用户名: 密码: 验证码:
基于面元法的船舶减阻研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着近年来国际海事组织(IMO)针对船舶节能减排提出了一系列新标准和新规则,世界各国都掀起了一场绿色船舶的革命。阻力性能是船舶节能关心的首要问题,船舶阻力由粘性阻力和兴波阻力构成。其中,对于给定的船速,粘性阻力与船舶湿表面积成正比。一般来讲,湿表面积随船型改变和纵倾浮态调整变化不大。相反,在一定的Froude数范围内,兴波阻力对船型、纵倾状态、船舶局部型线(如球首等)的变化相当敏感,对上述因素进行适当调整,有可能得到较优的船舶兴波阻力性能。因此,本文试图通过基于兴波阻力的船型优化、船舶航行纵倾调整和给定压力分布形式物面设计研究,为船舶减阻节能的发展提供一些新的思路。
     本文第一部分研究工作中针对长期以来三维绕流问题面元节点速度势计算误差较大的问题,考虑节点立体角,引入系数δ来分析该问题。通过对圆球表面考虑立体角前后节点速度势与解析解的比较,说明了系数δ在三维节点速度势求解中的重要作用。
     本文第二部分研究工作是采用一种二次双曲线表达母型船,并通过数学推导证明纵剖线和水线的光顺性,在此基础上采用Michell积分进行兴波阻力计算。适当调整船型横剖面面积曲线,重新生成船型表达,通过反复计算来实现船型优化。随后对去球鼻艏的DTMB5415船型进行设计优化,得到了特定速度范围内较优的船型方案。对母型和优化方案的模型阻力试验研究结果表明,通过对数学船型的横剖面进行局部优化,就能够使当前船型的中高速段兴波阻力性能得到明显提高。
     本文的第三部分研究工作是以减小兴波阻力为目标的纵倾预报。与其他减阻方式不同,纵倾调整只需调整船舶首尾吃水差来实现减阻节能效果。从船舶兴波阻力入手,考虑不同纵倾状态船舶的兴波阻力变化,并给出船舶航行中兴波阻力较优的纵倾状态。以Rankine源为格林函数基本解,分别采用Dawson方法和直接面元法对不同纵倾下的船舶兴波阻力进行计算,通过分析船长方向波高分布曲线、波形图和兴波阻力变化曲线,给出船舶的较优纵倾。最后,针对Dawson方法给出的某船型纵倾调整方案,进行了模型阻力试验,并通过三因次换算给出了兴波阻力系数。试验结果表明,Dawson方法和直接面元法能够实现以减小兴波阻力为目标的船舶航行纵倾预报,通过两种方法给出的较优纵倾方案在实际中也具有较佳的兴波阻力性能。
     本文第四部分研究工作是给定压力分布形式的物面设计。兴波阻力是通过沿物面的压力分布进行积分求解,当兴波阻力不满足要求时,对物面压力进行调整,然后设计出满足目标压力分布形式的物面形状,这就是船舶水动力研究中逆问题。采用直接面元法和模型修正函数,在初始物面上,加载给定的压力分布形式,建立速度势变化和模型修正量之间的相互约束模型,经过反复的计算迭代,给出满足压力分布要求的物面模型。首先通过二维圆、椭圆和翼型设计、三维球体和椭球的设计来验证物面设计方法。最后,通过给定压力分布形式,实现了Wigley船型设计,初步解决了自由面绕流情况下的物面设计问题。
A revolution about green ship is processed in the world as the International MaritimeOrganization (IMO) proposed a series of new criteria for ship energy saving. The mostimportant case that ship energy saving concerns is the resistance, which is consisted ofwave resistance and viscous resistance. For a given speed of the ship, the viscousresistance is proportional to the wetted surface area which is generally not very sensitiveto the small change of ship lines and float condition. In contrast, in a certain range ofFroude number, wave resistance is quite sensitive to the two factors. Some smallmodification of any of the two factors may lead to great improvement in ship waveresistance. Therefore, this paper attempts to propose some new ideas for the ship dragreducing and energy saving by optimizing hull lines, modifying trim condition and bodydesigning with giving pressure distribution.
