用户名: 密码: 验证码:
先天性核性粉尘样伴后极性白内障相关侯选基因定位及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     先天性白内障是儿童盲的首要原因。大约1/3的先天性白内障由遗传突变引起,其中最常见的是常染色体显性遗传。目前我国进行了大量先天性白内障疾病相关候选基因及其突变方式的研究,研究成果丰富了疾病相关基因库。而有关突变基因功能的研究尚有待开展。本研究拟对一先天性核性粉尘样伴后极性白内障大家系进行疾病相关候选基因的定位及功能研究。在进行遗传方式分析后,提取家系成员血DNA并克隆疾病相关侯选基因,通过DNA测序明确突变基因及位点。通过DNA体外重组技术构建携带突变基因的真核表达质粒,转染真核细胞后,在体外水平研究基因突变引起的生物学效应,阐明其引起先天性白内障的分子机制。
     研究方法:
     家系全体成员经眼部及全身检查后,根据系谱行遗传方式分析。白内障手术中将先证者晶状体用灌吸方式吸出,使用透射电镜观察晶状体纤维细胞结构。提取家系全体成员静脉血并抽提基因组DNA,使用聚合酶链反应(PCR)克隆核性白内障相关基因,经DNA测序明确突变基因及位点后,利用高效液相色谱分析(DHPLC)鉴定基因突变。以正常人血基因组DNA为模板,通过PCR反应获取野生型目的基因并通过DNA重组技术克隆至真核表达载体pEGFPN1。利用定点突变技术构建携带突变基因的质粒,分别转染至人晶状体上皮细胞(HLEB-3)及宫颈癌上皮细胞(HeLa),激光共聚焦显微镜下观察蛋白定位;免疫荧光技术检测晶状体上皮细胞中Connexin43 (Cx43)的表达分布及缝隙连接形成情况;使用G418抗生素筛选,建立稳定表达突变蛋白的细胞系;流式细胞分析术检测转染细胞的凋亡情况;Western-blot法检测凋亡相关蛋白caspase3的表达。
     研究结果:
     该家系为常染色体显性遗传,所有患者晶状体均表现为特殊的核性粉尘样伴后极性浑浊。透射电镜观察发现,先证者晶状体纤维细胞中存在小球样物质沉积。DNA测序示GJA3基因第2号外显子第5个碱基发生了G→A的置换(c.5G>A),该突变使得GJA3编码的Connexin46(Cx46)蛋白N端第二个氨基酸发生甘氨酸到天冬酰胺的转变(p.G2N)。高效液相色谱分析(DHPLC)验证了该基因突变的存在。分别成功构建表达野生型Cx46蛋白的质粒pEGFPN1-wtCx46及表达突变蛋白的pEGFPN1-Cx46G2N,转染HeLa及HLEB-3细胞后发现突变蛋白呈团块样聚集,这种蛋白的聚集导致缝隙连接形成失败,并影响了Cx43形成缝隙连接的能力。G418筛选培养一周后,突变基因转染细胞全部死亡,提示该突变具有致死性。流式细胞分析证实了细胞凋亡比例增多,Western-blot发现总caspase3表达降低,而剪切的caspase3增多,提示了细胞凋亡通路的激活。结论:
     本研究首次发现GJA3基因N端的一个新的先天性白内障疾病相关点突变G2N。该突变可以导致蛋白的聚集、缝隙连接形成失败,进而引起细胞凋亡。本研究拓展了先天性白内障的基因突变谱,揭示了缝隙连接蛋白突变导致先天性白内障发病的新机制。同时提示Cx46蛋白N端在维持晶状体正常生理状态中担当重要作用,为先天性白内障的预防和基因治疗提供了理论基础。
Purpose:
     Congenital cataract is the leading cause of visual disability in children worldwide. Approximately 1/3 of congenital cataracts are inherited, with the most common being the autosomal dominant form.Up to now, researchers in our courtury have done so much work on the localization of disease-associated genes of congenital cataract families. Functional detection of mutant genes is needed. Here, we studied on a family affected with congenital nuclear pulverulent and posterior polar cataract by localizaing and functional detecting of the disease- associated gene. Genomic DNA was extracted from the blood after the analysis of inheritance mode. Mutation was detected by gene cloning and DNA sequencing.Plasmid with the mutant gene was constructed, Molecular mechanisms by which this mutation caused congenital cataract were detected by gene transfection into cells.
