用户名: 密码: 验证码:
大型韧性走滑作用与祁连加里东造山带的形成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
祁连加里东造山带是阿拉善地体、祁连微地体和柴达木地体在加里东时期相互会聚、碰撞的产物。北祁连加里东俯冲碰撞杂岩带和柴北缘俯冲碰撞杂岩带分别位于祁连微地体的南北边界。北祁连加里东俯冲碰撞杂岩带以发育蛇绿岩,与俯冲有关的花岗岩、岛弧火山岩和高压变质岩石及弧前增生楔为特征;柴北缘俯冲碰撞杂岩带以产出岛弧火山岩,俯冲成因的花岗岩和柯石英相超高压变质岩为特征。两带均形成于早古生代祁连洋的关闭,所不同的是北祁连洋的关闭仅仅发生洋—陆之间的俯冲,而南祁连洋在关闭后出现了陆—陆深俯冲,形成了超高压变质岩石,具有较北带更复杂的形成历史。
     祁连微地体的南北边界均为大型韧性走滑剪切带。本论文旨在通过调查这两条韧性剪切带的空间分布、几何学和运动学特征,形成的温压条件、时代,探讨这些大型韧性走滑剪切作用的特征、性质,形成机制,以及它们对造山作用的贡献。
     祁连微地体北部边界韧性剪切带称之为北祁连南缘右行韧性走滑剪切带,南部边缘韧性剪切带称之为柴北缘右行韧性走滑剪切带。两者均以糜棱面理往北陡倾、近水平的拉伸线理、右行剪切应变及在YZ面上的挤压为基本特征,为韧性“右行挤压转换型”剪切带。北祁连南缘韧性右行韧性走滑剪切带地球化学分析表明糜棱岩原岩为泥、砂质岩和火成岩。石榴石微区成分变化、黑云母中高TiO_2含量(约2wt%)和矽线石相变质作用均说明韧性剪切带的形成温度较高。根据剪切带内石英优选方位具高温柱面滑移系、中温菱面滑移系及低温底面轴滑移系,推测剪切带形成高温(>650℃)及中高温(400℃-650℃)的条件,后经历一次退变质作用,与GBIMSPL温压计和Thermocalc温压计计算出韧性剪切带中段(宝库河)糜棱岩形成的温度T=542℃-763℃(P=6.2Kbar-8.4Kbar)基本吻合。剪切带内长英质条带沿糜棱面理产出,具有与剪切带糜棱岩完全一致的构造变形特征。它们是在剪切作用过程中剪切热引起原岩温度升高并导致岩石部分熔融形成的,是同构造熔融作用的产物。
     糜棱岩单颗锆石U-Pb同位素上交点年龄965-956Ma代表原岩的形成时代,与祁连微地体变质基底的形成时代一致。剪切带切割了俯冲碰撞杂岩带,穿过加里东期花岗岩体,并被石炭纪地层覆盖。钾长石、黑云母Ar-Ar同位素年龄、单颗锆石U-Pb同位素下交点年龄等表明北祁连南缘右行韧性走滑剪切带形成于410-394Ma,与柴北缘右行韧性走滑剪切带形成时代(406-401Ma)相一致,两者均为加里东造山作用晚期的产物。大型韧性走滑剪切带的形成时代为早中泥盆世,分别为410-394Ma和406-401Ma,表明大型韧性右行挤压转换作用是加里东造山作用的继续,是在加里东期间陆陆正向会聚碰撞→陆陆斜向会聚碰撞转换过程中形成的。在青藏高原中,地体边界上普遍叠置大型转换挤压型走滑剪切带(或断裂),表明陆—陆斜向碰撞产生走滑剪切带,伴随山脉的形成和隆升,可能是造山过程中的一种普遍规律。
There are two subduction and collision related complex belts, which occur at the north borderand south border, respectively, of the Qilian microcontinent, formed by the collision between theAlxa micro-continent, the Qilian micro-continent and the Qaidam micro-continent in the EarlyPaleozoic period. The north one is called the North Qilian Caledonian subduction-collisioncomplex belt (NQCB), and the south one is called the South Qilian subduction-collision complexbelt (SQCB). The NQCB is characterized by the occurrence of ophiolite, subduction relatedgranites, island arc volcanic rocks, high pressure metamorphic rocks and accretionary wedges,whereas the SQCB is characterized by the occurrence of island arc volcanic rocks and subductionrelated granites, ultrahigh pressure rocks. These two belts were formed by the close of the Qilianocean basin, and the different is that ocean-continent subduction occurred at the NQCB whereas atthe SQCB the oceanic crust subduction was followed by continental subduction.
