制研究
     Pfeiffer综合征是一种罕见的常染色体显性遗传病,发病率为1/100,000,根据临床表现的严重程度不同而分为3型。本研究的患者表现为颅缝早闭、尖头畸形、斜形头、眼球突出、面中部发育不良、肘关节强直、传导性耳聋。根据临床表型诊断为Pfeiffer综合征Ⅰ型,对其可能的致病基因FGFR1、FGFR2、FGFR3的所有外显子直接测序,鉴定了FGFR2的第8外显子c.1021 A>C的杂合突变,此突变位点将编码第341位的苏氨酸替换为脯氨酸。对其父母的突变筛查显示该突变为生殖细胞嵌合体或新生突变。蛋白质分子三维结构计算机模拟分析,提示编码第342位的半胱氨酸与编码第278位的半胱氨酸之间形成二硫键,341位点毗邻342位点,推测该突变引起的氨基酸构象的变化导致编码第342位的半胱氨酸与编码第278位的半胱氨酸之间二硫键遭到破坏,由此产生了自由的半胱氨酸残基形成分子间的二硫键,受体不依赖配体二聚化并被激活,导致FGFR2突变后功能增强。本研究结果为该家庭下一步遗传咨询和产前诊断的需求提供了资料和依据。
Hearing impairment is a common sensory disorder in human. It is caused by both environmental factors(medical factor,environment exposure, injury,medicine) and genetic factors. About 60% of deafness cases is attributed to genetic defects.
     In this study, by means of SNP typing and microsatellite marker (STR) mapping,we successfully mapped and identified causative genes in two Chinese families with autosomal-dominant nonsyndromic low-frequency hearing loss.We conducted the screening of two exons of WFS1 gene in sporadic cases with low and middle frequency hearing loss. We have also identified the causative gene for one patient with Pfeiffer syndrome.
     Part 1:Identifacation of causative genes in two families with autosomal-dominant nonsyndromic low-frequency hearing loss family and in 37 sporadic cases
     In family HB-S037 we have mapped the disease locus on on chromosome 11q13.4-q14.1 region between D11S1314 and D11S4166 (two-point lod-score of 4.18) by applying the Affymetrix 5.0 SNP Genechip and linkage analysis.By direct sequencing of candidate genes in the critical interval, we identified a novel heterozygous missense mutation c.2011G>A in exonl7 of MYO7A,resulting in amino acid change of G671S, which was faithfully cosegregated with hearing loss in the family HB-S037. This mutation was absent in 100 unrelated control DNA samples of Chinese origin.
     In famalily BJ-L046 we have mapped the disease locus on chromosome 4p 12.0-12.40 by applying the Affymetrix 6.0 SNP Genechip and linkage analysis.By direct sequencing of candidate genes in mapping region,we have identified a novel heterozygous missense mutation c.2086 C>T in exon8 of WFS1, resulting in amino acid change of H696Y, which was faithfully cosegregated with hearing loss in this family. The mutation was absent in 100 unrelated control DNA samples of Chinese origin.
     To determine the genetic loading of WFS1 mutation in sporadic cases with low and middle frequency hearing loss,we have screened the WFS1 mutations.in exon 5 and 8 of 37 individuals with non-syndrome low and middle frequency hearing impairment. Single nucleotide variations were present in 14 out of 37 patients, but only heterozygous missense c.2108G> A identified in one patient, resulting in amino acid change of R703H,while the other changes are single nucleotide polymorphisms (SNPs). In addition, the mutation was absent in 100 unrelated control DNA samples of Chinese origin. This study suggests that the necessity of WFS1 screening in non-syndromic low frequency sporadic cases.