     Method:
     The family with congenital cataracts was ascertained by ophthalmologic examination. Inherit mode was analyzed through the pedigree. Lens material was aspirated by irrigation and aspiration during cataract surgery from the proband. and was examined using transmission electron microscopy. Genomic DNA was extracted from the blood. Nuclear cataract-associated gene was amplified and sequenced directly.the mutation was verified by denaturing high-performance liquid chromatography (DHPLC). Wild type genes were PCR amplified from genomic DNA, then the amplifications were subcloned into pEGFP-N1.Quick change site directed mutagenesis was performed to construct the mutant plasmid. Behavior and cellular distribution of connexins were examined by expression in human lens epithelial cells(HLEB-3) and HeLa cells:protein distribution was observed by confocal fluorescence microscopy; distribution and function of Cx43 were detected by immunofiuorescene; Stably transfected clones were selected by their resistance to G418;cell apoptosis were detected by flow cytometry analysis and Western-blot.
     Results:
     We identified a four generation family with autosomal dominant congenital cataracts. The phenotype of the affected individuals'cataract was unique:not only were they nuclear pulverulent, but also exhibited posterior polar opacity. There were foci of dense, globular intracellular deposits in the proband's lens fiber cells. Direct sequencing of the GJA3 gene revealed a novel heterozygous transition G→A at position 5(c.5G>A) in the affected individuals, resulting in the replacement of highly conserved Glycine by Aspaingine (p.G2N).DHPLC analysis confirmed this mutation. We successfully constructed plasmids with wt Cx46 and Cx46G2N. After transfection into HeLa and HLEB-3 cells, we detected protein aggregation, which inhibited the formation of gap junction plaques, and disrupted the activity of Cx43. After selected by G418 for about 1 week, all of the cells transfected with Cx46G2N died.This indicated that the mutation lead to cell apotosis. Flow cytometry analysis showed increased cell apoptosis. Immunoblotting showed a decreased level of caspase3 and increased level of cleaved caspase3 in the Cx46G2N group compared to wt Cx46. indicating the activity of caspase3.
     Conclusion:
     We identified a novel congenital cataract associated mutation, G2N. in the N terminal of the GJA3 gene. This mutation may cause protein aggregation, reduce gap junction plaques and influence intercellular communication, thus leading to cell apoptosis. Our study widened the mutation spectrum of congenital cataract, represented a novel mechanism by which mutant connexin can cause cataracts. It also suggested a potential contribution of the Cx46 NH2- terminal in maintaining lens homeostasis, provided more theoretical basis for the prevention and gene therapy of congenital cataracts.
引文
[1]Rahi JS, Dezateux C. Measuring and interpreting the incidence of congenital ocular anomalies:lessons from a national study of congenital cataract in the UK. Invest Ophthalmol Vis Sci 2001; 42(7):1444-8.
    [2]Reddy MA, Francis PJ, Berry V, Bhattacharya SS, Moore AT. Molecular genetic basis of inherited cataract and associated phenotypes. Surv Ophthalmol 2004; 49(3):300-15.
    [3]Amaya L, Taylor D, Russell-Eggitt I, Nischal KK, Lengyel D. The morphology and natural history of childhood cataracts. Surv Ophthalmol 2003; 48(2):125-44.
    [4]Vanita, Singh JR, Singh D. Genetic and segregation analysis of congenital cataract in the Indian population. Clin Genet 1999; 56(5):389-93.
    [5]Thylefors B. A global initiative for the elimination of avoidable blindness. Community Eye Health 1998; 11(25):1-3.
    [6]Gu F, Luo W, Li X, Wang Z, Lu S, Zhang M, Zhao B, Zhu S, Feng S, Yan YB, Huang S, Ma X. A novel mutation in AlphaA-crystallin (CRYAA) caused autosomal dominant congenital cataract in a large Chinese family. Hum Mutat 2008; 29(5):769.
    [7]Liu M, Ke T, Wang Z, Yang Q, Chang W, Jiang F, Tang Z, Li H, Ren X, Wang X, Wang T, Li Q, Yang J, Liu J, Wang QK. Identification of a CRYAB mutation associated with autosomal dominant posterior polar cataract in a Chinese family. Invest Ophthalmol Vis Sci 2006; 47(8):3461-6.
    [8]Qi YH, Jia HY, Huang SZ, Lin H, Gu JZ, Su H, Zhang TY, Gao Y. [Autosomal dominant congenital nuclear cataract caused by a deletion mutation in the beta Al-crystallin gene]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2003; 20(6):486-9.
