用户名: 密码: 验证码:
MIMO-CPM的信道模型、空时编码和同步技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人们对信息需求的增长与有限的可利用的频谱资源之间的矛盾,要求下一代的通信系统必须具有更高的频谱效率,才能满足通信容量迅速增长的需求。多输入多输出(MIMO)技术可以显著提高系统的频谱利用率、传输效率和性能。在未来无线通信系统中具有良好的应用前景。连续相位调制(CPM)模式,通过平滑符号间过渡相位来改善谱密度特性。它是一种性能优良的调制模式,是各种新型移动通信、无线电台的主要调制模式之一。本文从MIMO和CPM的基本原理出发,针对MIMO-CPM系统的几项关键技术进行了探索与创新性研究。
     无线信道是影响传输系统数学模型和算法设计的关键因素。基于已有的理论成果,本文给出了一种非线性相关信道模型的建模方法,从空间相关性着手,采用经典的Jakes模型来生成衰落信号并结合非线性功放的特性,提出了非线性MIMO相关衰落系数矩阵的产生方法。另一方面,本文分析了2天线正交空时编码的CPM(OST-CPM)系统的最大似然序列检测算法(MLSD)在非线性MIMO相关信道中的性能特性。信道相关性对OST-CPM系统的影响与对空时编码结合线性调制模式时的影响类似,它将导致OST-CPM系统MLSD算法的编码性能下降,但是分集增益不变,而且仍可达到满增益。当存在非线性失真时,本文采用预失真电路来补偿非线性功放对OST-CPM系统MLSD算法性能的影响。由于CPM信号的恒包络特性,非线性功放对OST-CPM系统的非相干检测算法的编码性能基本没有影响。这也是MIMO-CPM系统优于多天线结合线性调制模式系统的主要性能之一。
     MIMO-CPM系统的另一个关键技术是空时编译码问题。利用CPM信号的Rimoldi分解思想,本文提出了两种空时编码CPM系统的设计方法,空时编码采用Zp域上的卷积编码和空时网格编码方式。这两种联合编码的CPM系统不仅适用于RC和REC成形的全响应CPM信号,而且适用于部分响应CPM信号。通过将空时编码与CPM信号中的CPE模块联合编码设计后,系统的整体编码方式相当简单。虽然空时编码结合部分响应CPM信号的STC-2RC-CPM系统比全响应的STC-1RC-CPM性能略差,但是由于部分响应CPM信号具有更高的频谱利用率,因此在实际通信系统中具有更广的应用前景。针对OST-CPM系统,本文又提出了一种适用于RC以及REC成形的全响应CPM信号的非相干检测算法。在准静态衰落信道中,非相干检测算法的性能虽然比MLSD算法的性能略差,但是由于该算法不需要知道信道状态信息,因此具有实用价值。然而在快Rayleigh衰落信道中,当增加观察窗口长度时,非相干检测算法的性能急剧恶化,这也是该算法的应用局限。
     同步是通信系统接收机工作的基础。针对MIMO-CPM系统,本文提出了两种基于不同形式的训练序列的符号定时估计算法。两种符号定时同步算法均不依赖于具体的空时码型,因此适用于任意的空时编码结合CPM信号的MIMO-CPM系统,具有很强的通用性。方法二较方法一具有更简单的结构、更少的运算量、更广的应用范围以及更优的估计性能。空时网格编码CPM系统在非理想同步情况下采用方法二时的误帧率(Frame Error Rate,FER)性能下降不大。但是,当衰落速度增加时,方法二的均方误差性能逐渐下降,因此该算法不适用于快衰落的Rayleigh信道。
The growth in demand for information and the limited spectrum resources of available are in the conflict. Thus the requirements of the next generation of communication systems must have higher spectrum efficiency to meet rapidly growing demand in communication capacity. MIMO (Multiple Input Multiple Output) technology can significantly improve the system spectrum efficiency, transmission efficiency and performance. In the future it will have good prospects in wireless communication systems. Continuous phase modulation (CPM) improves the properties of spectral density by smoothing the transition phase between symbols. It is a mode of good performance, and is one of the main modulation modes of a variety of new mobile communication and wireless radio. In this thesis, based on the basic principle of MIMO and CPM, a number of key technologies of MIMO-CPM systems are in-depth investigated from theoretical aspects.