     Part 2:Mutation screening in one patient with Pfeiffer syndrome
     Pfeiffer syndrome is a rare autosomal dominantly inherited disorder that associates craniosynostosis,broad and deviated thumbs and big toes,and partial syndactyly on hands and feet. Hydrocephaly may be found occasionally, along with severe ocular proptosis, ankylosed elbows, abnormal viscera, and slow development. Based on the severity of the phenotype, Pfeiffer syndrome is divided into three clinical subtypes. Pfeiffer syndrome affects about 1 in 100,000 individuals. The disorder can be caused by mutations in the fibroblast growthfactor receptor genes FGFR1,FGFR2 and FGFR3. Molecular genetic testing is important to confirm the diagnosis. In this study, we have indentified the causative gene of a family diagnosed as Pfeiffer syndrome I subtype. By direct sequencing of candidate genes (FGFR1, FGFR2, FGFR3), we identified a heterozygous missense mutation c.1021 A>C in exon8 of FGFR2, resulting in amino acid change of T341P. The mutation was absent in his parents. We used molecular modeling to construct three-dimensional representation of the Ig-3 domain of FGFR2 based on the crystallographic coordinates of telokin, a myosin light chain kinase homolog, an approach that has been used previously. Cys342 mutation is the hotspot mutaton of FGFR2 T341 lie close to the disulfide-bonded cysteines, the T341P mutation would alter theβ-strand containing Cys342, which would be expected to disrupt its bonding with Cys278. From this analysis, it is apparent that the noncysteine craniosynostosis mutations function through disruption of the Ig3 disulfide bond, creating free cysteine residues that can form intermolecular disulfide bonds resulting in receptor dimerization and activation. We presumed the mutaton probably resulting from cytochimera or fresh mutation. Mutation screening can provide solid information for genetic counseling in this family.
引文
[1]Hilgert N,Smith RJ,Van Camp G. forty-six genes causing nonsyndrome hearing impairment:Which ones should be analyzed in DNA diagnostics? Mutat Res.2009,681(2-3):189-96.
    [2]Matsunaga T. Value of genetic testing in the otological approach for sensorineural hearing loss. Keio J Med.2009,58(4):216-22.
    [3]Hilgert N,Smith RJ,Van Camp G. Function and expression pattern of nonsyndromic deafness genes. Curr Mol Med.2009,9(5):546-64.
    [4]Shahin H,Walsh T,Rayyan AA,et al. Five novel loci for inherited hearing loss mapped by SNP-based homozygosity profiles in Palestinian families. Eur J Hum Genet.2010,18(4):407-13.
    [5]Schraders M,Oostrik J,Huygen PL,et al. Mutations in PTPRQ are a cause of autosomal-recessive nonsyndromic hearing impairment DFNB84 and associated with vestibular dysfunction. Am J Hum Genet.2010,86(4): 604-10.
    [6]Rehman AU,Morell RJ,Belyantseva IA,et al.Targeted capture and next-generation sequencing identifies C9orf75,encoding taperin,as the mutated gene in nonsyndromic deafness DFNB79. Am J Hum Genet.2010,86(3):378-88.
    [7]Lu J,Li Z,Zhu Y,et al. Mitochondrial 12S rRNA variants in 1642 Han Chinese pediatric subjects with aminoglycoside-induced and nonsyndromic hearing loss. Mitochondrion.2010, Jan 25.
    [1]王秋菊,杨伟炎,方耀云,等.常染色体显性遗传性耳聋家系的遗传学特征分析.中国听力语言康复科学杂志,2003,(1):18-21.
    [2]Konigsmark BW,Mengel M,Berlin CI, et al. Familial low frequency hearing loss. Laryngoscope.1971,81(5):759-71.
    [3]Leon PE,Ronilla JA,Sanchez JR, et al. Low frequency hereditary deafness in man with childhood onset. AM J Hum Genet.1981,33(2):209-14.
    [4]Leon PE,Raventos H,Lynch E,et al.The gene for an inherited form of deafness maps to chromosome 5q31.Proc Natl Acad Sci USA.1992,89(11):5181-4.
    [5]Lynch ED,Lee MK, Morrow J E,et al. Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science.1997,278(5341):1315-8.
    [6]Lesperance MM,Hall JW,Bess FH,et al. A gene for autosomal dominant nonsyndromic hereditary hearing impairment maps to 4p16.3.Hum Mol Genet.1995,4(10):1967-72.
    [7]Van Camp G,Kunst H,Flothmann K,et al. A gene for autosomal dominant hearing impairment (DFNA14)maps,to a region on chromosome 4p16.6 that does not overlap the DFNA6 locus. J Med Genet.1999,36(7):532.
    [8]Bespaloca IN,Van Camp G,Bom SJ,et al. Mutations in the Wolfram syndrome 1 gene (WFS1) are a common cause of low frequency sensorineural hearing loss. Hum Mol Genet.2001,10(22):2501-8.
    [9]Young TL,Ices E,Lynch E,et al. Non-syndromic progressive hearing loss DFNA38 is caused by heterozygous missense mutation in the Wolf ram syndrome gene WFS1. Hum Mol Genet.2001,10(22):2509-14.
    [10]Cryns K,Pfister M,Pennings RJ,et al. Mutations in the WFS1 gene that cause low-frequency sensorineural hearing loss are small non-inactivating mutations. Hum genet.2002,110(5):389-94.
