用户名: 密码: 验证码:
雅鲁藏布缝合带泽当段蛇绿岩的地球化学特征及构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雅鲁藏布缝合带代表曾经存在于印度板块与亚欧板块之间的新特提斯古大洋残余。整个缝合带可分为西、中、东三段,泽当段属缝合带东段并由泽当蛇绿岩和一套岛弧岩石组合混杂组成。
     作为东段最典型的剖面之一,对泽当蛇绿岩的研究一直比较溥弱,其构造环境也存在争议。泽当地区不同于其他大多数仅以蛇绿岩为主体的缝合带地段,除了蛇绿岩,该区还保存着一套岛弧岩石,可能代表曾经于新特提斯洋内发育的岛弧。新特提斯的构造演化一直存在单一俯冲和双重俯冲的争论,关键问题就在于缺乏洋内俯冲带和岛弧存在的证据。从这个角度来说,对泽当段缝合带及蛇绿岩的详细研究,不但有助于重建特提斯古洋盆格局,对进一步认识印度-亚欧板块的汇聚和碰撞过程也有重要意义。
     泽当蛇绿岩单元出露基本齐伞,包括地幔橄榄岩、辉长辉绿岩、块状和枕状玄武岩。对泽当蛇绿岩玄武岩进行的Sm-Nd同位素分析,得一等时线年龄为175+20Ma,代表了蛇绿岩的形成时代。玄武岩的εNd(t)值为+7.0~+7.3,表明原始岩浆来源于强烈亏损的地幔源区。
     泽当蛇绿岩中的地幔橄榄岩以方辉橄榄岩为主,具有低Ti、Al,高Mg的岩石化学特征,REE表现为“U”型的分布型式,属典型的残余地幔橄榄岩。辉长辉绿岩样品都具有LREE亏损的左倾分布型式和Eu正异常,其微量元素绝对含量很低,表现出明显的Nb、Ta、Zr、Hf亏损和Cs、Rb、Sr、Ba、K富集。泽当蛇绿岩壳层熔岩根据地球化学特征可分为两组:玄武岩Ⅰ(接近N-MORB)和玄武岩Ⅱ(具IAT特征)。两组岩石均表现为平滑的左倾LREE亏损型分布和基本相似的微量元素分布型式,但玄武岩Ⅰ的元素丰度明显要高。玄武岩Ⅱ比玄武岩Ⅰ遭受到更强的俯冲作用影响,具有明显的Nb、Ta亏损。
     泽当蛇绿岩表现出岛弧和MORB的双重地球化学特征,属于SSZ型蛇绿岩,结合区域地质背景,推测其形成于俯冲带之上的弧前盆地。
     首次从泽当岛弧岩石组合中厘定出一套埃达克质英云闪长岩,是俯冲洋壳在角闪岩-榴辉岩相过渡带部分熔融的产物。这一认识为新特提斯洋内俯冲带和岛弧的存在提供了重要证据。
     在前人研究的基础上,本次研究认为泽当地区新特提斯洋存在北向的洋内俯冲系统,泽当蛇绿岩和泽当岛弧均为洋内俯冲的产物。中侏罗世时,新特提斯洋内发育一条幔内型推覆韧性剪切带,印度板块和拉萨地块对大洋岩石圈的双向挤压诱发了洋内俯冲消减。俯冲板片向下消减作用的加强使得位于洋内俯冲带之上的大洋板块发生局部拉张,形成扩张脊。大量来自俯冲板片的水和大离子亲石元素进入亏损地幔楔,使之发生部分熔融,生成的岩浆沿着扩张脊在海底喷发,形成了新的SSZ型洋壳和洋盆,时代为175Ma左右。同时,早期发育的老洋壳在北面开始沿拉萨地块南缘俯冲消减,大约174Ma时在冈底斯南缘生成了叶巴弧。由此形成了新特提斯洋的双重俯冲格局。在这期间,年轻的热的洋壳俯冲至75-85km深度左右时发生部分熔融并形成埃达克岩浆。俯冲板片的连续俯冲作用还导致了泽当蛇绿岩北侧洋内岛弧的形成,其活动时代约为156Ma。
     在晚白垩世,洋内俯冲系统仰冲到南面的印度板块之上,新特提斯洋洋盆停止扩张,转变为单俯冲格局。由于印度板块向北强烈推挤,沿拉萨地体南缘的俯冲消减活动更加强烈,火山岩浆活动十分广泛,进一步形成了大量中酸性的钙碱性岛弧岩浆岩,如桑日岛弧等。始新世时,印度板块和亚欧板块发生陆-陆碰撞,新特提斯洋关闭消亡,青藏高原开始隆升,缝合带及相邻地质体被后期构造运动改造成如今的面貌。
The Yarlung-Zangbo surture zone marks the Neo-Tethyan remnants existed between the Indian plate and the Eurasian plate. The suture zone can be divided into three parts, namely, the western, middle and eastern segments. Zedong suture located within the eastern segment, comprise a suit of melange made of Zedong ophiolite and island arc volcanic assemblage. Although the ophiolite has undergone complicated tectonic movements, its sequence is basically completed, composed mainly of peridotite, diabase and gabbro dyke swarms and pillowed and massive basalts.
     The Sm-Nd isochron age of basalts in Zedong ophiolite is 175±20Ma, indicating that the ophiolite formed in the mid-Jurassic. The eNd(t) values of basalts range in +7.0-+7.3, suggesting a strong depleted mantle source and no crustal contamination.