     This thesis is aimed to study the two boundary ductile shear zones of the Qilianmicrocontinent, both of them are large ductile strike-slip shear zones, and to understand thecharacteristics and nature of shearing, original mechanism, and their contribution to the orogen,through the investigation of their spatial distribution, geometry, structural analysis, chemicalcomposition of mylonite and syntectonic anatexis, and geochronology.
     The north boundary shear zone is called the North Boundary Ductile Strike-slipping ShearZone of Qilihn (NBSZ), and the south boundary shear zone is called the South Boundary DuctileStrike-slipping Shear Zone of Qilian (SBSZ). The foliations of mylonites in the two zones deeplydip to the north with nearly horizontal stretch lineation, dextral shear sense, and compressionaldeformation in the YZ face.
     The geochemical compositions show that the protolith of mylonite in NBSZ probably waspelite, sandstone and volcanic rocks. The compositional features of garnets, high TiO2 (about 2wt%) in biotite and sillimanite occurs in the mylonite suggest a high temperature environment ofthe shearing. The hightemperature prismatic glide system , middle temperature rhombic glidesystem and low temperature based glide system
for the preferred orientation of quartz inNBSD indicate the shear zone formed in a high temperature (above 650℃), and a middle-hightemperature (400-600℃), after undergoing a retrogressive metamorphism, which is accordancewith the temperature T=542-753℃(P=6.2-8.4 kbar) of mylonite calculated by GBIMSPL andThermocalc geothermobarometers. The felsic bands in ductile shear zone are ubiquitous, distributeisolated along foliation, and the deformation features of felsic bands are the same with mylonite,which show that was formed by partial melting resulted from shear heat energy during shearing.They are products of syntectonic melting during dextral strike-slip shearing.
     Geochronology study shows that the formational age of NBSZ is 410-394Ma, dated by U-Pbmethod of zircon from felsic mylonite, and the age of SBSZ is 406-401 Ma, both suggest a lateCaledonian age. The NBSZ and SBSZ formed during transformation from normal to obliqueintrocontinental subduction between the micro-continents. Since large size shearing fault zones arecommonly developed in the Qinghai-Tibetan plateau, "oblique introcontinental subduction"probably is a mechanism for the formation of the shearing fault, and the latter causes the formationand uplift of mountains as well as plateau.
引文
边千韬.1989.白银厂矿田地质构造及成矿模式.北京:地震出版社,59~65
    崔军文.1989.哀牢山韧性平移剪切带特征.中国地质科学院院报,19:21~35.
    邓晋福.1987.岩石相平衡与岩石成因.武汉:武汉地质出版社,1~72.
    董申宝.1998.地壳物质组分的共生组合法则.地学前缘,5(3):59~66.
    冯益民,何世平.1996.祁连山大地构造与造山作用.北京:地质出版社,12~101.
    冯益民,何世平.1995.北祁连山蛇绿岩地质和地球化学研究.岩石学报,11(增刊):125~146.
    郭进京,赵凤清,李怀坤.1999.中祁连东段晋宁期碰撞型花岗岩及其地质意义.地球学报,20(1):10~15.