    [11]Gurtler N,Kim Y,Mhatre A,et al. DFNA54, a third locus for low frequency hearing loss. J Mol Med.2004,82(11):775-80.
    [12]Patrick LM Huygen RJP,Cor WRJ Cremers,audiometric profiles associated with genetic nonsyndromal hearing impairment:a review and phenotype analysis.Genes,Hearing and Deafness from Molecular Biology to Clinical Pratice.2007:informa.185-204.
    [13]Weil D,Blanchard S,Kaplan J,et al. Defective myosin VIIA gene responsible for Usher syndrome type IB. Nature.1995,374(6517):60-1.
    [14]Mermall V,Post PL,Mooseker MS. Unconventional myosins in cell movement,membrane traffic,and signal transduction. Since.1998, 279(5350):527-33.
    [15]Liu XZ,Walsh J,Tamagawa Y,et al.Autosomal dominant non-syndromic deafness caused by a mutation in the myosin VIIA gene. Nat Genet.1997,17(3):268-69.
    [16]Luijendijk MWJ,vanWijk E,Bischoff AMLC,et al. Identification and molecular modelling of a mutation in the motor head domain of myosin VIIA in a family with autosomal dominant hearing impairment (DFNA11).Hum Genet.2004,115(2):149-56.
    [17]Street VA, Kallman JC, Kiemele KL. Modifier controls severity of a novel dominant low-frequency myosin VIIA (MY07A) auditory mutation. J Med Genet.2004,41(5):e62.
    [18]Bolz H,Bolz SS,Schade G,et al. Impaired calmodulin binding of myosin-7A causes autosomal dominant hearing loss (DFNA11).Hum Mutat. 2004,24(3):274-5.
    [19]Di Leva F, D'Adamo P, Cubellis MV,et al. Identification of a novel mutation in the myosin VIIA motor domain in a family with autosomal dominant hearing loss (DFNA11), Audiol Neurootol.2006,11(3):157-64.
    [20]Takeda K,Inoue H,Tanizawa Y,et al.WFS1 (Wolfram syndrome 1)gene product predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain.Hum Mol Genet.2001,10 (5):477-84.
    [21]Osman AA,Saito M,Makepeace C, et al. Wolframin expression induces novel ion channel activity in endoplasmic reticulum membranes and increases intracellular calcium. J Biol Chem.2003,278(52):52755-62.
    [22]Cryns K,Thys S,Van Laer L,et al.The WFS1 gene,responsible for low frequency sensorineural hearing loss and Wolfram syndrome, is expressed in a variety of inner ear cells. Histochem Cell Biol.2003,119(3):247-56.
    [23]Cryns K,Sivakumaran TA,Van den Ouweland JM,et al..Mutational spectrum of the WFS1 gene in Wolfram syndrome,nonsyndromic hearing impairment,diabetes mellitus,and psychiatric disease. Hum Mutat. 2003,22(4):275-87.
    [24]ShadrinaM,NikopensiusT,SlominskyP,et al.Association study of sporadic Parkinson's disease genetic risk factors in patients from Russia by APEX technology. Neurosci Lett.2006,405(3)212-6.
    [25]Swift RG,Polymeropoul os MH,Torres R,et al.Predisposition of Wolfram syndrome heterozygotes to psychiatric illness.Mol Psychiatry.1998,3(1): 86-91.
    [26]Fukuoka H,Kanda Y,Ohta S,et al.Mutations in the WFS1 gene are a frequent cause of autosomal dominant nonsyndromic low-frequency hearing loss in Japanese. J Hum Genet.2007,52(6):510-5.
    [27]Bespalova IN,Van Camp G,Bom SJ,et al. Mutations in the Wolfram syndrome 1 gene (WFS1) are a common cause of low frequency sensorineural hearing loss. Hum Mol Genet.2001,10(22):2501-8.
    [28]Komatsu K,Nakamura N,Ghadami M,Matsumoto N et al. Confirmation of genetic homogeneity of nonsyndromic low-frequency sensorineural hearing loss by linkage analysis and a DFNA6/14 mutation in a Japanese family. J Hum Genet.2002,47(8):395-9.
    [29]Kunz J,Marquez-Klaka B,Uebe S,et al.Identification of a novel mutation in WFS1 in a family affected by low-frequency hearing impairment. Mutat Res.2003,525(1-2):121-4.
    [30]Gurtler N,Kim Y,Mhatre A,et al. Two families with nonsyndromic low-frequency hearing loss harbor novel mutations in Wolfram syndrome gene 1.J Mol Med.2005,83(7):553-60.