     The mantle peridotite mostly consists of harzburgite, showing low Ti, Al, high Mg, and the "U" type REE patterns, and belonging to the residual mantle peridotite. The gabbro and diabase all have LREE-depleted patterns and positive Eu anomaly. The rece elements abundance is low, exhibiting the obvious depletion of Nb, Ta, Zr, Hf and enrichment of Cs, Rb, Sr, Ba, K. According to the geochemical properties, the crustal lava of Zedong ophiolite can be divided into two groups: basalt I (close to N-MORB) and basalt II (is of IAT). Two groups of rocks all indicate smooth LREE-depleted REE patterns and similar distributions of race elements, and the element contents of basalt I are higher. Basalt II underwent the stronger subduction than ophiolite I, exhibiting obvious Nb and Ta depletion.
     Zedong ophiolite shows the compound geochemistry characterisitics of island arc and MORB, belonging to the SSZ-type ophiolite. Considering the geological setting, we conclude it formed in the fore-arc basin above the subduction zone.
     The subducted-type adakites in the Zedong segment of the Yarlungzangbo suture zone were discovered and identified for the first time. Zedong adakites were produced by the partial melting of young and hot subducted oceanic crust in amphibolite-eclogite transition zone and by going through the mantle wedge. This work presents new evidence for the intra-Tethyan subduction and the previous suggestion about the existence of intra-oceanic island arc within Tethys.
     Based on the former studies, a north directed intra-ocean subduction system once existed in Zedong Tethyan ocean, and the Zedong ophiolite and island arc are all the production of intra-oceanic subduction. In mid-Jurassic, there was a ductile nappe shear zone developing in Neo-Tethyan ocean, and at the same time, the bidirectional compressing of Indian plate and Lhasa block on the oceanic lithosphere induced the intra-oceanic subduction. The reinforce of slab subduction resulted in the local extension of oceanic plate above the subduction zone and the formation of spreading ridges. Plenty of H_2O and LILE entered the depleted mantle wedge, led to the partial melting. Along the spreading ridges, the magma extruded on the sea floor and formed the new SSZ-type oceanic crust and basin(175Ma). Meanwhile, the old oceanic crust started to subduct toward the Lhasa block, and produced the Yeba-arc at the south edge of Gangdese. The Tethyan double subduction situation came into being. During this period, the partial melting of young and hot subducted oceanic crust at 75-85km produced he adaktitic magma. The subduction also led to the formation of the Zedong intra-oceanic island arc in the north, which is active at 156Ma.
     At late Cretaceous, the Neo-Tethyan ocean basin stopped to spread and turned to be the single subduction situation, and then the intra-oceanic subduction system obducted onto the Indian plate in the south. Because of the northward compressing of Indian plate, the subduction along the south edge of Lhasa block was stronger. The volcanic magma activities were extensive, producing abundant intermediate-acid calcium alkaline island arc igneous rocks. In Eocene, the Indian plate collided with the Eurasian plate, the Neo-Tethys closed and died out, and the Tibetan plateau started to uplift. The suture and the adjacent terranes were reconstructed to be the present situation by the late tectonic movements.
引文
1.白文吉,方青松,张仲明等.1999.西藏雅鲁藏布江蛇绿岩带罗布莎地幔橄榄岩的成因.岩石矿物学杂志,18(2):193-206.
    2.常承法,肖序常,1988.特提斯在青藏高原段的演化.In:肖序常,李廷栋,李光岑,常承法,袁学诚(Editors),喜马拉雅岩石圈构造演化总论.地质出版社,北京,238,49-58.
    3.常承法,郑锡澜.1973.中国西藏南部珠穆朗玛峰地区的构造特征.地质科学,1:1-12.
    4.邓万明,吴浩若,常承法等.1982.雅鲁藏布蛇绿岩的层序及其成因探讨.青藏高原地质论文专辑,北京:地质出版社,26-35.
    5.丁林.2003.西藏雅鲁藏布江缝合带古新世深水沉积和放射虫动物群的发现及对前陆盆地演化的制约.中国科学(D),33(1):47-58.
    6.董学斌,王忠民,谭承泽.亚东—格尔木地学断面古地磁新数据与青藏高原地体演化模式的初步研究.中国地质科学院院报,1990,(21):139-148.
    7.董彦辉,许继峰,曾庆高,王强,毛国政,李杰.2006.存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?岩石学报,22(3):661-668.
    8.高洪学,宋子季.1995.西藏泽当蛇绿混杂岩研究新进展.中国区域地质,4:316-322.
    9.高俊.1992.有关蛇绿岩研究的一些新进展.地质科技情报,11(4):35-40.
    10.高永丰,侯增谦,魏瑞华.2003.冈底斯第三纪斑岩的岩石学、地球化学及其地球动力学意义.岩石学报,19(3):418-428.
    11.葛小月,李献华,陈志刚,等.2002.中国东部燕山期高Sr低Y型中酸性火成岩的地球化学特征及成因:对中国东部地壳厚度的制约.科学通报,47(6):474-480.
    12.耿全如,潘桂棠,郑来林等.2001.论雅鲁藏布大峡谷地区冈底斯岛弧花岗岩带.沉积与特提斯地质,21(2):16-22.
    13.郭通珍,赵凤清.1999.大坂山蛇绿岩特征及其形成环境.青海地质,8(2):14-24.
    14.侯青叶,赵志丹,张宏飞等.2005,北祁连玉石沟蛇绿岩印度洋MORB型同位素组成特征及其地质意义.中国科学 D,35(8):710-719.
    15.侯增谦,高永丰,孟祥金,等.2004.西藏冈底斯中新世斑岩铜矿带:埃达克岩质斑岩成因与构造控制.岩石学报,20(2):239-248.
    16.侯增谦,孟祥金,曲晓明,等.2005.西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束.矿床地质,24(2):108-121.
    17.黄萱,孙宝山,潘均,张任祜.1996.蛇绿岩的同位素地质研究问题.见:张旗主编.蛇绿岩与地球动力学研究.北京:地质出版社,84-88.