     The impact of wireless channel is a key factor in a mathematical model and algorithm design of transmission system. Based on the existing theoretical results, the modeling method of the non-linear and correlated channel is given. It starts from the spatial correlation, and then uses the classic Jakes model to generate the fading signals in combination with the characteristics of non-linear power amplifier. A generating method of the coefficient matrix of a non-linear and correlated MIMO fading is proposed. On the other hand, the performance characteristics are analyzed, of 2- antenna orthogonal space-time coded CPM (OST-CPM) system for maximum likelihood sequence detection algorithm (MLSD) in the non-linear and corrected MIMO channel. The impact of channel correlation on the OST-CPM system is similar with that on space-time coding combined with a linear modulation mode. It will lead to performance degradation of MLSD algorithm for OST-CPM system, but have the same diversity gain, and can attain full diversity gain. When the nonlinear distortion exists, a pre-distortion circuit is applied to compensate the impact of non-linear power amplifier on the MLSD algorithm of OST-CPM systems. There is little effect of non-linear power amplifier on encoding performance of non-coherent detection algorithm for OST-CPM system, due to the characteristic of constant envelope of CPM signals. This is one of the main advantages of MIMO-CPM systems than multi-antenna systems combined with linear modulation modes.
     Another key technology MIMO-CPM system is the issue of space-time encoding and decoding. In this paper, two design methods of space-time coded CPM systems are proposed, based on Rimoldi decomposition of CPM signals. And the space-time coding could be Zp- domained convolutional coding and space-time trellis coding. Both the joint coded CPM systems are applicable not only to RC and REC shaped full response CPM signals, but also to partial response CPM signals. The overall encoding system could be quite simple through joint coding design of the space-time coding and CPE module of CPM signals. Although the performance of the STC-2RC-CPM system is slightly worse than that of the STC-1RC-CPM system, the STC-2RC-CPM system will have wider application prospects in the actual communication systems, due to higher spectrum efficiency of partial response CPM signals. An improved non-coherent detection algorithm for OST-CPM system is proposed, which is mainly applied to RC and REC shaped full response CPM signals. The performance of the non-coherent detection algorithm is slightly worse than that of the MLSD algorithm over quasi-static fading channels. However the non-coherent algorithm does not need to know the channel state information, it has more practical values. In fast Rayleigh fading channels, when the length of observation window increases, the performance of the non-coherent detection algorithm degrades rapidly, which is the application limitations of this algorithm.
     Synchronization is the basis of the receiver of communication systems. Two symbol timing estimation algorithms are proposed, based on different forms of training sequences. The two symbol timing synchronization algorithms do not depend on the specific types of space-time codes, thus it is applied to MIMO-CPM systems of any space-time coding combined with CPM signals. The second method has a simpler structure, less computational complexity, a broader range of applications and better estimation performance than the first method. The frame error rate (FER) performance of space-time trellis coded CPM (STTC-CPM) system decreases a little in case of non-ideal synchronization when the second timing algorithm is employed. However, when the fading rate increases, the mean-square error performance of the second method gradually decreased. Consequently this algorithm does not apply to the Rayleigh fast fading channels.
引文
[1] Mohinder Jankiraman, Space-time codes and MIMO systems, 2004.
    
    [2] C. Berrou, A. Glavieux and P. Thitimajshima, "Near Shannon limit error-correcting coding and decoding: turbo codes", in Proc. 1993 Inter. Conf Commun., 1993, pp. 1064-1070.
    [3] R.G.Gallager, Low Density Parity Check Codes, MIT Press, Cambridge, Massachusets, 1963.
    [4] D.C. MacKay, "Near Shannon limit performance of low density parity check codes", Electronics Letters, vol. 32, pp. 1645-1646, Aug. 1966.
    [5] E. Telatar, "Capacity of multi-antenna Gaussian channels", Eurro. Trans. Telecomm., vol. 10, pp. 585-595, 1999.
    [6] G.J. Foschini, "Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas," Bell Labs Tech. J., Autumn 1996.
    [7] G. J. Foschini and M.J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas" Wireless Personal Communications, 6(3): 311-335, 1998.
    [8] K. I. Pedersen, J. B. Andersen, J. P. Kermoal and P. Mogensen, "A stochastic multiple-input multiple-output radio channel model for evaluation of space-time coding algorithms", in Proc. IEEE Veh. Technol. Conf., Boston, MA, pp. 893-897, Sept. 2000.
    [9] J. P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Mogensen and F. Frederiksen, "A Stochastic MIMO Radio Channel Model with Experimental Validation", IEEE Journal on Selected Areas in Communications, Vol. 20, No. 6, pp. 1211-1226, Aug. 2002.
    [10] G.Byers and F. Takawira, "Spatially and temporally correlated MIMO channels: modeling and capacity analysis," IEEE Trans. Veh. Technol., vol.53, pp.634-643, May 2004.
    
    [11] S. Kim, J. Yoo and H. Park, "A spatially and temporally correlated fading model for array antenna applications", IEEE Trans. Veh. Technol., Vol.48, pp.1899 - 1905, Nov 1999.