    [31]Liu YH,Ke XM,Xiao SF. Heterogenous mutations of Wolfram syndrome I gene responsible for low frequency nonsyndromic hearing loss Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi.2005,40(10):764-8.
    [32]Noguchi Y,Yashima T,Hatanaka A,et al.A mutation in Wolfram syndrome type 1 gene in a Japanese family with autosomal dominant low-frequency sensorineural hearing loss. Acta Otolaryngol.2005,125(11):1189-94.
    [33]Toth T,Pfister M,Zenner HP,Sziklai I:Phenotypic characterization of a DFNA6 family showing progressive low-frequency sensorineural hearing impairment. Int J Pediatr Otorhinolaryngol.2006,70(2):201-206.
    [34]Tsai HT,Wang YP,Chung SF,et al.A novel mutation in the WFS1 gene identified in a Taiwanese family with low-frequency hearing impairment. BMC Med Genet.2007,8:26.
    [35]Bramhall NF,Kallman JC,Verrall AMStreet VA.A novel WFS1 mutation in a family with dominant low frequency sensorineural hearing loss with normal VEMP and EcochG findings. BMC Med Genet.2008,9:48.
    [36]Hildebrand MS,Sorensen JL,Jensen M,et al.Autoimmune disease in a DFNA6/14/38 family carrying a novel missense mutation in WFS1. Am J Med Genet A.2008,146A(17):2258-65.
    [37]Fujikawa T,Noguchi Y,Ito T,Takahashi M,et al. Additional heterozygous 2507A>C mutation of WFSl in progressive hearing loss at lower frequencies. Laryngoscope.2010,120(1):166-71.
    [38]Cryns K,Pfister M,Pennings RJ,et al. Mutations in the WFS1 gene that cause low-frequency sensorineural hearing loss are small non-inactivating mutations. Hum Genet.2002,110(5):389-94.
    [39]Genis D,Davalos A,Molins A,et al.Wolfram syndrome:a neuropathological study. Acta Neuropathol.1997,93(4):426-9.
    [40]Zatyka M,Ricketts C,da Silva Xavier G,et al. Sodium-potassium ATPase 1 subunit is a molecular partner of Wolframin,an endoplasmic reticulum protein involved inER stress. Hum Mol Genet.2008,17(2):190-200.
    [41]Yu SP. Na(+) K(+)-ATPase:the new face of an old player in pathogenesis and apoptotic/hybrid cell death.. Biochem Pharmacol.2003,66(8):1601-9.
    [42]Noguchi Y,Nishida H,Tokano H,et al. Comparison of acute low-tone sensorineural hearing loss versus Meniere's disease by electrocochleography. Ann Otol Rhinol Laryngol.2004,113:194-199.
    [43]Kremer H,van Wijk E,Marker T,et al. Usher syndrome:molecular links of pathogenesis,proteins and pathways. Hum Mol Genet.2006,15 Spec No 2:R262-70.
    [44]Self T,Mahony M,Fleming J,et al. Shaker-1 mutations reveal roles for myosin ⅦA in both development and function of cochlear hair cells. Development.1998,125 (4):557-66.
    [45]Su MC,Yang JJ, Su CC,et al. Identification of novel variants in the Myosin VIIA gene of patients with nonsyndromic hearing loss from Taiwan.Int J Pediatr Otorhinolaryngol.2009,73(6):811-5.
    [46]Ammar-Khodja F,Faugere V,Baux D et al. Molecular screening of deafness in Algeria:High genetic heterogeneity involving DFNB1 and the Usher loci, DFNB2/USH1B,DFNB12/USH1D and DFNB23/USH1.Eur J Med Genet.2009,52 (4):174-9.
    [1]Pfeiffer RA:Dominant hereditary acrocephalosyndactylia. Z Kinderheilkd. 1964,90:301-320.
    [2]Fearon JA,Rhodes J. Pfeiffer syndrome:a treatment evaluation. Plast Reconstr Surg.2009,123(5):1560-9.
    [3]Vogels A,Fryns JP.Pfeiffer syndrome Orphanet J Rare Dis.2006,1:19.
    [4]Kimonis V,Gold JA,Hoffman TL,et al. Genetics of Craniosynostosis.Semin Pediatr Neurol.2007,14(3):150-61.
    [5]Carinci F,Pezzetti F,Locci P,et al.Apert and Crouzon syndromes:clinical findings,genes and extracellular matrix.. J Craniofac Surg. 2005,16(3):361-8.