    [9]Li FF, Zhu SQ, Wang SZ, Gao C, Huang SZ, Zhang M, Ma X. Nonsense mutation in the CRYBB2 gene causing autosomal dominant progressive polymorphic congenital coronary cataracts. Mol Vis 2008; 14:750-5.
    [10]Yang J, Zhu Y, Gu F, He X, Cao Z, Li X, Tong Y, Ma X. A novel nonsense mutation in CRYBB1 associated with autosomal dominant congenital cataract. Mol Vis 2008; 14:727-31.
    [11]Yao K, Jin C, Zhu N, Wang W, Wu R, Jiang J, Shentu X. A nonsense mutation in CRYGC associated with autosomal dominant congenital nuclear cataract in a Chinese family. Mol Vis 2008; 14:1272-6.
    [12]Li F, Wang S, Gao C, Liu S, Zhao B, Zhang M, Huang S, Zhu S, Ma X. Mutation G61C in the CRYGD gene causing autosomal dominant congenital coralliform cataracts. Mol Vis 2008; 14:378-86.
    [13]Vanita V, Singh JR, Singh D, Varon R, Sperling K. Novel mutation in the gamma-S crystallin gene causing autosomal dominant cataract. Mol Vis 2009; 15:476-81.
    [14]Shentu XC, Yao K, Sun ZH, Xu W. [Study on ultrastructure changes and the genetic locus for a special phenotype cataract]. Zhonghua Yan Ke Za Zhi 2004; 40(5):306-10.
    [15]Francis P, Berry V, Bhattacharya S, Moore A. Congenital progressive polymorphic cataract caused by a mutation in the major intrinsic protein of the lens, MIP (AQPO). Br J Ophthalmol 2000; 84(12):1376-9.
    [16]Guleria K, Sperling K, Singh D, Varon R, Singh JR, Vanita V. A novel mutation in the connexin 46 (GJA3) gene associated with autosomal dominant congenital cataract in an Indian family. Mol Vis 2007; 13:1657-65.
    [17]Vanita V, Singh JR, Singh D, Varon R, Sperling K. A mutation in GJA8 (p.P88Q) is associated with "balloon-like" cataract with Y-sutural opacities in a family of Indian origin. Mol Vis 2008; 14:1171-5.
    [18]Gong X, Cheng C, Xia CH. Connexins in lens development and cataractogenesis. J Membr Biol 2007; 218(1-3):9-12.
    [19]Ma X, Li FF, Wang SZ, Gao C, Zhang M, Zhu SQ. A new mutation in BFSP2 (G1091 A) causes autosomal dominant congenital lamellar cataracts. Mol Vis 2008; 14:1906-11.
    [20]Song S, Landsbury A, Dahm R, Liu Y, Zhang Q, Quinlan RA. Functions of the intermediate filament cytoskeleton in the eye lens. J Clin Invest 2009; 119(7):1837-48.
    [21]Burdon KP, McKay JD, Wirth MG, Russell-Eggit IM, Bhatti S, Ruddle JB, Dimasi D, Mackey DA, Craig JE. The PITX3 gene in posterior polar congenital cataract in Australia. Mol Vis 2006; 12:367-71.
    [22]Smaoui N, Beltaief O, BenHamed S, M'Rad R, Maazoul F, Ouertani A, Chaabouni H, Hejtmancik JF. A homozygous splice mutation in the HSF4 gene is associated with an autosomal recessive congenital cataract. Invest Ophthalmol Vis Sci 2004; 45(8):2716-21.
    [23]Sakazume S, Sorokina E, Iwamoto Y, Semina EV. Functional analysis of human mutations in homeodomain transcription factor PITX3. BMC Mol Biol 2007; 8:84.
    [24]Graw J, Loster J. Developmental genetics in ophthalmology. Ophthalmic Genet 2003; 24(1):1-33.
    [25]Liu BF, Song S, Hanson M, Liang JJ. Protein-protein interactions involving congenital cataract T5P gammaC-crystallin mutant:a confocal fluorescence microscopy study. Exp Eye Res 2008; 87(6):515-20.
    [26]Minogue PJ, Liu X, Ebihara L, Beyer EC, Berthoud VM. An aberrant sequence in a connexin46 mutant underlies congenital cataracts. J Biol Chem 2005; 280(49):40788-95.