    郭进京,等.2000.中祁连东段湟源群的年代学新证据及其地质意义.中国区域地质,19(1):26~31.
    郭原生,王金荣,解宪丽,等.2001.白银厂矿田石英钠长斑岩Sm-Nd,Rb-Sr同位素特征及地质意义.甘肃科学学报,13(1):37~39.
    郭原生,李汉业,解宪丽,等.1999.白银小铁山矿区含矿岩系中的糜棱岩类.甘肃地质学报,8(2):8~13.
    何绍勋.1996.韧性剪切带与成矿.北京:地质出版社.
    胡大干,徐学纯.1994.集安岩群石榴石成分特征及其动力学意义.长春地质学院院报,24(4):361~368.
    高锐,成湘洲,丁谦.1995.格尔木—额济纳旗地学断面地球动力学模型初探.地球物理学报,38(Suppl.):3~14.
    金振民.1988.高温高压岩石变形试实验及其地球动力学意义.地质科技情报,7(3):11~19.
    嵇少丞.1988.部分年龄的构造意义(Ⅰ):变形机制转换的实验研究.地质科学,4:347~356.
    赖绍聪,邓晋福,赵海玲.1996.柴达木北缘奥陶纪火山作用与构造机制.西安地质学院学报,18(3):8~14.
    李海兵,等.2001.阿尔金断裂带印支期走滑活动的地质及年代学证据.科学通报,46(16):1333~1338.
    李海兵,曾令森,许志琴.1997.剪切带中变斑晶的生长及包裹体痕迹的演化.地质科学,32(2):181~192.
    李春昱,刘仰文,朱宝清,等.1978.秦岭及祁连山构造发展史.国际交流地质学术文集,174~187.
    李怀坤,陆松年,赵风清,等.1999.柴北缘的新元古代主要地层事件的年代学.地球化学,13(2):224~225.
    林强,吴福元.1993.花岗岩块状样品的熔融实验研究.地球化学.(4):356~362.
    刘顺,肖晓辉,钟大赉.1997.长英质麻粒岩流变性质的实验研究.成都理工学院学报,24(1):42~47.
    卢良兆等.1992.内蒙古东南部早前寒武纪孔兹岩系成因及其含矿性.吉林:吉林科技出版 社
    孟令顺,管烨,齐立.1995.格尔木—额济纳旗地学断面及其邻区重力场与深部地壳构造.地球物理学报,38(supp.):36~45.
    戚学祥,李海兵,张建新,等.2003.韧性剪切带的变形变质与同构造熔融作用——以中祁连宝库河韧性走滑剪切带为例.地质论评,49(4).
    青海省地矿局.1991.青海省区域地质志.北京:地质出版社.
    邱华宁,彭良.1997.~(40)Ar~~(39)At年代学与流体包裹体定年.合肥:中国科学技术大学出版社,18~161.
    石耀霖,张建.1998.活动海岭俯冲与岛弧火山活动的热模拟研究.地球物理学报,41 (2):174~181.
    索书田,游振东,钟增球,等.1997.超高压—高压剪切带.地质科技情报.16(2):1~6.
    王荃,刘雪业.1976.我国西部祁连山区的古海洋地壳及其大地构造意义.地质科学,(1):42~55.
    王思敬,韩贝传,孙惠文.1992.韧性剪切带形成的岩石流变学特征.地质科学,(3):269~280.
    王云山,陈基娘.1987.青海省毗邻地区变质地带及变质作用.北京:地质出版社.
    王道轩,孙世群.1996.东爬米尔北缘韧性剪切带中的多硅白云母及其地质意义.安徽地质,6(1):1~8.
    吴才来,杨经绥,李海兵,等2001柴达木盆地北缘西端冷湖花岗岩中国区域地质,20(1):73~81.
    吴汉泉.198D.东秦岭和北祁连山的蓝闪片岩.地质学报,54(3):195~207.