    [6]Cohen MM Jr, Kreiborg S.Birth prevalence studies of the Crouzon syndrome:comparison of direct and indirect methods. Clin Genet. 1992,41(1):12-5.
    [7]Sharda S, Panigrahi I,Gupta K,et al A newborn with acanthosis nigricans: can it be Crouzon syndrome with acanthosis nigricans? Pediatr Dermatol. 2010,27(1):43-7.
    [8]Tao YC,Slavotinek AM,Vargervik K,et al. Hypodontia in Beare-Stevenson syndrome:an example of dental anomalies in FGFR-related craniosynostosis syndromes. Cleft Palate Craniofac J.2010,47(3):253-8.
    [9]Cohen MM Jr Jackson-Weiss syndrome.Am J Med Genet.2001,100 (4):325-9.
    [10]Doherty ES,Lacbawan F,Hadley DW,et al.Muenke syndrome (FGFR3-related craniosynostosis):expansion of the phenotype and review of the literature. Am J Med Genet A.2007,143A(24):3204-15.
    [11]Muenke M,Schell U,Hehr A,et al.A common mutation in the fibroblast growth factor l,gene in Pfeiffer syndrome. Nature Genet.1994,8(3): 269-274.
    [12]Schell U,Hehr A,Feldman GJ,et al.Mutations in FGFR1 and FGFR2 cause familial and sporadic Pfeiffer syndrome.Hum Mol Genet.1995,4 (3):323-8.
    [13]Ornitz DM,MariePJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev.2002,16(12):1446-65.
    [14]Robertson SC,Meyer AN,Hart KC,et al.Activating mutations in the extracellular domain of the fibroblast growth factor receptor 2 function by disruption of the disulfide bond in the third immunoglobulin-like domain. Proc Natl Acad Sci U S A.1998,95(8):4567-72.
    [15]BasilicoC,Moscatelli D.The FGF family of growth factors and oncogenes. Adv Cancer Res.1992:59(2):115-65.
    [16]McIntosh I,Bellus GA,Jab EW.The pleiotropic effects of fibroblast growth factor receptors in mammalian development. Cell Struct Funct. 2000,25(2):85-96.
    [17]Ibrahimi OA,Eliseenkova AV,Plotnikov AN,et al.Structural basis for fibroblast growth factor receptor 2 activation in Apert syndrome. Proc Natl Acad Sci U S A.2001,98(13):7182-7.
    [18]Anderson J,Burns HD,Enriquez-Harris P,et al. Apert syndrome mutations in fibroblast growth factor receptor 2 exhibit increased affinity for FGF ligand. Hum Mol Genet.1998,7(9):1475-83.
    [19]Ibrahimi OA,Zhang F,Eliseenkova AV,et al. Proline to arginine mutations in FGF receptors 1 and 3 result in Pfeiffer and Muenke craniosynostosis syndromes through enhancement of FGF binding affinity. Hum Mol Genet. 2004,13(1):69-78.
    [20]Steinberger D,Mulliken JB,Muller U. Predisposition for cysteine substitutions in the immunoglobulin-like chain of FGFR2 in Crouzon syndrome. Hum Genet.1995,96(1):113-5.
    [21]Marie PJ,Coffin JD,Hurley MM.FGF and FGFR signaling in chondrodysplasias and craniosynostosis.J Cell Biochem.2005, 96(5):888-96.
    [22]Muenke M,Schell U,Hehr A,et al.A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome.Nat Genet. 1994,8(3):269-74.
    [23]Roscioli T,Flanagan S,Kumar P,et al. Clinical findings in a patient with FGFR1 P252R mutation and comparison with the literature.Am J Med
    Genet.2000,93(1):22-8.
    [24]Slaney SF,Oldridge M,Hurst JA,et al. Differential effects of FGFR2 mutations on syndactyly and cleft palate in Apert syndrome. Am J Hum Genet.1996,58(5):923-32.
    [25]Wilkie AO,Slaney SF,Oldridge M,et al. Apert syndrome results from localizedmutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet.1995,9(2):165-72.
    [26]WilkieAO. Craniosynostosis:genes and mechanisms.Hum Mol Genet. 1997,6(10):1647-56.
    [27]Muller U,Steinberger D,Kunze S.Molecular genetics of craniosynostotic syndromes.Graefes Arch Clin Exp Ophthalmol.1997,235(9):545-50.