    
    [12] Siwaruk Siwamogsatham, Michael P.Fitz, "Robust space-time codes for correlated Rayleigh fading channels," IEEE Transaction on Signal Processing, vol. 50, no. 10, pp. 2408 - 2416, Oct. 2002.
    [13] Siwaruk Siwamogsatham, Michael P.Fitz, "A New View of Performance Analysis of Transmit Diversity Schemes in Correlated Rayleigh Fading," IEEE Transaction on Information Theory, 48(4) :950 - 956, April 2002.
    [14] Seshadri, N., and J. Winters, "Two Signaling Schemes for Improving the Error Performance of Frequency-Division-Duplex (FDD) Transmission Systems Using Transmitter Antenna Diversity," Int. J. Wireless Information Networks, vol. 1, pp. 49-60, Jan. 1994.
    [15] S. M. Alamouti, "A simple transmitter diversity scheme for wireless communications," IEEE J. Selected Areas, Commun., 16(10), pp. 1451-1458, 1998.
    [16] V. Tarokh, N. Seshadri, A. R. Calderbank, "Space-time block codes from orthogonal designs," IEEE Trans. On Inform. Theory, vol. 45, no. 5, pp. 1456-1467, 1999.
    [17] V. Tarokh, H. Jafarkhani and A. R. Calderbank, "Space-time block coding for wireless communications: performance results", IEEE J. Select. Areas Commun., vol. 17, no. 3, pp. 451 -460, Mar. 1999.
    [18] H. Jafarkhani, "A quasi-orthogonal space-time block code," IEEE Trans. Commun., vol. 49, no. l,pp. 1-4,2001.
    [19] Heath J R W, Paulraj A J. , "Linear dispersion codes for MIMO systems based on frame theory," IEEE trans on Signal Processing, 50(10): 2419-2441, 2002.
    [20] V. Tarokh, N. Seshadri, A. R. Calderbank, "Space-time codes for high data rate wireless communication: performance criterion and code construction," IEEE Trans on Inform Theory, vol. 44, no. 2, pp. 744-765, 1998.
    [21] V. Tarokh, N. Seshadri, A. R. Calderbank, "Space-time codes for high data rate wireless communications: Performance criterion and code construction," in Proc. IEEE ICC'97, Montreal, Canada, 1997, pp. 299-303.
    [22] N. Seshadri, V. Tarokh, and A. R. Calderbank, "Space-time codes for high data rate wireless communications: Code construction," in Proc. IEEE VTC'97, Phoenix, AZ, 1997, pp. 637-641.
    [23] V. Tarokh, A. F. Naguib, N. Seshadri, and A. R. Calderbank, "Space-time codes for high data rate wireless communications: Mismatch analysis," in Proc. IEEE ICC'97, Montreal, Canada, 1997, pp. 309-313.
    [24] A. Naguib, V. Tarokh, N. Seshadri, and A. Calderbank, "A space-time coding modem for high-data-rate wireless communications," Selected Areas in Communications, IEEE Journal on, vol. 16, no. 8, pp. 1459- 1478, 1998.
    [25] S. Baro, G. Bauch, and A. Hansmann, "Improved codes for space-time trellis-coded modulation," Communications Letters, IEEE, vol. 4, no. 1, pp. 20-22, 2000.
    [26] B. Vucetic, J. Nicolas, "Performance of M-PSK Trellis Codes Over Nonlinear Mobile Satellite Channels," IEE Proceedings I, vol. 139, pp. 462-471, Aug. 1992.
    [27] Chen, Z., J. Yuan, and B. Vucetic, "Improved Space-Time Trellis Coded Modulation Scheme on Slow Rayleigh Fading Channels," Proceedings of ICC 2001, Vol. 4, pp. 1110-1116,2001.
    [28] Firmanto, W., B. Vucetic, J. Yuan, "Space-Time TCM With Improved Performance on Fast Fading Channels," IEEE Commun. Letters, Vol. 5, No. 4, April 2001, pp. 154-156.
    [29] Jinhong Yuan; Zhuo Chen; Vucetic. B.; Firmanto. W, "Performance Analysis and Design of Space-Time Coding on Fading Channels," Communications, IEEE Transactions on, vol. 51, no. 12, pp. 1991 - 1996, Dec. 2003.
    [30] Z. Chen, B. Vucetic, J. Yuan and K. Lo, "Space-time trellis codes for 4-PSK with three and four transmit antennas in quasi-static flat fading channels," IEEE Commun. Letters, Vol. 6, No. 2, pp. 67-69. Feb. 2002.