    [27]Lichtenstein A, Gaietta GM, Deerinck TJ, Crum J, Sosinsky GE, Beyer EC, Berthoud VM. The cytoplasmic accumulations of the cataract-associated mutant, Connexin50P88S, are long-lived and form in the endoplasmic reticulum. Exp Eye Res 2009; 88(3):600-9
    [1]Gilbert CE, Canovas R, Hagan M, Rao S, Foster A. Causes of childhood blindness:results from west Africa, south India and Chile. Eye (Lond) 1993; 7 (Pt 1):184-8.
    [2]Reddy MA, Francis PJ, Berry V, Bhattacharya SS, Moore AT. Molecular genetic basis of inherited cataract and associated phenotypes. Surv Ophthalmol 2004; 49(3):300-15.
    [3]Clapp C. Cataract:its aetiology and treatment, Henry Kimpton. London; 1934.
    [4]Duke-Elder S. The eye. Henry Kimpton. London; 1964.
    [5]Lambert SR, Drack AV. Infantile cataracts. Surv Ophthalmol 1996; 40(6):427-58.
    [6]Rahi JS, Dezateux C. Congenital and infantile cataract in the United Kingdom: underlying or associated factors. British Congenital Cataract Interest Group. Invest Ophthalmol Vis Sci 2000; 41(8):2108-14.
    [7]Amaya L, Taylor D, Russell-Eggitt I, Nischal KK, Lengyel D. The morphology and natural history of childhood cataracts. Surv Ophthalmol 2003; 48(2):125-44.
    [1]Shentu X, Yao K, Xu W, Zheng S, Hu S, Gong X. Special fasciculiform cataract caused by a mutation in the gammaD-crystallin gene. Mol Vis 2004; 10:233-9.
    [2]Andley UP. Crystallins and hereditary cataracts:molecular mechanisms and potential for therapy. Expert Rev Mol Med 2006; 8(25):1-19.
    [3]Vanita V, Singh JR, Hejtmancik JF, Nuernberg P, Hennies HC, Singh D, Sperling K. A novel fan-shaped cataract-microcornea syndrome caused by a mutation of CRYAA in an Indian family. Mol Vis 2006; 12:518-22.
    [4]Lu S, Zhao C, Jiao H, Kere J, Tang X, Zhao F, Zhang X, Zhao K, Larsson C. Two Chinese families with pulverulent congenital cataracts and deltaG91 CRYBA1 mutations. Mol Vis 2007; 13:1154-60.
    [5]Meyer E, Rahman F, Owens J, Pasha S, Morgan NV, Trembath RC, Stone EM, Moore AT, Maher ER. Initiation codon mutation in betaB1-crystallin (CRYBB1) associated with autosomal recessive nuclear pulverulent cataract. Mol Vis 2009; 15:1014-9.
    [6]Litt M, Carrero-Valenzuela R, LaMorticella DM, Schultz DW, Mitchell TN, Kramer P, Maumenee IH. Autosomal dominant cerulean cataract is associated with a chain termination mutation in the human beta-crystallin gene CRYBB2. Hum Mol Genet 1997; 6(5):665-8.
    [7]Yao K, Jin C, Zhu N, Wang W, Wu R, Jiang J, Shentu X. A nonsense mutation in CRYGC associated with autosomal dominant congenital nuclear cataract in a Chinese family. Mol Vis 2008; 14:1272-6.
    [8]Zhang LY, Yam GH, Fan DS, Tam PO, Lam DS, Pang CP. A novel deletion variant of gammaD-crystallin responsible for congenital nuclear cataract. Mol Vis 2007; 13:2096-104.
    [9]Burdon KP, Wirth MG, Mackey DA, Russell-Eggitt IM, Craig JE, Elder JE, Dickinson JL, Sale MM. A novel mutation in the Connexin 46 gene causes autosomal dominant congenital cataract with incomplete penetrance. J Med Genet 2004; 41(8):e106.
    [10]Arora A, Minogue PJ, Liu X, Addison PK, Russel-Eggitt I, Webster AR, Hunt DM, Ebihara L, Beyer EC, Berthoud VM, Moore AT. A novel connexin50 mutation associated with congenital nuclear pulverulent cataracts. J Med Genet 2008; 45(3):155-60.
    [11]Jiang J, Jin C, Wang W, Tang X, Shentu X, Wu R, Wang Y, Xia K, Yao K. Identification of a novel splice-site mutation in MIP in a Chinese congenital cataract family. Mol Vis 2009; 15:38-44.