     The first part of the present study aimes at that calculation of node potential in flowaround body always causes large errors. With inner angle of nodes taken into account, acoefficient δ is intrduced to slove the problem. Comparisons of annalitic results andnumerical results of sphere nodes are presented and calculation results with considerationof inner angle show more accuracy than that without inner angle.
     In the second part of present study, a kind of quadratic curve is use to generate acertain hull of the minimum wetted surface. An optimization algorithm is used to modifycross section of the hull and Michell integral is applied to solve the wave resistance in theoptimization procedure. Numerical calculation and comparative experiments for themodified DTMB5415hull model are conducted to access the availability of the method.
     Trim operation is studied as a new method for ship energy saving in the third part ofthe research. One of most noticeable characters of the trim operation is that the resistanceof ship could get obvious improvement with out any modification to hull lines. TheDawson method and a type of direct panel method for a boundary-value problem with thefree surface are proposed to predict ship wave resistance under different trim conditionsbased on Rankine source. The free surface boundary condition is linearized with respect tothe oncoming flow, and computed by a four-point finite difference scheme. Samplecomputations for Wigley hull and Series60are carried out to demonstrate theeffectiveness and the robustness of the methods. A hull model is taken into account at twodifferent displacements with respect to trim conditions of lower wave resistance. It is demonstrated by calculation and experiment that the wave resistance under the trimconditions provided by the proposed methods is lower than that under the initialconditions.
     Body design with certain pressure distribution is researched in the forth part of thestudy. The wave-making theory for ship can be used to solve the problem ofhydrodynamics performance prediction and wave resistance often is calculated byintegration along the body surface. Researchers may do some modification to thecalculated pressure distribution while the wave resistance is not so satisfactory. How tofind a body surface corresponding to the modified pressure distribution is one of the majorissues studied in the paper. A type of direct panel method is use to calculate Rankinesource intensity, which is applied to compute the geometry modification of current body.An equation of velocity potential and geometry modification is created, and an iterativealgorithm is use to solve the equation. Design sample of ellipse, circle and wing section isconducted to verify two dimensional design procedures while sphere and ellipsoid designis applied for three-dimensional verification. Finally, the method is use to design theWigley hull with known pressure distribution along the body surface.
引文
[1] Doctors L J, Day A H, Clelland D. Resistance of a ship undergoing oscillatorymotion. Journal of Ship Research.2010,54(13):112-120.
    [2] Huan J C, Huang T T. Surface ship total resistance prediction based on a nonlinearfree surface potential flow solver and a Reynolds-averaged Navier-Stokes viscouscorrection. JOURNAL OF SHIP RESEARCH.2007,51(1):47-64.
    [3] Bal S. Prediction of wave pattern and wave resistance of surface piercing bodies bya boundary element method. International Journal for Numerical Methods in Fluids.2008,56(3):305-329.
    [4] Doctors L J, Mckesson C B. The resistance components of a surface-effect ship.Proceedings of The Twenty-Sixth Symposium on Naval Hydrodynamics, Rome,Italy,2006.
    [5] Moraes H B, Vasconcellos J M, Latorre R G. Wave resistance for high-speedcatamarans. OCEAN ENGINEERING.2004,31(17-18):2253-2282.
    [6]刘应中.船舶兴波阻力理论.国防工业出版社,2003.
    [7]黄金森.基于最小阻力的船型优化研究.天津大学,2006.
    [8] Chen Y J, Chau S, Kouh J S. Application of two-phase fluid approach forfree-surface ship flow simulation. JOURNAL OF THE CHINESE INSTITUTE OFENGINEERS.2002,25(2):179-188.
    [9] Grigoropoulos G J, Chalkias D S. Hull-form optimization in calm and rough water.COMPUTER-AIDED DESIGN.2010,42(11SI):977-984.
    [10] Han S, Lee Y S, Choi Y B. Hydrodynamic hull form optimization using parametricmodels. JOURNAL OF MARINE SCIENCE AND TECHNOLOGY.2012,17(1):1-17.