    [31] Chen, Z.; Vucetic, B.; Ka Leong Lo; Yuan, J, "Space-time trellis codes for 8-PSK with two, three and four transmit antennas in quasi-static flat fading channels", Electronics Letters, vol. 38, no. 10, pp. 462 - 4649, May. 2002.
    [32] Sandhu, S., and A. J. Paulraj, "Space-Time Block Codes Versus Space-Time Trellis Codes," Proceedings of ICC, 2001.
    [33] Grimm, J., Transmitter Diversity Code Design for Achieving Full Diversity on Rayleigh Fading Channels, Ph.D. thesis, Purdue University, 1998.
    [34] Q. Yan and R. S. Blum, "Optimum space-time convolutional codes", IEEE WCNC'00, Chicago, pp. 1351-1355, Sept. 2000.
    
    [35] Branka Vucetic, Jinhong Yuan, "Space-Time Coding", John Wiley & Sons, Inc. (?)2003
    [36] V. Tarokh and H. Jafarkhani, "A differential detection scheme for transmit diversity", IEEE J. Select. Areas Commun., vol. 18, pp. 1169-1174, July 2000.
    [37] H. Jafarkhani and V. Tarokh, "Multiple transmit antenna differential detection from generalized orthogonal designs", IEEE Trans. Inform. Theory, vol. 47, no. 6, pp. 2626- 2631, Sep. 2001.
    [38] B. L. Hughes, "Differential space-time modulation", IEEE Trans. Inform. Theory, vol. 46, no. 7, pp. 2567-2578, Nov. 2000.
    [39] B. M. Hochwald and T. L. Marzetta, "Unitary space-time modulation for multiple antenna communications in Rayleigh flat fading", IEEE Trans. Inform. Theory, vol. 46, no. 2, pp. 543-564, Mar. 2000.
    [40] Mody, A. N., and G.L. Stuber, "Parameter Estimation for OFDM with Transmit Receive Diversity", IEEE Vehicular Technology Conference, Rhodes, Greece, May. 2001.
    [41] Mody, A. N., and G.L. Stuber, "Synchronization for MIMO-OFDM Systems", IEEE Global Communications Conference, San Antonio, TX, Nov. 2001.
    [42] J. Siew, R. Piechocki, A. Nix, S. Armour, "A Channel Estimation Method for MIMO-OFDM Systems," London Communications Symposium, London, Sep. 2002.
    [43] V. Tarokh, A. Naguib, N. Seshadri, and A. Calderbank, "Space-time codes for high data rate wireless communication: performance criteria in the presence of channel estimation errors, mobility, and multiple paths," Communications, IEEE Transactions on, vol. 47, no. 2, pp. 99-207, 1999.
    [44] "Smart Antenna Experiments for 3G and 4G Cellular Systems," The Pentex Pipeline, Summer 2001, Vol. 10, No. 2, AT&T Labs-Research and Pentek Inc., Upper Saddle River, NJ.
    [45] John G.Proakis, Digital Communications (Fourth Edition), McGraw-Hill Companies, Inc., 2001.
    [46] Heinrich Meyr, Marc Moeneclaey, Stefan A. Fechtel, "Digital Communication Receivers— Synchronization, Channel Estimation, And Signal Processing", John Wiley & Sons, Inc, 1997.
    [47] Marvin K. Simon, Mobamed-Slim Alouini, Digital Communication over Fading Channels, John Wiley & Sons. Inc. 2000.
    [48] Stephen G. Wilson, Digital Modulation and Coding, Publishing House of Electronics Industry, 1998.
    [49] M. G.Pelchat, R. C. Davis, and M. B. Luntz, Coherent demodulation of continuous phase binary FSK signals, Proc. t International Telemetering Conference 1 pp. 181-190, Washington, D.C., 1971.
    [50] Buda, R., "Coherent Demodulation of Frequency-Shift Keying with Low Deviation Ratio" Communications, IEEE Transactions on. Vol. 20, no. 3, Part 2 pp. 429 - 435, Jun 1972.
    [51] W. P. Osborne, M. B. Luntz, "Coherent and noncoherent detection of CPFSK", IEEE Trans. Commun. COM-22. pp. 1023-1036, 1974.
    [52] T. A. Schonhoff, "Symbol error probabilities for M-ary coherent continuous phase frequency -shift keying (CPFSK)", International Conference on Communications, pp. 34.5-34.8, San Francisco, California, 1975.
    [53] Aulin T., Sundberg C., "Continuous Phase Modulation-Part I: Full Response Signaling," IEEE Transactions on Commun., vol. 29, no. 3, pp: 196 - 209, Mar 1981.
    [54] Aulin, T., Rydbeck N., Sundberg C., "Continuous Phase Modulation-Part II: Partial Response Signaling," IEEE Trans. on Commun., vol. 29, no. 3, pp, 210 - 225, Mar 1981.