    18.简平,刘敦一,张旗,张福勤,石玉若,施光海,张履桥,陶华.蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年.地学前缘,2003,10(4):439-456.
    19.金性春,周祖翼,汪品先(编著).1995.大洋钻探与中国地球科学.上海:同济大学出版 社.
    20.赖绍聪,邓晋福.1996.柴达木北缘古生代蛇绿岩及其构造意义.现代地质.10(1):18-28.
    21.赖绍聪.2003.青藏高原新生代埃达克质岩的厘定及其意义.地学前缘,10(4):407-4150
    22.李德威.1995.西藏罗布莎蛇绿岩中透镜网络系统的特征及成因.中国区域地质,1:50-56.
    23.李海平,张满社.1996.西藏罗布莎蛇绿岩的地球化学特征及形成环境探讨.西藏地质.2:55-61.
    24.李光明,冯孝良,黄志英,高大发.2000.西藏冈底斯构造带中段多岛弧-盆系及其演化.沉秋与特提斯地质.20(4):38-46.
    25.李全文,1996,西藏罗布莎蛇绿岩南部边界构造特征.西藏地质,(2):62-68.
    26.李文铅,夏斌,吴国干等.2005.新疆鄯善康古尔塔格蛇绿岩及其大地构造意义.岩石学报,21(6):1617-1632.
    27.李献华.1996.Sm-Nd模式年龄和等时线年龄的适用性与局限性.地质科学,31(1):97-104.
    28.李紫金.1993.西藏自治区曲松县罗布莎铬铁矿成矿预测[专著]∶1∶2.5万.武汉:中国地质大学.
    29.刘敦一,简平,张旗,张福勤,石玉若,施光海,张履桥,陶华.2003.内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年:早古生代洋壳消减的证据.地质学报,77(3):317-327.
    30.陆松年.1994.Sm-Nd等时线年龄合理性的判别.中国区域地质,49(2):148-159.
    31.罗照华,柯珊,谌宏伟.2002.埃达克岩的特征、成因及构造意义.地质通报,21(7):430-440.
    32.梅厚钧,林学农.1981.西藏的蛇绿岩.见:西藏岩浆活动和变质作用.北京:科学出版社.147-211
    33.曲晓明,侯增谦,国连杰,等.2004.冈底斯铜矿带埃达克质含矿斑岩的源区组成与地壳混染:Nd、Sr、Pb、O同位素约束.地质学报,78(6):813-821.
    34.陕西省地矿局.1994.中华人民共和国区域地质调查报告(1/20万),泽当幅(8-46-26,基础地质).西安:陕西省地质矿产局区调队轻印刷服务部.
    35.陕西省地矿局.1995.中华人民共和国区域地质调查报告(1/20万),加查幅(8-46-27,地质部分).西安:陕西省地质矿产局区域地质调查队制图出版中心.
    36.沈渭洲,徐士进,高剑峰,等.2002.四川石棉蛇绿岩套的Sm-Nd年龄及Nd-Sr同位素特征.科学通报,47(20):1592-1595.
    37.宋彪,张玉海等.2002.微区原位分析仪器SHRIMP的产生与锆石同位素地质年代学,质谱学报,23(1):58-62.
    38.孙鸿烈.1996.青藏高原研究的新进展.地球科学进展,11(6):536-542.
    39.王成善,刘志飞,李祥辉,万晓樵.1999.西藏日喀则弧前盆地与雅鲁藏布江缝合带.北 京:地质出版社,1-237.
    40.王乃文.1984.青藏印度古陆及其与华夏古陆的并合、中法喜马拉雅考察成果.地质出版社.
    41.王强,赵振华,熊小林,等.2001.底侵玄武质下地壳的熔融:来自安徽沙溪adakatic质富钠石英闪长玢岩的证据.地球化学,30(4):353-362.
    42.王强,赵振华,许继峰,等.2002.扬子地块东部燕山期埃达克质(adakite-like)岩与成矿.中国科学(D)辑,32(增刊):127-136.
    43.王强,许继锋,赵振华.2001.一种新的火成岩——埃达克岩的研究.地球科学进展,16(2):201-208.
    44.王强,赵振华,白正华,等.2003.新疆阿拉套山石炭纪埃达克岩、富Nb岛弧玄武质岩:板片熔体与地幔橄榄岩相互作用及地壳增生.科学通报,48(12):1342-1349.
    45.王冉,夏斌,周国庆,张玉泉,杨之青,李文铅,韦栋梁,钟立峰,徐力峰.2006.西藏吉定蛇绿岩中辉长岩SHRIMP锆石U-Pb年龄.科学通报,51(1):114-117.
    46.王希斌,鲍佩声,邓万明,王方国.1987a.西藏蛇绿岩(喜马拉雅岩石圈构造演化).北京:地质出版社.
    47.王希斌,鲍佩声,肖序常.1987b.雅鲁藏布江蛇绿岩.北京:测绘出版社.
    48.王希斌,曹佑功,郑海翔.1984.西藏雅鲁藏布江(中段)蛇绿岩组合层序及特提斯洋壳演化的模式.中法喜马挝雅考察成果(1980).北京:地质出版社,181-207.
    49.王焰,张旗,钱青.2000.埃达克岩(adakite)的地球化学特征及其构造意义.地质科学,35(2):251-256.
    50.王玉净,舒良树.2001.中国蛇绿岩带形成时代研究中的两个误区.古生物学报,40(4):529~532
    51.王玉净,杨群,松冈笃,小林健太,武井雅彦,曾庆高.2002.藏南泽当雅鲁藏布缝合带中的三叠纪放射虫.微体古生物学报,19(3):215-227.
    52.魏君奇,姚华舟,牛志军,等.2005.藏北赤布张错地区埃达克岩的厘定及其意义.岩石矿物学杂志,24(3):173-178.