    [11] Lungu A. Numerical simulation of the free-surface flow around a heavy-lift ship.2nd Workshop on Vortex Dominated Flows, Bucharest, Romania,2006.
    [12] Zhang B, Ma K, Ji Z. The optimization of the hull form with the minimum wavemaking resistance based on rankine source method. Journal of Hydrodynamics, Ser.B.2009,21(2):277-284.
    [13] Markov N E, Suzuki K. Fundamental studies on Rankine source panel method fullybased on B-splines. Journal of the Society of Naval Architects of Japan.2000,187:13-23.
    [14] Mantzaris D A. A Rankine panel method as a tool for the hydrodynamics design ofcomplex marine vehicles._secondary_title,1998.
    [15] Huang Y. Nonlinear ship motions by a Rankine panel method._secondary_title,1997.
    [16] Takagi K. AN APPLICATION OF RANKINE SOURCE METHOD FORUNSTEADY FREE SURFACE FLOW (Japanese). Journal of the Kansai Society ofNaval Architects.1990(213):21-29.
    [17] Bertram V. SHIP MOTIONS BY A RANKINE SOURCE METHOD. Ship TechnolResearch.1990,37(4):143-152.
    [18] Yasukawa H. CALCULATION OF FREE-SURFACE FLOW AROUND A SHIP INSHALLOW WATER BY RANKINE SOURCE METHOD.5th InternationalConference on Numerical Ship Hydrodynamics, Hiroshima, Japan,1989.
    [19] Jensen G, Soding H, Mi Z. RANKINE SOURCE METHODS FOR NUMERICALSOLUTIONS OF THE STEADY WAVE RESISTANCE PROBLEM.16thSymposium on Naval Hydrodynamics, Berkeley, US,1986.
    [20]韩端锋.船舶兴波阻力新细长船理论的方法与计算研究.哈尔滨工程大学,2002.
    [21] Chen X N, Sharma S D, Stuntz N. Zero wave resistance for ships moving in shallowchannels at supercritical speeds. Part2. Improved theory and model experiment.JOURNAL OF FLUID MECHANICS.2003,478:111-124.
    [22]陈京普,朱德祥,刘晓东.水面船非线性兴波数值方法研究.水动力学研究与进展A辑.2008(04):357-363.
    [23] Kara F, Vassalos D. Time domain computation of the wave-making resistance ofships. JOURNAL OF SHIP RESEARCH.2005,49(2):144-158.
    [24] Ahmed Y, Soares C G. Simulation of free surface flow around a VLCC hull usingviscous and potential flow methods. OCEAN ENGINEERING.2009,36(9-10):691-696.
    [25] Chen X B, Dias F. Visco-potential flow and time-harmonic ship waves.25thIWWWFB, Harbin, China,2010.
    [26] Alessandrini B, Delhommeau G. Simulation of three-dimensional unsteady viscousfree surface flow around a ship model. International Journal for Numerical Methodsin Fluids.1994,19(4):321-342.
    [27] Duan-Feng H. RESEARCH ON THE METHOD AND CALCULATION OF THENEW SLENDER-SHIP WAVE RESISTANCE THEORY. Journal ofHydrodynamics, Ser. B.2003,15(4):124.
    [28] Percival S, Hendrix D, Noblesse F. Hydrodynamic optimization of ship hull forms.APPLIED OCEAN RESEARCH.2001,23(6):337-355.
    [29] Saha G K, Suzuki K, Kai H. Hydrodynamic optimization of ship hull forms inshallow water. JOURNAL OF MARINE SCIENCE AND TECHNOLOGY.2004,9(2):51-62.
    [30] Park D, Choi H. Hydrodynamic hull form design using an optimization technique.International Journal of Ocean System Engineering.2012.
    [31] Nord s D E. Optimization of Bow Shape for Large,Slow Ships._secondary_title,2012.
    [32] Alvarez A, Bertram V, Gualdesi L. Hull hydrodynamic optimization of autonomousunderwater vehicles operating at snorkeling depth. OCEAN ENGINEERING.2009,36(1):105-112.