    [55] J. B. Anderson, T. Aulin and C. E. Sundbreg, Digital Phase Modulation. New York, Plenum Press, 1986.
    [56] A. Wittneben and U. Dettmar, "A low cost noncoherent receiver with adaptive antenna combining for high speed wireless LANs," VTC'97, May 1997.
    [57] Y. C. Wu and T.S. Ng, "New implementation of a GMSK demodulator in linear software radio receiver," PEVIRC2000, vol.2,pp. 1049-1053, 2000.
    [58] Y. L. Huang, K. D. Fan, and C. C. Huang, "A fully digital noncoherent and coherent GMSK receiver architecture with joint symbol timing error and frequency offset estimation," IEEE Trans. Veh. Technol., Vol. 49,PP. 863-874, May 2000.
    [59] Voglewede, P.E. "Frequency hopping with multih CPM (MIL-STD-188-181B)", Military Communications Conference, 2003. MILCOM 2003. IEEE vol. 2, 13-16 Oct. 2003 pp. 1089-1094.
    [60] Murota, K., Hirade. K., "GMSK Modulation for Digital Mobile Radio Telephony" Communications, IEEE Transactions on, vol. 29, no. 7, pp. 1044- 1050, Jul. 1981.
    [61] Aulin, T., "Symbol Error Probability Bounds for Coherently Viterbi Detected Continuous Phase Modulated Signals," IEEE Trans. on Commun., vol. 29, no. 11, pp. 1707 - 1715, Nov. 1981.
    [62] Aulin T, Sundberg C., "Minimum Euclidean Distance and Power Spectrum for a Class of Smoothed Phase Modulation Codes with Constant Envelope," IEEE Trans. on Commun., vol. 30, no. 7, Part 2, pp. 1721 - 1729, Jul. 1982.
    [63] Aulin T., Sundberg C., "Exact Asymptotic Behavior of Digital FM Spectra," IEEE Trans, on Commun., vol. 30, no. 11, pp. 2438 - 2449, Nov. 1982.
    [64] Anderson J., Sundberg C., Aulin T., Rydbeck N., "Power-Bandwidth Performance of Smoothed Phase Modulation Codes", IEEE Trans. On Commun., vol. 29, no. 3, pp. 187 - 195, Mar 1981.
    [65] Lindell G., Sundberg C., Aulin T., "Minimum Euclidean distance for combinations of short rate 1/2 convolutional codes and CPFSK modulation," IEEE Trans. On Inform. Theory, vol. 30, no. 3, pp. 509 - 519, May. 1984.
    [66] Mulligan, M.G., "Multi-Amplitude Continuous Phase Modulation with Convolutional Coding," Ph.D. Dissertation, Department of Electrical and Computer Engineering, Northeastern University, Jun. 1988.
    [67] Karam G, Fernandez I, Paxal V. "New coded 8-ary CPFSK schemes", Communications, 1993. ICC 93. Geneva. Technical Program, Conference Record, IEEE International Conference on vol. 2, pp. 1059 - 1063, 23-26 May 1993.
    [68] B E Rimoldi, "A decomposition approach to CPM", IEEE Trans. Inform. Theory, vol. 34, pp. 260-270, March 1988.
    [69] B E Rimoldi, "Design of coded CPFSK modulation systems for bandwidth and energy efficiency", IEEE Trans. Comm, vol. 37, no. 9, pp. 897-905, Sep. 1989.
    [70] G.Ungerboeck, "Channel coding with multilevel/phase signals" Information Theory, IEEE Transactions on, vol. 28, no. 1, pp. 55- 67, Jan. 1982.
    [71] Forney, G., Jr, Gallager, R. Lang, G.Longstaff, F. Qureshi, S., "Efficient Modulation for Band-Limited Channels" Selected Areas in Communications, IEEE Journal on, vol. 2, no. 5, pp.632-647,Sep 1984.
    [72]P.Moqvist and T.Aulin,"Power and bandwidth efficient serially concatenated CPM with iterative decoding," IEEE Global Telecommunications Conference,2000.GLOBECOM'00.vol.2,pp.790-794,27 Nov.-1 Dec.2000.
    [73]Chen-chia Teng,John p.Fonseka and Israel kom,"Noncoherent sequence detection of trellis coded CPFSK over Rician channels," Vehicular Technology Conference,2001.VTC 2001 Spring.IEEE VTS 53rd,vol.4,pp.2935-2940,6-9 May 2001.
    [74]Tommy Svensson,Arne Svensson,"Empirical model for spectrally efficient continuous phase modulation," Vehicular Technology Conference,2003.VTC 2003-Fall.2003 IEEE 58th,vol.1,pp.696-701,6-9 Oct.2003.