    [12]Kuszak JR, Zoltoski RK, Tiedemann CE. Development of lens sutures. Int J Dev Biol 2004; 48(8-9):889-902.
    [13]Martinez-Wittinghan FJ, Sellitto C, White TW, Mathias RT, Paul D, Goodenough DA. Lens gap junctional coupling is modulated by connexin identity and the locus of gene expression. Invest Ophthalmol Vis Sci 2004; 45(10):3629-37.
    [14]Guleria K, Vanita V, Singh D, Singh JR. A novel "pearl box" cataract associated with a mutation in the connexin 46 (GJA3) gene. Mol Vis 2007; 13:797-803.
    [15]Vanita V, Singh JR, Singh D, Varon R, Sperling K. A mutation in GJA8 (p.P88Q) is associated with "balloon-like" cataract with Y-sutural opacities in a family of Indian origin. Mol Vis 2008; 14:1171-5.
    [16]Mackay D, Ionides A, Kibar Z, Rouleau G, Berry V, Moore A, Shiels A, Bhattacharya S. Connexin46 mutations in autosomal dominant congenital cataract. Am J Hum Genet 1999; 64(5):1357-64.
    [1]Wright JL, Jordan M, Wurm FM. Transfection of partially purified plasmid DNA for high level transient protein expression in HEK293-EBNA cells. J Biotechnol 2003; 102(3):211-21.
    [2]Zhang RX, Tang BS, Zi XH, Xia K, Pan Q, Zhang FF, Li SJ, Zhao GH, Guo K. [Study on aggregate formation mechanism of HSPB8 gene mutation resulting in CMT2L]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2006; 23(6):601-4.
    [3]Henke S, Rohmann A, Bertling WM, Dingermann T, Zimmer A. Enhanced in vitro oligonucleotide and plasmid DNA transport by VP1 virus-like particles. Pharm Res 2000; 17(9):1062-70.
    [4]Giangregorio N, Tonazzi A, Console L, Indiveri C, Palmieri F. Site-directed mutagenesis of charged amino acids of the human mitochondrial carnitine/acylcarnitine carrier:Insight into the molecular mechanism of transport. Biochim Biophys Acta.
    [5]Banks EA, Toloue MM, Shi Q, Zhou ZJ, Liu J, Nicholson BJ, Jiang JX. Connexin mutation that causes dominant congenital cataracts inhibits gap junctions, but not hemichannels, in a dominant negative manner. J Cell Sci 2009; 122(Pt 3):378-88.
    [6]Kumar LV, Ramakrishna T, Rao CM. Structural and functional consequences of the mutation of a conserved arginine residue in alphaA and alphaB crystallins. J Biol Chem 1999; 274(34):24137-41.
    [7]Sakai R, Elfgang C, Vogel R, Willecke K, Weingart R. The electrical behaviour of rat connexin46 gap junction channels expressed in transfected HeLa cells. Pflugers Arch 2003; 446(6):714-27.
    [8]Thomas BC, Minogue PJ, Valiunas V, Kanaporis G, Brink PR, Berthoud VM, Beyer EC. Cataracts are caused by alterations of a critical N-terminal positive charge in connexin50. Invest Ophthalmol Vis Sci 2008; 49(6):2549-56.
    [9]Cobb BA, Petrash JM. Structural and functional changes in the alpha A-crystallin R116C mutant in hereditary cataracts. Biochemistry 2000; 39(51):15791-8.
    [10]Shroff NP, Cherian-Shaw M, Bera S, Abraham EC. Mutation of R116C results in highly oligomerized alpha A-crystallin with modified structure and defective chaperone-like function. Biochemistry 2000; 39(6):1420-6.
    [1]Martinez-Wittinghan FJ, Sellitto C, White TW, Mathias RT, Paul D, Goodenough DA. Lens gap junctional coupling is modulated by connexin identity and the locus of gene expression. Invest Ophthalmol Vis Sci 2004; 45(10):3629-37.
    [2]Mese G, Richard G, White TW. Gap junctions:basic structure and function. J Invest Dermatol 2007; 127(11):2516-24.
    [3]Banks EA, Toloue MM, Shi Q, Zhou ZJ, Liu J, Nicholson BJ, Jiang JX. Connexin mutation that causes dominant congenital cataracts inhibits gap junctions, but not hemichannels, in a dominant negative manner. J Cell Sci 2009; 122(Pt 3):378-88.