    [33] Hutchison B, Hochkirch K. CFD Hull Form Optimization of a12000cu.yd.(9175m3) Dredge. International Symposium on Practical Design of Ships and OtherFloating Structures, Houston, U.S.A.,2007.
    [34] Scofield T. Manning and Automation Model for Naval Ship Analysis andOptimization._secondary_title,2006.
    [35] Heimann J. CFD Based Optimization of the Wave-Making Characteristics of ShipHulls._secondary_title,2005.
    [36] Tuck E O, Scullen D C. A comparison of linear and nonlinear computations ofwaves made by slender submerged bodies. Journal of Engineering Mathematics.2002,42:255-264.
    [37]崔焰,卢晓平,王中等.改进线性兴波阻力帐篷函数法及实船型线优化.华中科技大学学报(自然科学版).2011(04):101-105.
    [38]缪泉明,章梓雄.利用直接边界元法求解兴波问题(英文).船舶力学.2003(6):27-36.
    [39]李继先.在线性自由面条件下Rankine源与Kelvin源势之关系.武汉交通科技大学学报.1995(02):107-112.
    [40] Noblesse F. Numerical Study of a Slender-Ship Theory of Wave Resistance. JournalOf Ship Research.1985,29(2):81-93.
    [41]李云波,黄德波,吴德铭.用改进的Noblesse新细长船理论算法探讨单体、双体船兴波.哈尔滨工程大学学报.1998(04):79-84.
    [42]黄德波,李云波.一种基于Noblesse的新细长船理论与波陡限制的船舶兴波阻力计算方法.船舶力学.1999(04):1-7.
    [43] Kazuo S, Nobuomi I. Studies on minimization of wave making resistance based onRankine source method. Journal of the Society of Naval Architects of Japan.1999(185):9-19.
    [44] D'Elia J, Storti M, Idelsohn S. A closed form for low-order panel methods.ADVANCES IN ENGINEERING SOFTWARE.2000,31(5):347-353.
    [45]卢晓平,王中,孙永华等. Rankine源Dawson型方法求解三体船兴波阻力.华中科技大学学报(自然科学版).2008(11):103-107.
    [46]朱德祥,陈京普.基于Rankine源的面元法及其船型优化中的应用.第九届全国水动力学学术会议暨第二十二届全国水动力学研讨会,中国四川成都,2009.
    [47]冯大奎,叶恒奎,张志国等.船舶自由面兴波时域计算.2007年船舶力学学术会议暨《船舶力学》创刊十周年纪念学术会议,中国宁夏银川,2007.
    [48] Yasukawa H. A Rankine panel method to calculate steady wave-making resistanceof a ship taking the effect of sinkage and trim into account. Transactions of the WestJapan Society of Naval Architects.1993(86):27-35.
    [49] Janson C. Potential Flow Panel Methods for the Calculation of Free Surface Flowswith Lift._secondary_title,1997.
    [50] Steen S, Rambech H J, Zhao R, et al. Resistance prediction for fast displacementcatamarans. FAST'99,1999.
    [51] Ghassemi H, Ghiasi M. A combined method for the hydrodynamic characteristics ofplaning crafts. Ocean Engineering.2008,35(3-4):310-322.
    [52] Zhang D, Chwang A T. On nonlinear ship waves and wave resistance calculations-Springer. Journal of Marine Science and Technology.1999, Volume4(Issue1):7-15.
    [53] Farmer J, Martinelli L, Jameson A. Fast multigrid method for solvingincompressible hydrodynamic problems with free surfaces. AIAA Journal.1994,32:1175-1182.
    [54] Farmer J, Martinelli L, Jameson A. A fast multigrid method for solving the nonlinearship wave problem with a free surface. Proceedings of the Sixth InternationalConference on Numerical Ship Hydrodynamics, Iowa, US,1994.
    [55] Farmer J, Martinelli L, Jameson A. Multigrid solutions of the Euler andNavier–Stokes equations for a Series60Cb=0.60ship hull for Froude numbers0.160,0.220and0.316(Program1: Navier–Stokes formulation and Program2:Euler formulation). Proceedings of CFD Workshop Tokyo, Tokyo, Japan,1994.