    53.西藏地质矿产局.1993.西藏自治区区域地质志.北京:地质出版社.1-318.
    54.夏斌,曹佑功.1992.西藏公珠错蛇绿岩及其构造环境.西藏地质,2:11-29.
    55.夏斌,郭令智,施央申.1998.西藏西南部蛇绿岩及其地体构造.广州:中山大学出版社.
    56.夏斌,何明友.1995.西藏加纳朋蛇绿岩岩石地球化学及成因意义.矿物学报,15(2):236-241.
    57.夏斌,洪裕荣,洪裕荣等.1997.西藏达机翁蛇绿岩的岩石地球化学特征及其构造环境.地质地球化学,1:46-52.
    58.夏斌,郭令智,施央申.1989.西藏泽当蛇绿岩及其板块构造环境.南京大学学报(地球科 学版),3:19-29.
    59.夏斌,王国庆,钟富泰等.1993.喜马拉雅及邻区蛇绿岩和地体构造图说明书.兰州:甘肃科学技术出版社.
    60.肖序常,高延林.1982.西藏雅鲁藏布江缝合带中段高压低温变质带的新认识.喜马拉雅地质.北京:地质出版社,1-18.
    61.肖序常,王方国.1984a.中国蛇绿岩概论.中国地质科学院院报,9:19-30.
    62.肖序常,王军,苏梨等.2005.青藏高原西北西昆仑山早期蛇绿岩及其构造演化.地质学报,79(6):756-756.
    63.肖序常.1984b.藏南日喀则蛇绿岩及有关的大地构造问题.见:中国地质科学院和法国科学研究中心编.中法喜马拉雅考察成果(1980).北京:地质出版社,143-168.
    64.许继峰,陈繁荣,于学元等.2001.新疆北部阿尔泰地区库尔提蛇绿岩:古弧后盆地系统的产物.岩石矿物学杂志,20(3):344-352.
    65.许继峰,王强,徐义刚,等.2001.宁镇地区中生代安基山中酸性侵入岩的地球化学:亏损重稀土和钇的岩浆产生的限制.岩石学报,17(4):576-584.
    66.许继峰,王强.2003.Adakitic火成岩对大陆地壳增厚过程的指示:以青藏北部火山岩为例.地学前缘,10(4):401-406.
    67.许荣华.1986.西藏聂拉木群主要变质时代的讨论.岩石学报.第2期.
    68.许志琴.1984.阿尔卑斯旋回中喜马拉雅山链和阿尔卑斯山链的主变形特征.中国地质科学院院报.9:121-125.
    69.许志琴.1984.地壳变形与显微构造.北京:地质出版社.
    70.续海金,马昌前.2003.实验岩石学对埃达克岩成因的限定—兼论中国东部富钾高Sr/Y比值花岗岩类.地学前缘,10(4):417-427.
    71.姚玉鹏,田兴有.1997.中国蛇绿岩研究的现状及今后的研究方向.地球科学进展.2(2):34-137.
    72.袁超,孙敏,李继亮等.2002.西昆仑库地蛇绿岩的构造背景:来自玻安岩系岩石的新证据.地球化学,31(1):43-48.
    73.张海祥,牛贺才,Hiroaki Sato,等.2004.新疆北部晚古生代埃达克岩、富铌玄武岩组合:古亚洲洋板块南向俯冲的证据.高校地质学报,10(1):106-113.
    74.张浩勇,巴登殊,郭铁鹰等.1996.罗布莎铬铁矿床研究..拉萨:西藏人民出版社.
    75.张旗,钱青,王二七,等.2001.燕山中晚期的中国东部高原:埃达克岩的启示.地质科学,36(2):129-143.
    76.张旗,王焰,钱青,等.2001.中国东部燕山期埃达克岩的特征及其构造—成矿意义.岩石学报,17(2):236-244.
    77.张旗,周德进.1996.一种新的洋壳类型及其动力学意义.科学通报,41(11):1025-1027.
    78.张旗,周国庆,王焰.2003.中国蛇绿岩的分布、时代及其形成环境.岩石学报,19(1):1-8.
    79.张旗,王焰,王元龙.2003.埃达克岩与构造环境.大地构造与成矿学,27(2):101-108.
    80.张旗,周国庆.2001.中国蛇绿岩.北京:科学出版社.1-15.
    81.张旗.1992.中国蛇绿岩研究中的几个问题.地质科学.A12:139-146.
    82.赵文津,冯昭贤.1996.青藏高原大陆动力学研究——“INDEPTH”合作研究的体会.地球学报,17(2):119-128.
    83.中国科学院青藏高原综合科学考察队.1981.西藏岩浆活动和变质作用.北京:科学出版社.
    84.中国地质调查局.2004.雅鲁藏布江结合带区域地质调查成果与进展.地质通报,23(1):40-44.
    85.钟立峰,夏斌,周国庆,张玉泉,王冉,韦栋梁,杨之青。藏南罗布莎蛇绿岩辉绿岩中锆石SHRIMP测年。地质论评,2006a,52(2):224-229.
    86.钟立峰,夏斌,崔学军,周国庆,陈根文,韦栋梁.2006b.藏南罗布莎蛇绿岩壳层熔岩地球化学特征及成因.大地构造与成矿学,30(2):231-240.
    87.钟立峰,夏斌,周国庆,王冉,韦栋梁,李建峰.2006c.藏南罗布莎蛇绿岩成因:壳层熔岩的Sr-Nd-Pb同位素制约.矿物岩石,26(1):57-63.
    88.周肃,莫宣学,Mahoney J J等.2001.西藏罗布莎蛇绿岩中辉长辉绿岩Sm-Nd定年及Pb,Nd同位素特征.科学通报,46(16):1387-1390.
    89.周详,曹佑功,朱明玉等.1989.西藏板块构造-建造图说明书(1∶1 500 000).北京:地质出版社.