    [4]Sellitto C, Li L, White TW. Connexin50 is essential for normal postnatal lens cell proliferation. Invest Ophthalmol Vis Sci 2004; 45(9):3196-202.
    [5]Devi RR, Yao W, Vijayalakshmi P, Sergeev YV, Sundaresan P, Hejtmancik JF. Crystallin gene mutations in Indian families with inherited pediatric cataract. Mol Vis 2008; 14:1157-70.
    [6]Gong X, Cheng C, Xia CH. Connexins in lens development and cataractogenesis. J Membr Biol 2007; 218(1-3):9-12.
    [7]Yu XS, Jiang JX. Interaction of major intrinsic protein (aquaporin-0) with fiber connexins in lens development. J Cell Sci 2004; 117(Pt 6):871-80.
    [8]White TW. Unique and redundant connexin contributions to lens development. Science 2002; 295(5553):319-20.
    [9]Trexler EB, Bukauskas FF, Kronengold J, Bargiello TA, Verselis VK. The first extracellular loop domain is a major determinant of charge selectivity in connexin46 channels. Biophys J 2000; 79(6):3036-51.
    [10]Arora A, Minogue PJ, Liu X, Reddy MA, Ainsworth JR, Bhattacharya SS, Webster AR, Hunt DM, Ebihara L, Moore AT, Beyer EC, Berthoud VM. A novel GJA8 mutation is associated with autosomal dominant lamellar pulverulent cataract:further evidence for gap junction dysfunction in human cataract. J Med Genet 2006; 43(1):e2.
    [11]Pal JD, Liu X, Mackay D, Shiels A, Berthoud VM, Beyer EC, Ebihara L. Connexin46 mutations linked to congenital cataract show loss of gap junction channel function. Am J Physiol Cell Physiol 2000; 279(3):C596-602.
    [12]Addison PK, Berry V, Holden KR, Espinal D, Rivera B, Su H, Srivastava AK, Bhattacharya SS. A novel mutation in the connexin 46 gene (GJA3) causes autosomal dominant zonular pulverulent cataract in a Hispanic family. Mol Vis 2006; 12:791-5.
    [13]Hansen L, Yao W, Eiberg H, Funding M, Riise R, Kjaer KW, Hejtmancik JF, Rosenberg T. The congenital "ant-egg" cataract phenotype is caused by a missense mutation in connexin46. Mol Vis 2006; 12:1033-9.
    [14]Thomas BC, Minogue PJ, Valiunas V, Kanaporis G, Brink PR, Berthoud VM, Beyer EC. Cataracts are caused by alterations of a critical N-terminal positive charge in connexin50. Invest Ophthalmol Vis Sci 2008; 49(6):2549-56.
    [15]Kyle JW, Minogue PJ, Thomas BC, Domowicz DA, Berthoud VM, Hanck DA, Beyer EC. An intact connexin N-terminus is required for function but not gap junction formation. J Cell Sci 2008; 121(Pt 16):2744-50.
    [16]Xia CH, Cheung D, DeRosa AM, Chang B, Lo WK, White TW, Gong X. Knock-in of alpha3 connexin prevents severe cataracts caused by an alpha8 point mutation. J Cell Sci 2006; 119(Pt 10):2138-44.
    [17]Piatigorsky J. Lens differentiation in vertebrates. A review of cellular and molecular features. Differentiation 1981; 19(3):134-53.
    [18]Minogue PJ, Liu X, Ebihara L, Beyer EC, Berthoud VM. An aberrant sequence in a connexin46 mutant underlies congenital cataracts. J Biol Chem 2005; 280(49):40788-95.
    [19]Varadaraj K, Kumari SS, Patil R, Wax MB, Mathias RT. Functional characterization of a human aquaporin 0 mutation that leads to a congenital dominant lens cataract. Exp Eye Res 2008; 87(1):9-21.
    [20]Berthoud VM, Beyer EC. Oxidative stress, lens gap junctions, and cataracts. Antioxid Redox Signal 2009;11(2):339-53.
    [21]DeRosa AM, Mese G, Li L, Sellitto C, Brink PR, Gong X, White TW. The cataract causing Cx50-S50P mutant inhibits Cx43 and intercellular communication in the lens epithelium. Exp Cell Res 2009; 315(6):1063-75.