    [56]林洪波,朱光远.船舶最佳纵倾航行与节能.中国航海.1986(02):46-55.
    [57]周占群,宋家瑾,徐惠民等.“门”字型货船的最佳纵倾节能技术研究.交通部上海船舶运输科学研究所学报.1986(01):47-64.
    [58] Breslin D A. Climate Change and the Future of Shipping and Ship Design. NavalEngineers Journal.2006,118(3):151-163.
    [59] Michaelowa A, Krause K. International maritime transport and climate policy-Springer. Intereconomics.2000, Volume35(Issue3):127-136.
    [60] Klein H J. Shipbuilding trends in response to environmental issues-Springer. WMUJournal of Maritime Affairs.2007, Volume6(Issue2):167-175.
    [61] Qingqi W, Songzheng Z. Estimating CO2Emission and Mitigation Opportunities ofWanzhou Shipping in Chongqing Municipality, China. Logistics Engineering andIntelligent Transportation Systems (LEITS),2010International Conference on,2010.
    [62] Eide M S, Longva T, Hoffmann P, et al. Future cost scenarios for reduction of shipCO2emissions. MARITIME POLICY&MANAGEMENT.2011,38(1):11-37.
    [63] Xu H L, Wang H, Xu H, et al. Discuss on Green Shipbuilding Technology: Designand Material. STAFA-ZURICH:TRANS TECH PUBLICATIONS LTD,2012:490-495,3296-3300.
    [64]欧礼坚.浅谈船舶节能技术改造.广东造船.2003(04):35-37.
    [65]唐艳.舰船节能措施现状与分析.中国水运(下半月).2013(01):3-5.
    [66] Larsen N L, Simonsen C D, Nielsen C K, et al. Understanding the physics of trim.Ship and Offshore.2011.
    [67] Bertram V, H ppner V, Fach K. Intelligent Engineering Options for HighlyFuel-Efficient Fishing Vessels. First International Symposium on Fishing VesselEnergy Efficiency, Vigo, Spain,2010.
    [68]杨剑文.航行船舶在浅水中的纵倾变化研究.中国水运(下半月).2011(12):1-4.
    [69] Mewis F, Hollenbach U. Hydrodynamische Ma nahmen zur Verringe-rung desEnergieverbrauches im Sc hiffsbetrieb.2007(Hansa144/5):49-58.
    [70] Leshang Z. Energy Efficient Ship Operations–Trim. Future Ship.2011.
    [71] Hansen H, Freund M. Assistance Tools for Operational Fuel Efficiency.9th Conf.Computer and IT Applications in the Maritime Industries, Gubbio, Italy,2010.
    [72] Benson F W. Mathematical Ship’s Lines. TINA.1940.
    [73] Williams A. Mathematical Representation of Ordinary Ship Forms. Schiff and Hafen.1964.
    [74] Kantdrowitz E. Mathematical Definition of Ship Surface. Panish Ship Research Inst.1967.
    [75] Kuiper G. Preliminary Design of Ship Lines by Mathematical Method. Journal ofShip Research.1970.
    [76]汪希龄.用计算机作船体型线设计.中国造船.1978(1):64-76.
    [77]汪希龄,孙定.用纵向函数法生成渔船线型的研究.中国造船.1987(01):9-16.
    [78]李世谟.一种数学船型.武汉造船工程学会船舶力学学术委员会论文集.1991:22-31.
    [79]张金铭.数学船型设计及其三向光顺性.上海交通大学学报.1980(02):27-42.
    [80]林焰,纪卓尚.船舶型线设计方法研究.上海交通大学学报.1994(01):16-23.
    [81]林焰,朱照辉,纪卓尚等.函数参数船型—型线表达.中国造船.1997(03):74-78.
    [82]李彦本,林焰,纪卓尚等.数学船型型线设计方法研究.大连理工大学学报.1998(04):14-18.
    [83] Bloor M I, Wilson M J. Geometric Design of Hull Form Using PartialDifferentialEquations. Proceedings of the International Symposium CFD and CAD in ShipDesign.1993,65-73.