    [28]Eswarakumar VP,Horowitz MC,Locklin R,et al. A gain-of-function mutation of Fgfr2c demonstrates the roles of this receptor variant in osteogenesis.Proc Natl Acad Sci USA.2004,101 (34):12555-60.
    [29]Lemonnier J,Hay E,Delannoy P, et al. Increased osteoblast apoptosis in apercraniosynostosis:role of protein kinase C and interleukin-1. Am J Pathol. 2001,158(5):1833-42.
    [30]Mansukhani A,Bellosta P,Sahni M,et al.Signaling by fibroblast growth factors(FGF)and fibroblast growth factor receptor 2(FGFR2)-activating mutations blocks mineralization and induces apoptosis in osteoblasts.J Cell Biol.2000,149(6):1297-308.
    [31]Yu K,Xu J,Liu Z,et al.Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth.Development.2003,130(13):3063-74.
    [32]Yin L,Du X,Li C,et al.A Pro253Arg mutation in fibroblast growth factor receptor 2 (Fgfr2) causes skeleton malformation mimicking human Apert syndrome by affecting both chondrogenesis and osteogenesis. Bone.2008,42(4):631-43.
    [33]Jacob AL,Smith C,Partanen J,et al.Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation.Dev Biol.2006,296(2):315-28.
    [34]Karsenty G,Wagner EF.Reaching a genetic and molecular understanding of skeletal development.Dev Cell.2002,2(4):389-406.
    [35]Olsen BR,Reginato AM,Wang W.Bone development.Annu Rev Cell Dev Bio.2000,16:191-220.
    [36]KronenbergHM.Developmental regulation of the growth plate. Nature. 2003,423(6960):332-6.
    [37]Suzuki A,Palmer G,Bonjour JP,et al.Stimulation of sodium-dependent phosphate transport and signaling mechanisms induced by basic fibroblast growth factor in MC3T3-E1 osteoblast-like cells.J Bone Miner Res. 2000,15(1):95-102.
    [38]McQueeney K, Soufer R, Dealy CN.Beta-catenin-dependent Wnt signaling in apical ectodermal ridge induction and FGF8 expression in normal and limbless mutant chick limbs.Dev Growth Differ.2002,44(4):315-25.
    [39]Chimal-Monroy J,Montero JA,Ganan Y,et al.Comparative analysis of the expression and regulation of Wnt5a,Fz4,and Frzb1 during digit formation and in micromass cultures.Dev Dyn.2002,224(3):314-20.
    [40]Hanafusa H,Torii S,Yasunaga T,et al.Sproutyl and Sprouty2 provide a controlmechanism for the Ras/MAPK signalling pathway.Nat Cell Biol.2002,4(11):850-8.
    [41]Bryckaert M,Guillonneau X,Hecquet C,et al. Regulation of proliferation-survival decisions is controlled by FGF1 secretion in retinal pigmented epithelial cells.Oncogene.2000,19(42):4917-29.
    [42]Monsonego-Ornan E,Adar R,Feferman T,et al.The transmembrane mutation G380R in fibroblast growth factor receptor 3 uncouples ligand-mediated receptor activation from down-regulation. Mol Cell Biol.2000, 20(2):516-22.
    [43]Baroni T,Carinci P.Lilli C,et al.P253R fibroblast growth factor receptor-2 mutation induces RUNX2 transcript variants and calvarial osteoblast differentiation.J Cell Physiol.2005,202(2):524-35.
    [44]Chang EJ,Kim HH,Huh JE,et al.Low proliferation and high apoptosis of osteoblasti cells on hydrophobic surface are associated with defective Ras signaling.Exp Cell Re.2005,303(1):197-206.
    [45]Kuo PL,Hsu YL,Chang CH,et al.Osthole-mediated cell differentiation through bon morphogenetic protein-2/p38 and extracellular signal-regulated kinase 1/2 pathway in human osteoblast cells.J Pharmacol Exp Ther.2005,314(3):1290-9.
    [46]Gallea S,Lallemand F,Atfi A,et al.Activation of mitogen-activated protein kinas cascades is involved in regulation of bone morphogenetic protein-2-induced osteoblas differentiation in pluripotent C2C12 cells. Bone.2001,28(5):491-8.
    [47]Raucci A,Laplantine E,Mansukhani A,et al.Activation of the ERK1/2 and p38mitogen-activated protein kinase pathways mediates fibroblast growth factor-induce growth arrest of chondrocytes.J Biol Chem.2004, 279(3):1747-56.