    [22]Vinken M, Decrock E, De Vuyst E, De Bock M, Vandenbroucke RE, De Geest BG, Demeester J, Sanders NN, Vanhaecke T, Leybaert L, Rogiers V. Connexin32 hemichannels contribute to the apoptotic-to-necrotic transition during Fas-mediated hepatocyte cell death. Cell Mol Life Sci; 67(6):907-18.
    [23]Minogue PJ, Tong JJ, Arora A, Russell-Eggitt I, Hunt DM, Moore AT, Ebihara L, Beyer EC, Berthoud VM. A mutant connexin50 with enhanced hemichannel function leads to cell death. Invest Ophthalmol Vis Sci 2009; 50(12):5837-45.
    [24]Banerjee D, Gakhar G, Madgwick D, Hurt A, Takemoto D, Nguyen TA. A novel role of gap junction connexin46 protein to protect breast tumors from hypoxia. Int J Cancer 2009.
    [1]Gilbert CE, Canovas R, Hagan M, Rao S, Foster A. Causes of childhood blindness:results from west Africa, south India and Chile. Eye (Lond) 1993; 7 (Pt 1):184-8.
    [2]Reddy MA, Francis PJ, Berry V, Bhattacharya SS, Moore AT. Molecular genetic basis of inherited cataract and associated phenotypes. Surv Ophthalmol 2004; 49(3):300-15.
    [3]Vanita V, Singh JR, Hejtmancik JF, Nuernberg P, Hennies HC, Singh D, Sperling K. A novel fan-shaped cataract-microcornea syndrome caused by a mutation of CRYAA in an Indian family. Mol Vis 2006; 12:518-22.
    [4]Liu M, Ke T, Wang Z, Yang Q, Chang W, Jiang F, Tang Z, Li H, Ren X, Wang X, Wang T, Li Q, Yang J, Liu J, Wang QK. Identification of a CRYAB mutation associated with autosomal dominant posterior polar cataract in a Chinese family. Invest Ophthalmol Vis Sci 2006; 47(8):3461-6.
    [5]Lu S, Zhao C, Jiao H, Kere J, Tang X, Zhao F, Zhang X, Zhao K, Larsson C. Two Chinese families with pulverulent congenital cataracts and deltaG91 CRYBA1 mutations. Mol Vis 2007; 13:1154-60.
    [6]Meyer E, Rahman F, Owens J, Pasha S, Morgan NV, Trembath RC, Stone EM, Moore AT, Maher ER. Initiation codon mutation in betaB1crystallin (CRYBB1) associated with autosomal recessive nuclear pulverulent cataract. Mol Vis 2009; 15:1014-9.
    [7]Litt M, Carrero-Valenzuela R, LaMorticella DM, Schultz DW, Mitchell TN, Kramer P, Maumenee IH. Autosomal dominant cerulean cataract is associated with a chain termination mutation in the human beta-crystallin gene CRYBB2. Hum Mol Genet 1997; 6(5):665-8.
    [8]Yao K, Jin C, Zhu N, Wang W, Wu R, Jiang J, Shentu X. A nonsense mutation in CRYGC associated with autosomal dominant congenital nuclear cataract in a Chinese family. Mol Vis 2008; 14:1272-6.
    [9]Li F, Wang S, Gao C, Liu S, Zhao B, Zhang M, Huang S, Zhu S, Ma X. Mutation G61C in the CRYGD gene causing autosomal dominant congenital coralliform cataracts. Mol Vis 2008; 14:378-86.
    [10]Vanita V, Singh JR, Singh D, Varon R, Sperling K. Novel mutation in the gamma-S crystallin gene causing autosomal dominant cataract. Mol Vis 2009; 15:476-81.
    [11]Francis P, Berry V, Bhattacharya S, Moore A. Congenital progressive polymorphic cataract caused by a mutation in the major intrinsic protein of the lens, MIP (AQPO). Br J Ophthalmol 2000; 84(12):1376-9.
    [12]Guleria K, Sperling K, Singh D, Varon R, Singh JR, Vanita V. A novel mutation in the connexin 46 (GJA3) gene associated with autosomal dominant congenital cataract in an Indian family. Mol Vis 2007; 13:1657-65.
    [13]Vanita V, Singh JR, Singh D, Varon R, Sperling K. A mutation in GJA8 (p.P88Q) is associated with "balloon-like" cataract with Y-sutural opacities in a family of Indian origin. Mol Vis 2008; 14:1171-5.