    吴汉泉.1987.北祁连多硅白云母矿物学和多型特征及对Ar-Ar年龄的思考.中国地质科学院西安地质矿产研究所所刊,15:33~46.
    吴汉泉,冯益民.1990.北祁连山中段甘肃肃南变质硬柱石蓝闪片岩的发现及其意义.地质论评,36(3):277~280.
    吴汉泉,冯益民.1991.甘肃玉门昌马地区的蓝闪片岩.中国地质科学院西安地质矿产研究所所刊,32:1~13.
    吴汉泉,宋述光.1992.北祁连山两种蓝片岩及其构造特征.现代地质研究文集,南京:南京大学出版社,74~80.
    卫管一等.1989.喜马拉雅地区前寒武系地质构造与变质作用.成都:成都科技大学出版社,32~62.
    夏林圻,夏祖春,等.1991.祁连秦岭山系海相火山岩.武汉:中国地质大学出版社.
    夏林圻,夏祖春,徐学义,等.1995.北祁连山构造—火山岩浆演化动力学西北地质科学,16(1):1~28.
    夏林圻,夏祖春,徐学义.1996.北祁连山海相火山岩岩石成因.北京:地质出版社.
    夏林圻,夏祖春,任有祥,等.1998.祁连山及邻区火山作用与成矿.北京:地质出版社,26~53.
    靳是琴等.1994.中国北方孔兹岩系矿物的成分环带.北京:地质出版社
    肖序常,陈国明,朱志直.1978.祁连山古蛇绿岩的地质构造意义[J].地质学报,54(4):287~295.
    肖序常,李庭栋.2000.青藏高原的构造演化与隆升机制.广东:广东科技出版社,101~105
    许志琴,卢一伦,汤耀庆,等.东秦岭复合山链的形成.北京:中国环境科技出版社.
    许志琴,等.1994.北祁连走廊南山加里东俯冲杂岩增生地体及其动力学.地质学报,68(1):1~15.
    许志琴,崔军文.1996.大陆山链变形构造动力学.北京:冶金工业出版社.
    许志琴,等.1997.中国主要大陆山链韧性剪切带及动力学.北京:地质出版社.
    许志琴,杨经绥,姜枚,等.1999.大陆俯冲作用及青藏高原周缘造山带的崛起.地学前缘,6(3):139~151.
    许志琴,李海兵,杨经绥,等.2001.东昆仑山南缘大型转换挤压构造带和斜向俯冲作用.地质学报,75(2):156~164.
    许志琴,杨经绥,吴才来,等.2003.柴北缘超高压变质带形成与折返的时限及机制.地质学报,(2):163~176.
    徐夕生,周新民,S.Y.O'Reilly,唐红峰.1999.中国东南部下地壳物质与花岗岩成因探索.岩石学报,(2)
    杨经绥,许志琴,李海兵,等.1998.柴北缘地区榴辉岩的发现及潜在的地质意义.科学通报,43(14):1544~1549.
    杨经绥,许志琴,宋述光,等.2000.青海都兰地区榴辉岩的发现及对中国中央造山带高压—超高压变质带研究的意义.地质学报,74(2):156~168.
    杨经绥,宋述光,许志琴,等.2001.柴北缘造古生代高压—超高压变质带发现典型超高压矿物—柯石英.地质学报,75(2):
    杨经绥,许志琴,张建新,等.2002.青藏高原北部柴北缘超高压变质带及板块双俯冲模式 北京:地质出版社,173~183.
    杨晓松,金振民.1999.部分熔融与青藏高原地壳加厚的关系综述.地质科技情报18(1):24~28.
    杨晓松,金振民,Huenges E,高山,Wunder B,Schilling F R.2001.喜马拉雅造山带下地壳麻粒岩成因:来自高温高压实验的证据.科学通报,46(2 4):2025~2030.