    [48]Lee JW,Kim YH,Kim SH,et al.Chondrogenic differentiation of mesenchymal stem cells and its clinical applications.Yonsei Med J. 2004,45 Suppl:41-7.
    [49]Yoon YM,Oh CD,Kim DY,et al.Epidermal growth factor negatively regulatechondrogenesis of mesenchymal cells by modulating the protein kinase C-alpha,Erk-1,and p38 MAPK signaling pathways.J Biol Chem. 2000,275(16):12353-9.
    [50]Kim HJ,Lee MH,Park HS,et al.Erk pathway and activator protein 1 play crucial roles in FGF2-stimulated premature cranial suture closure.Dev Dyn.2003,227(3):335-46.
    [51]Lee SW,Choi KY,Cho JY,et al.TGF-beta2 stimulates cranial suture closure through activation of the Erk-MAPK pathway.J Cell Biochem. 2006,98(4):981-91.
    [52]Shukla V,Coumoul X,Wang RH et al.RNA interference and inhibition of MEK-ERK signaling prevent abnormal skeletal phenotypes in a mouse model of craniosynostosis. Nature Genetics.2007,39(9):1145-1150.
    [53]Sapienza C. A paternal wash in Apert syndrome.Nat Genet. 1996,13(1):9-10.
    [1]Resendes BL,Williamson RE,Morton CC. At the speed of sound:gene discovery in the auditory system. Am J Hum Genet.2001,69(5):923-35.
    [2]Piatto VB,Nascimento EC,Alexandrino F et al.Molecular genetics of non-syndromic deafness.Braz J Otorhinolaryngo.2005,71(2):216-23.
    [3]Weil D,Blanchard S,Kaplan J,et al.Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature,1995,374(6517):60-1.
    [4]Mermall V,Post PL,Mooseker MS.Unconventional myosins in cell movement,membrane traffic,and signal transduction. Since.1998, 279(5350):527-33.
    [5]Chen ZY,Hasson T,Kelley PM,et al.Molecular cloning and domain structure of human myosin Ⅶa,the gene product defective in Usher syndrome 1B. Genomics.1996,36(3):440-8.
    [6]Steel KP,Brown SD. More deafness genes.Since.1998,280 (5368):1403.
    [7]Luijendijk MWJ,vanWijk E,Bischoff AMLC,et al. Identification and molecular modelling of a mutation in the motor head domain of myosin VIIA in a family with autosomal dominant hearing impairment (DFNA11).Hum Genet.2004,115(2):149-56.
    [8]Hasson T,Gillespie PQGarcia JA,et al. Unconventional myosins in inner-ear sensory epithelia. J Cell Biol.1997,137(6):1287-307.
    [9]Hasson T,Heintzelman MB,Santos-Sacchi J,et al. Expression in cochlea and retina of myosin VIIa,the gene product defective in Usher syndrome type 1B.Proc Natl Acad Sci USA.1995,92(21):9815-19.
    [10]Kachar B,Battaglia A,Fex.J.Compartmentalized vesicular traffic around the hair cell cuticular plate. Hear Res.1997,107(1-2):102-12.
    [11]Boeda B,E1-Amraoui A,Bahloul A,et al. Myosin VIIa,harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. EMBO J.2002,21 (24):6689-99.
    [12]Adato A,Michel V,Kikkawa Y,et al. Interactions in the network of Usher syndrome type 1 proteins. Hum Mol Genet.2005,4(3):347-56.
    [13]GibbsD,Azarian SM,Lillo C,et al. Role of myosin Ⅶa and Rab27a in the motility and localization of RPE Melanosomes. J Cell Sci.2004,117(Pt 26):6473-83.
    [14]Liu X,Udovichenko IP,Brown SD,et al. Myosin Ⅶa participates in opsin transport through the photoreceptor cilium. J Neurosci.1999, 19(15):6267-74.
    [15]Smith RJH,Berlin CI,Hejtmancik JF,et al.Clinical diagnosis of the Usher syndromes. Am J Med Genet.1994,50(1):32-8.
    [16]Kremer H,van Wijk E,Marker T,et al.Usher syndrome:molecular links of pathogenesis,proteins and pathways.Hum Mol Genet.2006,15 Spec No 2:R262-70.
    [17]Jaijo T,Aller E,Oltra S,et al. Mutation profile of the MY07A gene in Spanish patients with Usher syndrome type Ⅰ. Hum Mutat. 2006,27(3):290-1.
    [18]Watanabe S,Umeki N,Ikebe R,et al. Impacts of Usher syndrome type IB mutations on human myosin Ⅶa motor function. Biochemistry. 2008,47(36):9505-13.