    [75]Erik Perrins and Michael Rice,"Unified performance analysis of suboptimum detection methods for multi-h CPM," IEEE Milcom2004,vol.3,pp.1324-1331,31 Oct.-3 Nov.2004.
    [76]Viterbi,A.,"Error bounds for convolutional codes and an asymptotically optimum decoding algorithm",Information Theory,IEEE Transactions on,vol.13,no.2 pp.260-269,Apr.1967.
    [77]Hagenauer.J.Offer,E.Papke.L.,"Iterative decoding of binary block and convolutional codes",Information Theory,IEEE Transactions on,vol.42,no.2,Mar 1996.
    [78]Benedetto,S.;Divsalar,D.;Montorsi,G.;Pollara,F.,"Serial concatenation of interleaved codes:performance analysis,design,and iterative decoding" Information Theory,IEEE Transactions on.vol.44,no.3,pp.909-926,May 1998.
    [79]樊昌信,詹道庸等,通信原理,第四版,北京:国防工业出版社,1995.
    [80]杨大成等,移动传播环境——理论基础分析方法和建模技术,北京:机械工业出版社,2003.
    [81]Bello,P.,"Characterization of Randomly Time-Variant Linear Channels",Communications Systems,IEEE transactions on,vol.11,no.4,pp.360-393,December 1963.
    [82]Clarke,"A statistical theory of mobile-radio reception",Bell Sys.Tech.vol.47,no.4,pp.957-1000,1968.
    [83]Jakes W.C.,Microwave Mobile Communications,New York,Wiley-IEEE Press,1994.
    [84]Patzold,M.;Garcia,R.;Laue,F.,"Design of high-speed simulation models for mobile fading channels by using table look-up techniques",Vehicular Technology,IEEE Transactions on,vol.49,no.4,pp.1178-1190,July 2000.
    [85]Patzold M.,Mobile Fading Channel.New York:John Wiley & Sons,2002.
    [86]Smith,J.I.,"A computer generated multipath fading simulation for mobile radio",Vehicular Technology,IEEE Transactions on,vol.24,no.3,pp.39-40,Aug 1975.
    [87]Casas,E.Leung,C.,"A simple digital fading simulator for mobile radio",Vehicular Technology,IEEE Transactions on,vol.39,no.3,pp.205-21,Aug 1990.
    [88]Valenzuela,R.,"A ray tracing approach to predicting indoor wireless transmission",Vehicular Technology Conference,1993 IEEE 43~(rd),pp.214-218,18-20 May 1993.
    [89]Seidel,S.Y.,Rappaport,T.S.,"Site-specific propagation prediction for wireless in-building personal communication system design",Vehicular Technology,IEEE Transactions on,vol.43,no.4,pp.879-891,Nov 1994.
    [90]Petrus,P.;Reed,J.H.;Rappaport,T.S.,"Geometrically based statistical channel model for macrocellular mobile environments",Global Telecommunications Conference,1996. GLOBECOM '96. 'Communications: vol. 2, pp. 1197-1201, 18-22 Nov 1996.
    [91] Petrus, P.; Reed, J.H.; Rappaport, T.S., "Geometrical-based statistical macrocell channel model for mobile environments", Communications, IEEE Transactions on, vol. 50, no. 3, pp. 495 - 502, March 2002.
    [92] Oestges, C., "A stochastic geometrical vector model of macro- and megacellular communi -cation channels", Vehicular Technology, IEEE Transactions on, vol. 51, no. 6, pp. 1352 - 1360, Nov. 2002.
    [93] Hao Xu, Chizhik, D., Huang, H., Valenzuela, R., "A generalized space-time multiple-input multiple-output (MIMO) channel model", Wireless Communications, IEEE Transactions on, vol. 3, no. 3, pp. 966- 975, May 2004.
    [94] Pedersen, K.I., Mogensen, P.E., Fleury, B.H., "A stochastic model of the temporal and azimuthal dispersion seen at the base station in outdoor propagation environments", Vehicular Technology, IEEE Transactions on, vol. 49, no. 2, pp. 437-447, Mar 2000.
    [95] Xiaoxia Zhang, Michael P. Fitz, "Space-time code design with CPM transmission," ISIT 2001, Washington. DC., pp.327, 24-29 June. 2001.
    [96] Xiaoxia Zhang, Michael P. Fitz, "Space-time coding for Rayleigh fading channels in CPM system," in Proc. of 38th Annu. Allerton Conf. Commun., Contr., Comput, Monticello, IL, Oct. 2000.