    90.朱弟成,潘桂棠,段丽萍,等.2003.埃达克岩研究的几个问题.西北地质,36(2):13-19.
    91. Aitchison J C, Badengzhu, Davis A M, et al. 2000. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (southern Tibet). Earth Planet Sci Lett, 183: 231-244.
    92. Aitchison J C, Davis A M, Abrajevitch A V, et al. 2003. Stratigraphic and sedimentological constraints on the age and tectonic evolution of the Neotethyan ophiolites along the Yarlung Tsangpo suture zone, Tibet. In: Dilek Y, Robinson P T, eds. Ophiolites in earth history. London: The Geological Society, 147-164.
    93. Aldiss D T. 1981. Plagiogranites from the ocean crust and ophiolites. Nature, 289: 577-578.
    94. Allegre C J, Courtillot V, et al. 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307:17-22
    95. Atherton M P, Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362: 144~46.
    96. Aumento F D. 1969. Diorites from the mid-Atlantic ridge at 45°N. Science, 165:1112-1113.
    97. Badengzhu. 1979. (Compiler) Xizang Autonomous Region Zhanang-Sangri Regional Geology Reconnaissance Map 1:50,000. Xizang Geological Survey Geological Team # 2, Group 2. Lhasa.
    98. Barker F. 1979. Trondhjemite: definition, environment and hypotheses of origin. In: Barker F, ed. Trondhjemites, dacites and related rocks. Amsterdam: Elsevier, 1-12.
    99. Beccaluva L and Serri G. 1988. Boninitic and low-Ti subduction-related lavas from intraoceanic arc-back arc systems and low-Ti ophiolites: A reappraisal of their petrogenesis and original tectonic setting. Tectonophysics, 146: 291-315.
    100. Boynton W V. 1984. Geochemistry of the rare earth elements: meteorite studies. In: Henderson P (eds.), Rare earth element geochemistry. Elsevier, 63-114.
    101. Burg J P, Chen G M. 1984. Tectonics and structural zonation of southern Tibet, China. Nature, 11 : 219-223.
    102. Burg J P, Leyreloup A, Girardeau J, Chert G M. 1987. Structure and metamorphism of a tectonically thickened continental crust; the Yalu Zangbo suture zone (Tibet), Phil. Trans. R. Soc. Lond. A 321: 67-86.
    103. Cameron W E. 1985. Petrology and origin of primitive lavas from the Troodos ophiolite, Cyprus. Contrib Mineral Petrol, 89: 239-255.
    104. Castillo R P, Janney P E, Solidum R S. 1999. Petrology and geochemistry of Camiguia Island, Southern Philippines: insight to the source of adakites and other lavas in a complex arc setting. Contrib Miner Petrol, 134:33-51.
    105. Chang C, Chen N, Coward M P, Deng W, Dewey J F, Gansser A, et al. 1986. Preliminary conclusions of the Royal Society and Academia Sinica 1985 geotraverse of Tibet. Nature, 323: 501-507.
    106. Chen F, Hegner E, Todt W. 2000. Zircon ages, Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany: evidence for a Cambrian magmatic arc. Int J Earth Sci, 88: 791~802.
    107. Chen F, Siebel W, Satir M, et al. 2002. Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone.Int J Earth Sci, 91: 469-481.
    108. Chung S L, Liu D Y, Ji J Q, et al. 2003. Adakites from continental collision zone: Melting of thicken lower-crust beneath southern Tibet. Geology, 31: 1021-1024.
    109. Coleman R G, 1971. Plate tectonic emplacement of upper mantle peridotites along continental edges. J Geophys Res, 76: 1212.
    110. Coleman R G, 1977. Ophiolite-ancient oceanic lithosphere [M]. Berlin.Heidelberg, New York: Springer-Verlag.
    111. Coleman R G, Donato M M. 1979. Oceanic plagiogranite revisited. In: Barker F (ed.), Trondhjemites, Dacites and Related Rocks. Amsterdam, Elsevier, 149-168.
    112. Coleman R G, Peterman Z E. 1975. Oceanic plagiogranite. J Geophysical Research, 80: 1099-1108.
    113. Coulon C, Maluski H, Bollinger C, et al. 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar-40Ar dating, petrological characteristics and geodynamical significance. Earth Planetary Sci. Lett., 79: 281-302.
    114. Crosson R S, Owens T J. 1987. Slab geometry of the Casca-dia subduction zone beneath Washington from earth-quake hypocenters and teleseismic converted waves. Geophys Res Lett, 14: 824-827.
    115. Davis A M, Aitchison J C, Badengzhu, Luo H and Ziabrev S. 2002. Paleogene island arc collision-related conglomerates, Yarlung-Tsangpo suture, Tibet. Sedimentary Geology, 150: 247-273.
    116. Defant M J & Drummond M S. 1990. Derivation of some modem arc magmas by melting of young subducted lithosphere. Nature, 347: 662-665.
    117. Defant M J, Jackson T E, Drummond M S, et al. 1992. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview. J Geol Soc London, 149: 569-579.
    118. Dewey J F, Robert F R S, Shackleton Met al. 1988. The tectonic evolution of the Tibet Pleteau. In: The Geological Evolution of Tibet(eds: Chang C, et al.). London, The Royal Society. 379-413.
    119. Depolo D J and Wasserburg G J. 1976. Nd isotopicvariations and petrogenetic models. Geophys Res Lett, 3 249-252.
    120. Drummond M S, Defant M J. 1990. A model for trondhjemite-tonalitc-dacite genesis and crustal growth via slab melting: Archaean to modern comparisons. J Geophys Res, 95: 21503-21521.
    121. Dubois-Cote V, Hebert R, Dupuis C, Wang C S, Li Y L, Dostal J. Petrological and geochemical evidence for the origin of the Yarlung Zangbo ophiolites, southern Tibet. Chemical Geology, volume 214, 3-4: 265-286.