    [19]Self T,Mahony M, Fleming J,et al.Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells.Development.1998,125 (4):557-66.
    [20]Kros CJ,Marcotti W,Netten SM van,et al.Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with MY07A mutations. Nat Neurosci.2002,5 (1):41-7.
    [21]Friedman TB,Sellers JR,Avraham KB.Unconventional myosins and the genetics of hearing loss. Am J Med Genet.1999,89(3):147-57.
    [22]El-Amraoui A,Schonn JS,Kussel-Andermann P,et al.MyRIP,a novel Rab effector, enables myosin Ⅶa recruitment to retinal melanosomes.EMBO Rep.2002,3(5):463-70.
    [23]Wolfrum U,Schmitt A.Rhodopsin transport in the membrane of the connecting cilium of mammalian photoreceptor cells.Cell Motil Cytoskeleton.2000,46(2):95-107.
    [24]Liu XZ,Udovichenko IP,Brown SD,Steel KP,et al.Williams DS Myosin Ⅶa participates in opsin transport through the photoreceptor cilium.J Neurosci.1999,19(15):6267-74.
    [25]Gibbs D,Kitamoto J,Williams DS.Abnormal phagocytosis by retinal pigmented epithelium that lacks myosin Ⅶa,the Usher syndrome 1B protein. Proc Natl Acad Sci USA.2003,100(11):6481-6.
    [26]Hashimoto T,Gibbs D,Lillo C,et al. Lentiviral gene replacement therapy of retinas in a mouse model for Usher syndrome type 1B.Gene Ther.2007,14(7):584-94.
    [27]Jacobson SG,Cideciyan AV,Aleman TS,et al.Usher syndromes due to MY07A, PCDH15,USH2A or GPR98 mutations share retinal disease mechanism.Hum Mol Genet.2008,17(15):2405-15.
    [28]Liu XZ,Walsh J,Mburu P,et al. Mutations in the myosin VIIA gene cause non-syndromic recessive deafness.Nat Genet.1997,16(2):188-90.
    [29]Liu XZ,Walsh J,Tamagawa Y,et al. Autosomal dominant non-syndromic deafness caused by a mutation in the myosin VIIA gene. Nat Genet. 1997,17(3):268-69.
    [30]Street VA,Kallman JC,Kiemele KL. Modifier controls severity of a novel dominant low-frequency myosin ⅦA (MYO7A) auditory mutation. J Med Genet.2004,41(5):e62.
    [31]Bolz H,Bolz SS,Schade G,et al. Impaired calmodulin binding of myosin-7A causes autosomal dominant hearing loss (DFNA11).Hum Mutat 2004,24(3):274-5.
    [32]Di Leva F,D'Adamo P,Cubellis MV,et al. Identification of a novel mutation in the myosin VIIA motor domain in a family with autosomal dominant hearing loss (DFNA11). Audiol Neurootol.2006,11(3):157-64.
    [33]Kallman JC,Phillips JO,Bramhall NF, et al. In search of the DFNA11 myosin VIIA low-and mid-frequency auditory genetic modifier.Otol Neurotol.2008,29(6):860-7.
    [34]Weil D,Kussel P,Blanchard S,Levy G,et al.The autosomal recessive isolated eafness,DFNB2,and the Usher 1B syndrome are allelic defects of the myosin-VIIA gene.Nat Genet.1997,16(2):191-3.
    [35]Liu XZ,Walsh J,Mburu P,et al. Mutations in the myosin VIIA gene cause non-syndromic recessive deafness.Nat Genet.1997,16(2):188-90.
    [36]Astuto LM,Kelley PM,Askew JW,et al. Searching for evidence of DFNB2.Am J Med Genet.2002,109(4):291-7.
    [37]Riazuddin S,Nazli S,Ahmed ZM,et al.Mutation spectrum of MY07A and evaluation of a novel nonsyndromic deafness DFNB2 allele with residual function.Hum Mutat.2008,29(4):502-11.
    [38]Su MC,Yang JJ,Su CC,et al. Identification of novel variants in the Myosin VIIA gene of patients with nonsyndromic hearing loss from Taiwan.Int J Pediatr Otorhinolaryngol.2009,73(6):811-5.
    [39]Liu XZ,Hope C,Walsh J,et al. Mutations in the myosin ⅦA gene cause a wide phenotypic spectrum, including atypical Usher syndrome. Am J Hum Genet.1998,63(3):909-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700