    尹观,张树发,范良明,万永文.1998.甘肃白银金属硫化物矿床及其矿区主要地质事件的同位素地质年代学研究.地质地球化学,(1):6~14.
    张旗,王焰,钱青.2000.北祁连早古生代洋盆是裂陷槽还是大洋盆,地质科学,35 (1):121~128.
    张旗,孙晓猛,周德进,等.1997.北祁连蛇绿岩的特征、形成环境及其构造意义.地球科学进展,12(4):367~386.
    张建新等,2001.阿尔金西段榴辉岩岩石学、地球化学和同位素年代学研究及其构造意义.地质学报,75(2):186~197.
    张建新,杨经绥,许志琴,等.2000.柴北缘榴辉岩的蜂起和退变质年龄:来自U-Pb及Ar-Ar同位素测定的证据.地球化学,29(3):217~222.
    张建新,许志琴,徐惠芬,等.1998.北祁连加里东期俯冲—增生楔结构及动力学.地质科学,33(3):290~299.
    张建新,许志琴,李海兵.1998.北祁连造山带东段白银地区的构造单元划分及韧性变形.高校地质学报,146~154.
    张建新,许志琴,陈文,等.1997.北祁连中段加里东俯冲增生杂岩/火山弧的时代探讨.岩石矿物学,(2):112~119.
    张建新,许志琴.1995.北祁连中段加里东俯冲增生杂岩/火山弧及其变形特征.地球学报,(2):154~163.
    张之孟.1989.北祁连山的高压低温变质作用.中国地质科学探索,北京:北京大学出版社.
    张雪亭,吕惠庆,陈正兴,等1999.柴北缘造山带沙柳河地区榴辉岩相高压变质岩石的发现及初步研究.青海地质,(2):1~13.
    赵祥生,张录易,邹湘华,等.1980.西北地区震旦纪冰碛层及其地层意义.中国震旦亚界,天津:天津科学技术出版社,164~185.
    周珣诺,王方正.1983.岩石物理化学基础.武汉:武汉地质学院教材科,141
    朱元靖,石耀霖.1990.剪切热及花岗岩部分熔融—关于喜马拉雅地区逆冲断层与地壳热结构分析,地球物理学报,33(4):408~416.
    庄文星,孙明志.2000.祁连缝合带中东段中酸性深成岩类之地球化学岩石成因之初步探讨.第二届海峡两岸祁连山及邻区地学研讨会论文摘要。北京:87~92.
    左国朝,吴汉泉.1997.北祁连中段早古生代双向俯冲—碰撞造山模式剖析.地球科学进展.12(4):315~323.
    左国朝,刘寄陈.1987.北祁连早古生代大地构造演化.地质科学,(1):14~24.
    Barker A T. 1990. Introduction in metamorphic texture and microstructure. Blackic and Son Ltd.
    Bell T H. 1985. Deformation partioning and porphyroblast rotation in metamorphic rocks: a radical re-interpretation. J metamorphic Geol, 3: 109~118.
    Bhattacharya A R. 1987. A ductile thrust in the Himalaya. Tectonophysics, 135: 37~45.
    Brun J P, Burg J P, Chen Guoming. 1987. Strain trajectories above the Main Central Thrust (Himalaya) in southern Tibet. Nature, 313(6001): 388~390.
    Brok B D and Kruhl J H. 1996. Ductile of garnet as an indicator of extremely high temperature deformation: Discussion. Journal of Structural Geology, 18(11).
    Butler R W H, Casey M, Lioyd G E. 2002. Vertical stretching and crustal thinkening at Nanga parbat, Pakistan Himalaya: A model for distributed continental deformation during mountain building. Tectonics, 21(4): 9-1~9-17.
    Camacho A, Mcdougall I, Armstrong R, Braun J. 2001. Evidence for shear heating, Musgrave Block, central Australia. Journal of Structural Geology, 23: 1007~1013.