    122. Dubois-Cote V, Hebert, R, Wang C S, Li Y L, Dostai J. 2003. Petrology and geochemistry of Yarlung Zangbo Suture Zone (YZSZ) ophiolites, Tibet: geodynamic implications. GAC-MAC-SEG Joint Annual Meeting Abstracts (Vancouver) 28,188.
    123. Durr S B. 1996. Provenance of Xigaze fore-arc basin clastic rock(Cretaceous, South Tibet). Geol Soc Am Bull, 108: 669-684.
    124. Elthon D. 1991. Geochemical evidence for formation of the Bay of Islands Ophiolite above a subduction zone. Nature, 354: 140-143.
    125. Ewart A. 1982. In: Andesite, R.S., Thorpe, R.L. (Eds.), The Mineralogy and Petrology of Tertiary -Recent Orogenic Volcanic Rocks with Special Reference to the Andesitic-Basaltic ompositional Range. Wiley, New York, 25-95.
    126. Gansser A. 1964. Geology of the Himalayas. Interscience Publ. John wiley & Sons Ltd. London.
    127. Girardeau J, Marcoux J, Allegre C J. 1984. Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature, 307:27-31.
    128. Girardeau J, Marcoux J, Fourcade E et al. 1985a. Xainxa ultramafic rocks, central Tibet, China; tectonic environment and geodynamic significance. Geology, 13: 330-333.
    129. Girardeau J, Mercier J C, Xibin W. 1985c. Petrology of the mafic rocks of the Xigaze ophiolite, Tibet; implications for the genesis of the oceanic lithosphere. Contrib. Mineral. Petrol., 90: 309-321.
    130. Girardeau J, Mercier J C, Yougong Z. 1985b. Origin of the Xigaze Ophiolite, Yarlung Zangbo suture zone, southern Tibet. Tectonophys., 119: 407-433.
    131. Girardeau, J. and Mercier, J. C. Petrology and texture of the ultramafic rocks of the Xigaze ophiolite (Tibet): constraints for mantle structure beneath slow-spreading ridges. Tectonophys, 1988, 147: 33-58.
    132. Gopel, C., Allegre, C. J. and Xu, R. H. Lead isotope study of the Xigaze ophiolite (Tibet): the problem of the relationship between magmatites (gabbros, dolerites, lavas) and tectonites (harzburgites). Earth Planet. Sci. Lett., 1984, 69:301-310.
    133. Hall R. 1982. Ophiolites and passive continental margins. Ofioliti, v.7: 279-298.
    134. Harrison T M, Yin A, Grove M, Lovera O M, Ryerson F J and Zhou X. 2000. The Zedong Window: A record of superposed Tertiary convergence in southeastern Tibet. Journal of Geophysical Research, 105(B8), 19211-19230.
    135. Hou Z Q, Gao Y F, Qu X M, et al. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in South Tibet. Earth Planet Sci Lett, 220:139-155.
    136. Ishikawa T, Nakamura. 1994. Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes. Nature, 370: 205-208.
    137. Ishiwatari A. 1985a. Alpine ophiolites: product of low-degree mantle melting in a Mesozoic transcurrent rift ophiolites. Contr. Mineral. Petrol., 89:155-167.
    138. Ishiwatari A. 1985b. Igneous petrogenesis of the Yakuno ophiolite (Japan) in the context of the diversity ofophiolites. Contr. Mineral. Petrol., 89: 155-167.
    139. Jadoul F, Berra F, Garzanti E. 1998. The Tethys Himalayan passive margin from Late Triassic to Early Cretaceous (south Tibet), J. Asian Earth Sci. 16 : 173-194.
    140. Janney P E, Castillo P R. 1996. Basalts from the Central Pacific basin: evidence for the origin of Cretaceous igneous complexes in the Jurassic western Pacific. Journal of Geophysical Research, 101: 2875-2893.
    141. Kay R W, Kay S M. 1991. Creation and destruction of lower continental crust. Geologiche Rundschau, 80: 259-278.
    142. Kay S M, Coira B, Viramonte J. 1994. Young marie back-arc volcanic rocks as guides to lithospheric delamination beneath the Argentine Puns Plateau,Central Andes. J Geophys Res, 99: 14323-14339.
    143. Kay S M, Ramos V A, Marquez Y M. 1993. Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South America. J Geol, 101: 703~714.
    144. Kelemen P B, Hangh(?)j K, and Greene A R. 2003. One view of the geochemistry of subduction-related Magmatic Arcs, with an emphasis on primitive andesite and lower crust. In: Rudnick R L, ed. The Crust, Treatise on Geochem. Amsterdam: Elsevier: 593-659.
    145. Lapierre H, Ortiz L E, Abouchami W, et al. 1992.A crustal section of an intra-oceanic island arc: The Late Jurassic- Early Cretaceous Guanajuato magmatic sequence, Central Mexico. Earth Planet. Sci. Lett. 108: 61-77.
    146. Li W X, Li X H. 2003. Adakitic granites within the NE Jiangxi ophiolites, South China: geochemical and Nd isotopic evidence. Precambrian Res, 122: 29-44.
    147. Linner M, Fuchs G, Keller F, et ai. 2001. The Nidar ophiolite within the Indus Suture Zone in Eastern Ladakh-a marginal basin ophiolite from the Jurassic-Cretaceous boundary. J. Asian Earth Sci., 19, 39.
    148. Liu G, Einsele G. 1994. Sedimentary history of the Tethyan basin in the Tibetan Himalayas, Geol. Rundsch. 83: 32-61.
    149. Liu G 1992. Permian to Eocene sediments and Indian passive margin evolution in the Tibetan Himalayas, Tub. Geowiss. Arb. 13: 1-268.