    [84]孙家鹏,林焰,纪卓尚.穿浪双体船型线绘制及三向光顺研究.船舶工程.2005(04):1-5.
    [85]陈宾康.函数合成法生成型线与光顺.中国造船.1992(01):71-78.
    [86] Prez-Arribas F, Surez-Surez J A, Fernndez-Jambrina L. Automatic surfacemodelling of a ship hull. Computer-Aided Design.2006,38(6):584-594.
    [87] Kouh J S, Chau S W. Computer-aided geometric design and panel generation forhull forms based on rational cubic Bzier curves. Computer Aided Geometric Design.1993,10(6):537-549.
    [88] Shamsuddin S M, Ahmed M A, Smian Y. NURBS skinning surface for ship hulldesign based on new parameterization method-Springer. The International Journalof Advanced Manufacturing Technology.2006, Volume28(Issue9-10):936-941.
    [89]仵大伟.船体曲面表达与三维船舶设计研究.大连理工大学,2002.
    [90]刘光耀.复杂船型的微机型线光顺.武汉造船(武汉造船工程学会会刊).1992(03):37-41.
    [91]冯树文.普通船型端部型线交互设计和光顺.广东造船.1994(01):20-23.
    [92] Esteve J, Brunet P, Vinacua A. Piecewise algebraic surface computation andsmoothing from a discrete model. Computer Aided Geometric Design.2008,25.
    [93] Gjerse Fog N. Creative definition and fairing of ship hulls using a B-spline surface.Computer-Aided Design.1984,16(4):225-229.
    [94]张萍,冷文浩,朱德祥等.一种新的船体型线自动光顺方法(英文).船舶力学.2008(06):880-885.
    [95] Munchmeyer F C, Schubert C, Nowacki H. Interactive design of fair hull surfacesusing B-splines. Computers in Industry.1979,1(2):77-86.
    [96] Kim H, Yang C. A new surface modification approach for CFD-based hull formoptimization. Journal of Hydrodynamics, Ser. B.2010,22(5, Supplement1):520-525.
    [97]王言英.基于阻力性能船体型线精细优化的CFD方法.大连理工大学学报.2002(02):127-133.
    [98] Abramowski T, elazny K, Szelangiewicz T. Numerical analysis of influence of shiphull form modification on ship resistance and propulsion characteristics. PolishMaritime Research.2010,17(1):10-13.
    [99] Abramowski T, Szelangiewicz T. Numerical analysis of influence of ship hull formmodification on ship resistance and propulsion characteristics Part II Influence ofhull form modification on wake current behind the ship. POLISH MARITIMERESEARCH.2010,17(1):3-9.
    [100] Chen P, Huang C. An inverse hull design problem in optimizing the desired wake ofship. Journal of Ship Research.2002,46(2):138-147.
    [101] Zalek S F, Parsons M G, Beck R F. Naval Hull Form Multicriterion HydrodynamicOptimization for the Conceptual Design Phase. Journal of Ship Research.2009,53(4):199-213.
    [102] Cui Y, Lu X, Zhan J. Trimaran Center Hull Optimization for Minimum WaveResistance under Fixed Outriggers. Optoelectronics and Image Processing (ICOIP),2010International Conference on,2010.
    [103] Wang X L, Day A H. Numerical instability in linearized planing problems.INTERNATIONAL JOURNAL FOR NUMERICAL METHODS INENGINEERING.2007,70(7):840-875.
    [104] Chen P, Huang C. An inverse hull design approach in minimizing the ship wave.Ocean Engineering.2004,31(13):1683-1712.
    [105] Chen P F, Huang C H. An inverse hull design approach in minimizing the ship wave.OCEAN ENGINEERING.2004,31(13):1683-1712.
    [106] Shahjada Tarafder M, Suzuki K. Computation of wave-making resistance of acatamaran in deep water using a potential-based panel method. Ocean Engineering.2007,34(13):1892-1900.
    [107] Tzabiras G D. A method for predicting the influence of an additive bulb on shipresistance.8th International conference on hydrodynamics, Athens, Greece,2008.