    Cardom D, Christopher L, Andronicos, et al. 1999. large-scale transpressive shear zone patterns and displacements within magmatic arcs: the coast plutonic complex, British Columbia. Tectonics, 18(2): 278~292.
    Carter N L, Tserm M C. 1987. Flow properties of continental lithosphere[J]. Tectonophysics, 136: 27~63.
    Chamberlain C P, Sonder L J. 1990. Heat-producing elements and the thermal and basic patterns of metamorphic belts. Science, 250: 763~769.
    Chen W M. 2000. Metamorphic grade and garnet zonation of metapelites in the Datong area, Qilian mountain range, NW China. J of the Geological Society of China, 43(1): 1~14.
    David I. Schofield and Richard S. D'lemos. 1997. Relationships between syn-tectonic granite fabrics and regional PTtd paths: and an example from the Gander-Avalon boundary of NE Newfoundland. Journal of Structural Geology. 20(4): 459~471.
    Dimanov A, Dresen G, Wirth R. 1998. High-temperature creep of partially molten plagioclase aggregates. J Geophys Res. 103(B5): 9651-9664.
    
    
    Doe B R, Zartman R E. 1981. Plumbotectonic-the model. Tectonophysics, 75:135-162.
    
    Fleitout L, Froidevaux C, Yuen D. 1986. Active lithospheric thinning. Tectonophysics 132( 1-3): 271-278.
    Fossen H, Tikoff B, 1998. Extended models of transtension, and application to tectonic settings. Geological Society, 135: 15-33.
    Foster D A, et al. 2001. Relationships between crustal partial melting, plutonism, orogeny, and exhumation: Idaho-Bitterroot batholith. Tectonophysics, 342: 313-350.
    France-Lanord C, Derry L, Galy A. 1998. Continental erosion and CO (sub 2) uptake; inferences from the Himalayan system. Mineralogical Magazine. 62A,(1): 466-467.
    Harris N B W, Massey S. 1994. Decompression and anatexis of Himalaya metapelites. Tectonics, 13: 1537-1546.
    Hippertt. J, et al. 2001. Quartz plastic segregation and ribbon development in high grade striped gneisses. Journal of Structural Geology, 23:67-80.
    Hiroi Y., Kishi S, Nohara T, et al. 1997. Cretaceous high temperature rapid loading and unloading in the Abukuma metamorphic terrane, Japan. J. Metamorphic Geol., 16: 67.
    Holland T J B, Powell R. 2001. Calculation of phase relations involving haplogranitic melts using an internally-consistent thermodynamic data set. Journal of Petrology, 42:673-683.
    Huerta A D, Royden L H, Hodges K V. 1998. The thermal structure of collisional orogens as a response to accretion, erosion, and radiogenic heat production. Journal of Geophysical Research, 103: 15287-15302.
    Jamieson R A, Beaumont C, Fullsack P, Lee B. 1998. Barrovian regional metamorphism: where's the heat? In: Treloar P J, O'Brien P J. 1998. What drives metamorphism and metamorphic reations? Geological Society of London Special Publication, 23-51.
    John W, Sons. 1986. Principles of isotope geology. New York: Library of congress Cataloging in publication data. 93-215.
    Kirby S H, Kronenberg A K. 1987. Rheology of the lithosphere: Selected Topics. Review of Geophysics, 25(6): 1219-1244.
    Kogiso T, Tatsumi Y, Nakono S. 1997. Trance element transport during dehydration processes in the subduction oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth Planet Sci Latt, 148: 193-225.
    Kohlstedt D L, Evans B, mackwell S J.1995. Strengh of the lithosphere: constraints imposed by laboratory experiments[J]. J. Geophysics.l00(17): 587-602.
    Kroner A, Jaeckel P and Santos Zalduegui J F, Scharer U, Gil I J, Girardeau J. 1996. Orgin and evolution of the Paleozoic Cabo Ortegal ultramafic-mafic complex (NW Spain): U-Pb, Rb-Sr and Pb-Pb isotope data. Chemical Geology 129: 281-304.