    [97] Xiaoxia Zhang, Michael P. Fitz, "An adaptive soft-output receiver in space-time coding with continuous phase modulation", Communications, 2002. ICC 2002, IEEE International Conference on, vol. 1, pp. 646-651, 2002.
    [98] Xiaoxia Zhang, Michael P. Fitz, "Soft-output demodulator in space-time-coded continuous phase modulation", Signal Processing, IEEE Transactions on, vol. 50, pp. 2589 - 2598, Oct. 2002.
    [99] Michael P. Fitz, Xiaoxia Zhang, "A Case for Continuous Phase Modulation in Space Time Moderms," IEEE ITW2002, pp.61-64, 20-25 Oct., 2002.
    [100] Xiaoxia Zhang, Michael P. Fitz, "Space-Time Code Design with Continuous Phase Modulation," IEEE Journal on Selected Areas in Commun., vol.21, no.5, pp.783-792, June 2003.
    [101] Xiaoxia Zhang, Michael P. Fitz, "On the Achievable Rate/Diversity for CPM MIMO Fading Channel," ISIT, pp.98, 29 June-4 July 2003.
    [102] Xiaoxia Zhang, Michael P. Fitz, "Symmetric Information Rate for Continuous Phase Channel and BLAST Architecture with CPM MIMO System," IEEE International Conference on Communications, 2003. ICC '03, vol 5, pp. 3051- 3055, 11-15 May 2003.
    [103] Genyuan Wang; Xiang-Gen Xia, "An orthogonal space-time coding for CPM systems", Information Theory, 2002, Proceedings, 2002 IEEE International Symposium on, 2002, Lausanne, Switzerland, pp. 107, June 30- July 5, 2002.
    [104] Genyuan Wang; Xiang-Gen Xia, "Orthogonal space-time coding for CPM system with fast decoding", Communications, 2002. ICC 2002, IEEE International Conference on, Vol. 3, pp. 1788 - 1792, 28 April-2 May 2002.
    [105] Genyuan Wang; Xiang-Gen Xia, "An orthogonal space-time coded CPM system with fast decoding for two transmit antennas", Information Theory, IEEE Transactions on. vol. 50, no. 3, pp. 486 - 493, March 2004.
    
    [106] Genyuan Wang; Weifeng Su; Xiang-Gen Xia, "Orthogonal-like space-time coded CPM with fast demodulation for three and four transmit antennas", Global Telecommunications Conference, 2003. GLOBECOM '03. IEEE. vol. 6, pp. 3321 - 3325, 1-5 Dec. 2003.
    [107] Shengli Fu, Genyuan Wang, Xiang-Gen Xia, "Iterative Decoding of Orthogonal Space-Time Coded CPM Systems", Wireless Personal Communications, Vol. 31, pp. 249-265, 2004.
    [108] WANG Dong, WANG Gen-yuan, XIA Xiang-gen. "An orthogonal space-time coded partial response CPM system with fast decoding for two transmit antennas". Wireless Communications, IEEE Transactions on, vol. 4, no. 5, pp. 2410-2422, 2005.
    [109] Pande. T.; Heon Huh; Krogmeier, J.V., "Non-coherent demodulation for orthogonal space-time coded CPM", Vehicular Technology Conference, 2005. VTC 2005-Spring. 2005 IEEE 61st. Vol. 2, pp. 1206 - 1209, 30 May-1 June 2005.
    [110] Pande. T.; Heon Huh; Krogmeier, J.V., "Non-coherent receiver performance for orthogonal space-time coded CPM in fading channels", Signals, Systems and Computers, 2005. Conference Record of the Thirty-Ninth Asilomar Conference on., pp. 853- 856, Oct 28 - Nov. 1,2005.
    [111] Silvester, A.-M.; Schober, R.; Lampe, L, "Burst-based orthogonal ST block coding for CPM", Global Telecommunications Conference, 2005. GLOBECOM '05. IEEE. Vol. 5, pp. 3159-3163, 2-2 Dec. 2005.
    [112] Silvester, A.-M.; Schober, R.; Lampe, L, "Burst-Based Orthogonal ST Block Coding for CPM", Wireless Communications, IEEE Transactions on, vol. 6, no. 4, pp. 1208 - 1212, April 2007.
    [113] Wanlun Zhao, G.B. Giannakis, "Reduced complexity receivers for layered space-time CPM", Wireless Communications, IEEE Transactions on, vol. 4, no. 2, pp. 574 - 582, March 2005.
    [114] Maw, R.L., Taylor, D.P., "Space-time coded systems with continuous phase frequency shift keying", Global Telecommunications Conference, 2005. GLOBECOM '05. IEEE, vol. 3, pp. 1581-1586, 28 Nov.-2 Dec. 2005.