    [108] Wilson W, Hendrix D, Gorski J. Hull form optimization for early stage ship design.Naval Engineers Journal.2010,122(2):53-65.
    [109] Li X. Multiobjective optimization and multiattribute decision making study of ship'sprincipal parameters in conceptual design. Journal of Ship Research.2009,53(2):83-92.
    [110] Gammon M A. Optimization of fishing vessels using a Multi-Objective GeneticAlgorithm. Ocean Engineering.2011,38(10):1054-1064.
    [111] Peri D, Campana E F. Multidisciplinary design optimization of a naval surfacecombatant. Journal of Ship Research.2003,47(1):1-12.
    [112] Demko D. Tools for Multi-Objective and Multi-Disciplinary Optimization in NavalShip Design._secondary_title,2005.
    [113]赵敏,崔维成.多学科设计优化研究应用现状综述.中国造船.2007(03):63-72.
    [114]潘彬彬,崔维成.舰船平台的多学科设计优化探索研究.结构及多学科优化工程应用与理论研讨会’2009(CSMO-2009),中国辽宁大连,2009.
    [115]郑军林.舰船概念设计发展趋势.舰船科学技术.2011(09):3-6.
    [116]钱建魁.基于水动力性能的船型多学科优化设计.武汉理工大学,2011.
    [117]张文旭.基于EEDI的集装箱船波浪中船型多学科优化.武汉理工大学,2012.
    [118] Tahara Y, Tohyama S, Katsui T. CFD-based multi-objective optimization method forship design. International Journal for Numerical Methods in Fluids.2006,52(5):499-527.
    [119] Brown A, Salcedo J. Multiple-Objective Optimization in Naval Ship Design. NavalEngineers Journal.2003,115(4):49-62.
    [120] Hinatsu M. Fourier NUBS method to express ship hull form-Springer. Journal ofMarine Science and Technology.2004, Volume9(Issue1):43-49.
    [121] Moraes H B, Vasconcellos J M, Almeida P M. Multiple criteria optimization appliedto high speed catamaran preliminary design. OCEAN ENGINEERING.2007,34(1):133-147.
    [122] Boulougouris E K, Papanikolaou A D, Pavlou A. Energy efficiency parametricdesign tool in the framework of holistic ship design optimization. PROCEEDINGSOF THE INSTITUTION OF MECHANICAL ENGINEERS PART M-JOURNALOF ENGINEERING FOR THE MARITIME ENVIRONMENT.2011,225(M3):242-260.
    [123]杨向辉.船用控制翼水动力性能及船舶时域兴波研究.2008.
    [124]张利军.螺旋桨性能预报的速度势面元法研究.大连:大连理工大学,2006.
    [125] Hoshino T. Hydrodynamics Analysis of Propellers in Steady Flow Using a SurfacePanel Method. Journal of The Society of Naval Architecture of Japan.1989,165:55-70.
    [126]陈庆任.近自由面三维振动翼水动力研究.华中科技大学,2011.
    [127]章本照.流体力学数值方法.机械工业出版社,2003.
    [128]冯大奎.绕船舶自由面流动的时域分析和数值计算.华中科技大学,2008.
    [129]李雷雷.船体型线自动生成及优化研究.华中科技大学,2009.
    [130] Sun J L, Lv X J, Liu W B, et al. Research on a method of hull form design based onwave-making resistance optimization. POLISH MARITIME RESEARCH.2012,19(3):16-25.
    [131] Dawson C W. A practical computer method for solving ship-wave problems.Proceedings of the Second International Conference on Numerical ShipHydrodynamics, Berkeley, US,1977.
    [132]高斌.兴波阻力计算及船型优化.上海交通大学,2002.
    [133] Tarafder M S, Suzuki K. Numerical calculation of free-surface potential flow arounda ship using the modified Rankine source panel method. Ocean Engineering.2008,35(5-6):536-544.
    [134] Ye W J, Fei Y. On the convergence of the panel method for potential problems withnon-smooth domains. ENGINEERING ANALYSIS WITH BOUNDARYELEMENTS.2009,33(6):837-844.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700