    Kroner A, jaeckel P, Williams I S. 1994. Pb-loss patterns in zircons from a high-grade metamorphic terran as revealed by different dating methods; U-Pb and Pb-Pb ages of igneous and metamorphic zircon from northern Sri Lanka. Precambrian Research, 66: 151 - 181.
    Lasagea A C,Richardson S M, Holland H D. 1977. The mathmatics of action diffusion and exchange between silicate minerals during retrograde metamorphism. In:"Engergetic of geological processes". Verlag, New York, Heidelberg Berlin, 353-386.
    Lasagea A C.1979. 1979. The treatment of multicompnent diffusion and ion-pairs in diagenetic fluxesAmet J. Sci.,279,324-346.
    Leloup P H, Harrison T M, Ryerson F J, et al. 1993. Structural, petrologic, and thermal evolution of a Tertiary ductile strike-slip shear zone, Diancang Shan, Yunnan. Journal of Geophysical Research, 98: 6715-6743.
    
    Lister R J, Snoke A W. 1984. S-C mylonites. J. Structural Geology, 6: 617-638.
    Liou J G, Xiaomin Wang, Coleman R G. 1989. Blueschists in structure zones of China, Tectonics, 8(3): 609-619.
    Liu, Furlong M, 1993. Crustal shorting and Eocene extension in the southeastern Canadian Cordillera: some thermal and rheological considerations. Tectonics, 12: 776-786.
    Loomis T P. 1978. multicomponent diffusion in garnet: I formulation of isothermal models :Amer. J. Sci.,278,1099-1118.
    Mattauer M, Merrier J L. 1980. microtectonique et grande tectonique. Mem. H. ser, Soc. Geol. De France, N.10.
    Mezger K, Krogetad E J. 1997. Interpretation of discordant U-Pb zircon ages; An evalution. J Meta. Geo. 71:721-758.
    Nabelek P I, et al. 2001. Thermo-rheological, shear heating model for leucogranite generation, metamorphism, and deformation during the Proterozoic Trans-Hudson orogeny, Bloack Hills, South Dakota. Tectonophysics. 342: 371-388.
    Nicolas A, Poivier J P. 1984. Principec de tectonique. Masson.
    Olivier Vanderhaeghe, Christian Teyssier. 2001. Partial melting and flow of orogens. Tectonophysics, 342: 451-472.
    
    Passchier C W and Trouw R A J. 1996. Microtectonics. Springer. 25-194.
    Pearce J A. 1983. 1983. The role of subcontinental lithosphere in magma genesis at destructive plate margihs. In: Continental basalts and mantle xenoliths. C J Hawesworth and M J Norry (eds): 230-249.
    Petino D A, Beard J. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3-15kbar. J Petrol., B, 36: 707-738.
    Powell R, Holland T J B. 1994. Optimal geothermometry and geobarometry. American Mineralogist, 79: 120-133.
    Ranalli G. 1987. Rheology of the earth, deformation and flow processes in geophysics and geodynamics, Boston Allen Unwtn, London. Sydney, Wellington.
    Ruppel C, Hpdges K V. 1994. Pressure-temperature-time paths from two-dimensional thermal models: prograde, retrograde, and inverted metamorphism. Tectonics, 13 (1): 17-44.
    Scheuber E, Hammerschmidt K, Friedrichsen H. 1995. ~(40)Ar-~(39)Ar and Rb-Sr analyses from ductile shear zones. Northern Chile: the age of deformation. Tectonophysics, 250: 61-87.
    Schofield D I, D'lemos R S. 1998. Relationships between syn-tectonic granite fabrics and regional PTtd paths: an example from the Gander-Avalon boundary of NE Newfoundland. Journal of Structural Geology, 20(4): 459-471.