    [14]Ma X, Li FF, Wang SZ, Gao C, Zhang M, Zhu SQ. A new mutation in BFSP2 (G1091A) causes autosomal dominant congenital lamellar cataracts. Mol Vis 2008; 14:1906-11.
    [15]Burdon KP, McKay JD, Wirth MG, Russell-Eggit IM, Bhatti S, Ruddle JB, Dimasi D, Mackey DA, Craig JE. The PITX3 gene in posterior polar congenital cataract in Australia. Mol Vis 2006; 12:367-71.
    [16]Smaoui N, Beltaief O, BenHamed S, M'Rad R, Maazoul F, Ouertani A, Chaabouni H, Hejtmancik JF. A homozygous splice mutation in the HSF4 gene is associated with an autosomal recessive congenital cataract. Invest Ophthalmol Vis Sci 2004; 45(8):2716-21.
    [17]Martinez-Wittinghan FJ, Sellitto C, White TW, Mathias RT, Paul D, Goodenough DA. Lens gap junctional coupling is modulated by connexin identity and the locus of gene expression. Invest Ophthalmol Vis Sci 2004; 45(10):3629-37.
    [18]Mese G Richard G White TW. Gap junctions:basic structure and function. J Invest Dermatol 2007; 127(11):2516-24.
    [19]Banks EA, Toloue MM, Shi Q, Zhou ZJ, Liu J, Nicholson BJ, Jiang JX. Connexin mutation that causes dominant congenital cataracts inhibits gap junctions, but not hemichannels, in a dominant negative manner. J Cell Sci 2009; 122(Pt 3):378-88.
    [20]Yeager M, Nicholson BJ. Structure of gap junction intercellular channels. Curr Opin Struct Biol 1996; 6(2):183-92.
    [21]Minogue PJ, Liu X, Ebihara L, Beyer EC, Berthoud VM. An aberrant sequence in a connexin46 mutant underlies congenital cataracts. J Biol Chem 2005; 280(49):40788-95.
    [22]Piatigorsky J. Lens differentiation in vertebrates. A review of cellular and molecular features. Differentiation 1981; 19(3):134-53.
    [23]Rong P, Wang X, Niesman I, Wu Y, Benedetti LE, Dunia I, Levy E, Gong X. Disruption of Gja8 (alpha8 connexin) in mice leads to microphthalmia associated with retardation of lens growth and lens fiber maturation. Development 2002; 129(1):167-74.
    [24]Gong X, Cheng C, Xia CH. Connexins in lens development and cataractogenesis. J Membr Biol 2007; 218(1-3):9-12.
    [25]Baruch A, Greenbaum D, Levy ET, Nielsen PA, Gilula NB, Kumar NM, Bogyo M. Defining a link between gap junction communication, proteolysis, and cataract formation. J Biol Chem 2001; 276(31):28999-9006.
    [26]Gao J, Sun X, Martinez-Wittinghan FJ, Gong X, White TW, Mathias RT. Connections between connexins, calcium, and cataracts in the lens. J Gen Physiol 2004; 124(4):289-300.
    [27]Sellitto C, Li L, White TW. Connexin50 is essential for normal postnatal lens cell proliferation. Invest Ophthalmol Vis Sci 2004; 45(9):3196-202.
    [28]Xia CH, Cheung D, DeRosa AM, Chang B, Lo WK, White TW, Gong X. Knock-in of alpha3 connexin prevents severe cataracts caused by an alpha8 point mutation. J Cell Sci 2006; 119(Pt 10):2138-44.
    [29]White TW. Unique and redundant connexin contributions to lens development. Science 2002; 295(5553):319-20.
    [30]Devi RR, Yao W, Vijayalakshmi P, Sergeev YV, Sundaresan P, Hejtmancik JF. Crystallin gene mutations in Indian families with inherited pediatric cataract. Mol Vis 2008; 14:1157-70.
    [31]DeRosa AM, Mese G, Li L, Sellitto C, Brink PR, Gong X, White TW. The cataract causing Cx50-S50P mutant inhibits Cx43 and intercellular communication in the lens epithelium. Exp Cell Res 2009; 315(6):1063-75.
    [32]Banerjee D, Gakhar G, Madgwick D, Hurt A, Takemoto D, Nguyen TA. A novel role of gap junction connexin46 protein to protect breast tumors from hypoxia. Int J Cancer 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700