    150. Lytwyn J N and Casey J F. 1995. The geochemistry of postkinematic mafic dike swarms and subophiolitic metabasites, Pozanti-Karsanti ophiolite, Turkey: Evidence for ridge subduction. GSA Bull., 107(7): 830-850.
    151. Maheo G, Bertrand H, et al. 2000. Evidence of a Tethyan immature arc within the South Ladakh ophiolites (NW Himalaya, India). Earth and Planetary Science Letters, 330: 289-295.
    152. Maheo G, Bertrand H, et al. 2004. The South Ladakh ophiolites (NW Himalaya, India): an intra-oceanic tholeiitic arc origin with implication for the closure of the Neo-Tethys. Chemical Geology, 203: 273-303.
    153. Malpas J, Zhou M F, Robinson P T and Reynolds P H. 2003. Geochemical and geochronological condtraints on the origin and emplacement of the Yarlung Zangbo ophiolites, Southern Tibet. in Dilek Y and Robinson P T (eds), Ophiolites in Earth History. London: Geological Society Special Publication. 218:191-206.
    154. Martin H. 1986. Effect of steeper Archaean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14: 753-756.
    155. Martin H. 1999. Adakitic magmas: modern analogues of Archean granitoids. Lithos, 46: 411-429.
    156. McDermid I R C, Aitchison J C, Davis A M, et al. 2002. The Zedong terrane: a Late Jurassic intra-oceanic magmatic arc within the Yarlung-Tsangpo suture zone, southeastern Tibet. Chem Geol, 187: 267-277.
    157. McDermid I R C. 2002. Zedong terrane, South Tibet. Dissertation for the Doctoral Degree. HongKong: Hongkong University.
    158. Mcdermid I R C. 2003. Zedong Terrane, South Tibet. Dissertation for the Doctoral Degree. Hongkong: Hongkong University, 19-20.
    159. McDonough W F, Sun S S, Ringwood A E, Jagoutz E and Hofmann A W. 1992. Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth. Geochimica et Cosmochimica Acta, 56(3) : 1001-1012.
    160. McDonough W F, Sun S S.1995.The composition of the earth.Chem Geol,120: 223-253.
    161. Miller C, Thoni M, Frank W, et al. 2003. Geochemistry and tectonomagmatic affinity of the Yungbwa ophiolite, SW Tibet. Lithos, 66: 155-172.
    162. Miyashiro A. 1973. The Troodos ophiolite was probably formed in an island arc. Earth Planet. Sci. Lett., 19: 218-224.
    163. Miyashiro A. 1975. Classification, characteristics and origin of ophiolites. J. Geol., 83: 249-281.
    164. Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: effects of a continental collision. Science, 189:419-426
    165. Nicolas A, Girardeau J, Marcoux J. 1981. The Xigaze ophiolite (Tibet): a peculiar oceanic lithosphere. Nature, 294:414-417.
    166. Nicolas A. 1989. Structure of Ophiolite and Dynamics of Oceanic Lithosphere. Kluwer Acadamic Publishers.
    167. Pallister J S, Knight R J. 1981. Rare-earth element geochemistry of the Samail Ophiolite near Ibra, Oman. J. Geophys. Res., 86(B4): 2673-2697.
    168. Parkinson I J and Pearce A J. 1998. Peridotites from the Izu-Bonin Mariana forearc (ODP Leg 125): Evidence for mantle melting and melt- mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39(9): 1577-1618.
    169. Parlak O, Hock V, Delaloye M. 2002. The supra-subduction zone Pozanti-Karsanti ophiolite, southern Turkey: evidence for high-pressure crystal fractionation of ultramafic cumulates. Lithos, 65: 205-224.
    170. Patriat P, Achache J. 1984. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311: 615-621.
    171. Peacock S M., Rushmer T, Thompson A B. 1994. Partial melting of subducting oceanic crust. Earth Planet Sci Lett, 121: 227-244.
    172. Pearce J A, Cann J R. 1973. Tectonic setting of basaltic volcanic rocks determined using trace element analysis. Earth Planet Sci Lett, 19: 290-300.
    173. Pearce J A, Alabaster T, Shelton A W, et al. 1981. The Oman ophiolite as a Cretaceous arc-basin complex: evidence and implications. Phil. Trans. R. Lond., A 300: 299-317.
    174. Pearce J A, Lippard S J, Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Marginal Basin Geology. Geol. Soc. Lond. Spec. Publ. 16: 77-94.
    175. Pearce J A. 1983. The role of sub-continental lithosphere in magma genesis at destructive plate margins. In: Hawkesworth et al. (eds.), Continental Basalts and Mantle Xenoliths. Nantwich Shiva, 230-249.
    176. Pearce J A. 1991. Ocean floor comes ashore. Nature, 354: 110-111.
    177. Pearce J A. 1996. A users guide to basalt discrimination diagrams. Wyman D A (Ed.), Trace Element Geochemistry of Volcanic Rocks:Applications for Massive Sulphide Exploration: Geochem. Short Course Notes-GeoI.Assoc.Can, (12): 79-113.
    178. Pedersen R B, Searle M P, Corfield R I. 2001. U-Pb zircon ages from the Spontang Ophiolite, Ladakh Himalaya. Journal of the Geological Society, 158, 513-520.
    179. Qi L, Hu J, Gregoire D C. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51 : 507-513.
    180. Quidelleur X, Grove M, Lovera O M, Harrison T M, Yin A and Ryerson R J. 1997. Thermal evolution and slip history of the Renbu Zedong Thrust, southeastern Tibet. Journal of Geophysical Research, B, Solid Earth and Planets, 102(2): 2659-2679.