    Shea W T, Kronenberg A K. 1992. Rheology and deformation mechanisms of an isotropic mica schist.J. Geophysical Research, B 97(11): 201-237.
    Shaocheng J and Jacques Martignole. 1996. Ductile of garnet as an indicator of extremely high temperature deformation:Replay. Journal of Structural Geology, 18(11).
    Sibson R H. 1974. Frictional constraints on thrust, wrench and normal faults. Nature, 249; 542~544
    Simpson C. and Schmid S M. 1983. An evalution of criteria to deduce the sense of movement in sheared rocks. Geol. Soc. Amer. Bull.,94: 1281~1288.
    Spear F S. 1988. metamorphic fractional crystallation and intenal metasomatism by diffusional homogenization of zoned garnets Contrib. Mineral. Petrol., 99:507~517.
    Spear F S. 1991. On the interpretation of peak metamorphic temperatures in light of garnet diffusion during cooling. J.Metamorphic Geol., 9: 379.
    Tapponnier P, Molnar P. 1976. Slip line field theory and large scale continental tectonics. Nature, 284(5584): 319~324.
    Tracy R J, et al. 1976. Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts. Amer. Miner.,61: 762~775.
    Vanderhaeghe O, Teyssier C. 2001. Partial melting and flow of orogens. Tectonics, 342(3~4): 451~472.
    Vielzeuf D, Montel J M. 1994. Partial melting of metagreywackes; Part 1, Fluid-absent experiments and phase relationships.Contributions to Mineralogy and Petrology, 117(4):375~ 393.
    Van de Zedde D M A, Wortel M J R. 2001. Shallow slab detachment as a transient source of heat at midlithospheric depths. Tectonics, 20(6): 868~882.
    Wernicke B. 1990. The fluid crustal layer and its implications for continental dynamics. Mathematical and Physical Sciences. 317. 509~544.
    Wan Y S, Xu Z Q, Yang J S. et al.. 2001. Ages and compositions of the Precambrian high- grade basement of the Qilian terrane and its adjacent areas. ACTA Geological SINICA, 75(4):375~384.
    Wan Y S, Yang J S, Xu Z Q, et al. 2000. Geochemical characteristics of the Maxianshan complex and Xinglongshan grop in the eastern segment of the Qilian orogenic belt. Geol. Rev., 43(1): 52~68.
    Wang Z H, Lu H F. 2000. Ductile dsformation and ~(40)Ar/~(39)Ar dating of the Change-Nanao ductile shear zone, southeastern China. Journal of Structural Geology, 22:561~570.
    White R W, Powell R, Holland T J B & Worley B A. 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and arnphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18: 497~512.
    Wi-Min Donald Chen, etal. 2000. Metamorphic grade and garnet zonation of metapelites in the Datong area, Qilian mountain range, NW China. Journal of the Geological Society of China. 43 (1).1~14.
    Worley B A and Wilson C J L. 1995. Deformation partitioning and foliation reactivation during transpressional orogenesis, an example from the Central Longmen Shan, China. Journal of Structural Geology. 18(4).
    Wernicke B. 1990. The fluid layer and its implications for continental dynamics. In: Salisbury M H, Fountain D M, eds. Exposed Cross-sections of the continental crust. Netherlands: kluver Academic Publishers, 510~544.
    Wu H Q, Feng Y M, Song S G. 1993. Metamorphic, deformation of bluechist belt and their tectonic implications in North Qilian Mountains, J. Metamorphic Geol., 11: 523~536.
    Xu Z Q, Yang J X. 2000. Architexture and orogeny of the northern Qilian orogenic belt, NW China. J. Geol. Soc. China, 43(1): 125~141.
    Yang J S, Xu Z Q, Song S G, et al. 2000. Discover of eclogite in Dulan, Qinghai Province and its significance for studying the HP-UHP metamorphic belt along the Central Orogenic Belt of China. Acta Geologica Sinica, 74: 156~168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700