    [115] Maw, R.L., Taylor, D.P., "Space-Time Coded Systems using Continuous Phase Modulation", Communications, IEEE Transactions on, vol. 55, no. 11, pp. 2047-2051, Nov. 2007.
    [116] Maw, R.L., Taylor, D.P., "Externally encoded space-time coded systems with continuous phase frequency shift keying", Wireless Networks, Communications and Mobile Computing, 2005 International Conference on, vol. 2, pp. 1597- 1602, 13-16 June 2005.
    [117] Wenli Shen, Minjian Zhao, Peiliang Qiu, "Performance of orthogonal space-time coded MCPM system in corrected channels", European Wireless 2009, 已录用.
    [118] Wenli Shen, Minjian Zhao, Peiliang Qiu, "Performance of orthogonal space-time coded MCPM system in nonlinear channel", Wireless Communications and Mobile Computing Conference, 2008. IWCMC'08, International, pp.1012-1016, 6-8 Aug. 2008.
    [119] Patzold, M., Laue, F., "Statistical properties of Jakes' fading channel simulator", Vehicular Technology Conference, 1998, VTC 98, 48th IEEE, vol. 2, pp. 712-718, 18-21 May 1998.
    [120] Yunxin Li; Xiaojing Huang, "The generation of independent Rayleigh faders", Communi -cations, 2000, ICC 2000, 2000 IEEE International Conference on, vol. 1, pp. 41-45, 2000.
    [121] Yunxin Li; Xiaojing Huang, "The simulation of independent Rayleigh faders", Communi -cations, IEEE Transactions on, vol. 50, no. 9, pp. 1503 - 1514, Sep. 2002.
    [122]Saleh.A,"Frequency-Independent and Frequency-Dependent Nonlinear Models of TWT Amplifiers" Communications,IEEE Transactions on,vol.29,no.11,pp.1715-1720.Nov.1981.
    [123]Berman,A.Mahle,C.,"Nonlinear Phase Shift in Traveling-Wave Tubes as Applied to Multiple Access Communications Satellites",Communication Technology,IEEE Transactions on,vol.18,no.1,pp.37-48,Feb.1970.
    [124]Hetrakul,P.Taylor,D.P.,"Nonlinear quadrature model for a travelling-wave-tube-type amplifier",Electronics Letters,vol.11,no.2,Jan.1975.
    [125]Hetrakul,P.Taylor,D.P.,"The Effects of Transponder Nonlinearity on Binary CPSK Signal Transmission",Communications,IEEE Transactions on,vol.24,no 5,pp.546-553,May 1976.
    [126]M.Faulkner and T.Mattsson,"Spectral sensitivity of power amplifiers to quadrature modulator misalignment," Vehicular Technology,IEEE Transactions on,vol.41,no.4,pp.516-525,1992.
    [127]Wenli Shen,Minjian Zhao,Peiliang Qiu,"Non-coherent detection for orthogonal space-time coded continuous phase modulation systems",ChinaCom2009,已录用
    [128]J.L.Massey and T.Mittelholzer,"Convolutional codes over tings," in Proc.4th Joint Swedish-USSR Workshop on Info.Th.,Gotland,Sweden,pp.14-18,Aug.-Sep.1989.
    [129]J.L.Massey and T.Mittelholzer,"Systematicity and rotational invariance of convolutional codes over rings," in Proc.2nd Int.Workshop on Algebraic and Combinatorial Coding Th.,Leningrad,pp.154-159,Sep.1990.
    [130]Rimoldi B,"Exact formula for the minimum squared Euclidean distance of CPFSK",Communications,IEEE Transactions on,vol.39,no.9,pp.1280-1282,Sep.1991.
    [131]G.Vitetta,U.Mengali,and M.Morelli,"Differential detection algorithms for MSK signals over AWGN and frequency-flat Rayleigh fading channels," IEEE Trans.Commun.,vol.47,pp.1820-1827,Dec.1999.
    [132]Wenli Shen,Minjian Zhao,Peiliang Qiu,"Data aided symbol timing estimation in space-time coded systems with continuous phase modulation",European Transactions on Telecommunications,vol.20,no.2,pp.227-232,Mar.2009.
    [133]沈文丽,赵民建,仇佩亮,“空时编码结合连续相位调制系统中的定时估计”,浙江大学学报工学版,vol.42,no.6,pp.939-942,Jun.2008.
    [134]Wenli Shen,Minjian Zhao,Peiliang Qiu,and Aiping Huang,"Data Aided Symbol Timing Estimation in Space-Time Coded CPM Systems over Rayleigh Fading Channels",Vehicular Technology Conference,2007.VTC-2007 Fall.2007 IEEE 66~(th),pp.556-560,Sep.302007-Oct.3 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700