    181. Robertson A H F. 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65(1-2): 1-67.
    182. Robenson A H, Degnan P. 1994. The Dras arc complex: lithofacies and reconstruction of a Late Cretaceous oceanic volcanic arc in the Indus suture zone, Ladakh Himalaya. Sed Geol, 92: 117-145
    183. Robinson P T, Melson W G., O'Hearn T, Schmincke H U. 1983. Volcanic glass compositions of the Troodos ophiolite. Cyprus Geol. 11: 400-404.
    184. Rollinson H R. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. New York: John Wiley & Sons, 155.
    185. Rowley D B. 1998. Minimum age of initiation of collision between India and Asia North of Everest based on the subsidence history of the Zhepure Mountain section. The Journal of Geology, 106: 229-235.
    186. Sajona F G, Mury R C, Bellon H, et al. 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology, 21: 1007-1010.
    187. Schilling J G, Zajac M and Evans R. 1983. Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29° N to 73° N. Am. J. Sci., v.283: 510-586.
    188. Searle M P, Cox J, 1999. Tectonic setting, origin and obduction of the Oman ophiolite. Geol. Soc. Amer. Bull. 111,104-122.
    189. Searle M P, Khan M A, Fraser J E, et al. 1999. The tectonic evolution of the Kohistan-Karakoram collision belt along the Karakoram Highway transect, north Pakistan. Tectonics, 18: 929-949.
    190. Searle M P, Windley B F, Coward M P, Cooper D J W, Rex A J, Rex D, Li T, Xiao X, Jan M Q, Thakur V C, Kumar S. 1987. The closing of Tethys and the tectonics of the Himalaya. Geological Society of America Bulletin, 98: 678-701.
    191. Shervais J W. 1982. Ti-V plots and petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59:101-118.
    192. Stern C R, Kilian R. 1996. Role of the subducter slab, mantle wedge and continental crust in the generation of adakites from the Austral Volcanic Zone. Contrib Miner Petrol, 123: 263-281.
    193. Suen C J, Frey F A and Malpas J. 1979. Bay of Islands ophiolits suite, Newfoundland: Petrologic and geochemical characteristics with emphasis on rare earth element geochemistry. Earth Planet. Sci. Lett., v.45:337-348
    194. Sun S S, Nesbitt R W and Sharaskin A Y. 1979. Geochemical characteristics of mid-ocean ridge basalts. Earth Planet. Sci. Lett., v.44: 119-138.
    195. Tapponnier P M, Ercier J L, Proust F et al. 1981. The Tibetan side of the India-Eurasia collision. Nature, 294: 405-410.
    196. Thy P and Moores E M. 1988. Crustal accretion and tectonic setting of the Troodos ophiolite, Cyprus. Tectonophysics, v. 147:221-245.
    197. Upadhyay H D, Neale E R W. 1979. On the tectonic regimes of ophiolite genesis. Earth and Planetary Science Letters, 43(1): 93-102.
    198. Van der Voo R, Spakman W and Bijwaard H. 1999. Tethyan subducted slabs under India. Earth and Planetary Science Letters, 171: 7-20.
    199. Wang Q, McDermott F, Xu J F, et al. 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting. Geology, 33: 465-468.
    200. Wang R, B Xia, G Zhou, Y Zhang, Z Yang, W Li, D Wei, L Zhong, L Xu. 2006. SHRIMP zircon U-Pb dating for gabbro from the Tiding ophiolite in Tibet. Chinese Science Bulletin, 51(14): 1776-1779.
    201. Winchester and Floyd. 1977. Geochemical discrimination of different mamga series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343.
    202. Wood D A, Joron J L and Treuil M. 1979. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth and Planetary Science Letters, 45: 326-336.
    203. Wood D A, Joron J L, Treuil M, Norry M and Tarney J. 1979. Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor. Contrib.MineraI.Petrol., 70: 319-339.
    204. Wood D A. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Teriary Volcanic Province. Earth and Planetary Science Letters, 50: 11-30.
    205. Wood D A, Tarney J and Weaver B L. 1981. Trace element variations in Atlantic ocean basalts and Proterozoic dykes from Northwest Ccotland: their bearing upon the nature and geochemical evolution of the upper mantle. Tectonophysics, 75:91-112.
    206. Xia B, H X Yu, G W Chen, L Qi, T P Zhao, M F Zhou. 2003b. Geochemistry and tectonic environment of the Dagzhuka ophiolite in the Yarlung-Zangbo suture zone, Tibet. Geochemical Journal, 37(3): 311-324.
    207. Xia B, H X Yu, H J Mei, G W Chen, L Qi. 2003a. Geochemistry of basalts: Evidence for formation of Dazhu ophiolite, Tibet (China), in a supra-subduction zone environment. Journal of the Geological Society of India, 61 (1): 7-15.
    208. Xu J F, Shinjo R, Defant M J, et al. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust? Geology, 30: 1111-1114.
    209. Yin A, Harrison T M, Kyerson F J, et al. 1994. Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet. Journal of Geophysical Research, 99 (B9): 18175-18201.
    210. Yin A, Harrison T M, Murphy M A, Grove M, Nie S, Ryerson F J, Wang X F and Chen Z L. 1999. Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision. Geological Society of America Bulletin, 111: 1644-1664.
    211. Yin, A, Harrison, T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28:211-280.
    212. Zhou M F, Robinson P T, Malpas J, et al. 1996. Podiform chromitites in the Luobusa ophiolite (Southern Tibet): Inplications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37: 3-21.
    213. Zhou M F, Robinson PT, Malpas J, Edwards S J, Qi L. 2005. REE and PGE Geochemical Constraints on the Formation of Dunites in the Luobusa Ophiolite, Southern Tibet. J. Petrol. 47, 1-25.
    214. Zhou M F. 1995. Petrogenesis of the podiform chromitites in the Luobusa ophiolite, Southern Tibet. Ph.D. thesis, Dalhousie University.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700