用户名: 密码: 验证码:
基于多源遥感信息融合的小麦生长监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遥感作为现代信息技术的前沿技术,可以快速准确获取大面积作物营养与生长状态等实时信息,为实施精确农业提供重要的技术支撑,从而有助于实现作物生产的高产、高效、优质等目标。将多源遥感信息进行融合,可以获得较单一遥感数据更丰富、更精确的信息,进而提高遥感信息分析和提取的精度,增强作物生长监测的准确性与稳定性。本研究将多源遥感信息融合技术应用到小麦生长监测中,通过实施多年不同施氮水平的田间大区试验,利用不同尺度、不同时相遥感影像,以及地面高光谱辐射仪获取立体多平台的小麦冠层反射光谱信息,结合地面田间同步取样,综合运用遥感信息融合、光谱分析及数理统计分析等方法,研究建立了基于多源遥感信息融合的小麦生长监测预测模型,从而为区域性小麦生长状况的遥感监测提供了技术依据。
     在不同小麦生态区,基于同步的SPOT-5多光谱遥感影像、地面高光谱数据和氮素营养参数,提出了一种基于波谱响应函数拟合和混合像元分解的纯净像元光谱提取方法,并对比分析了纯净像元光谱、模拟像元光谱和实测像元光谱与小麦叶片氮含量和氮积累量的定量关系。结果表明,模拟像元光谱对小麦叶片氮素营养状况的反演效果较好,纯净像元光谱反演效果次之,实测像元光谱最后;但基于模拟像元光谱的氮素状况监测模型不能直接外推至空间尺度,而模型检验结果显示,基于纯净像元光谱的氮素状况监测模型具有较好的精度和稳定性,该方法综合利用了地-空遥感的优点,具有较好的理论和适用性,可以推广应用到其他不同空间分辨率和光谱分辨率的遥感数据,从而为区域性小麦氮素营养状况的遥感监测提供了技术支撑。
     基于地面高光谱数据、SPOT-5和HJ-CCD多光谱遥感影像数据,对比了不同尺度遥感信息估算小麦生长指标的精度,进一步研究了基于地面高光谱和SPOT-5耦合的生长指标遥感监测。结果显示,不同尺度遥感源相同波段的光谱反射率值存在差异,但它们的近红外波段均与LAI和叶干重具有良好相关性;基于地面高光谱构建的光谱指数对LAI和叶干重的监测效果最好,模拟像元光谱、纯净像元光谱次之,实测像元光谱最后,基于地面高光谱和SPOT-5耦合提纯的像元光谱对小麦LAI和叶干重仍然具有较稳定和准确的估测精度。基于SPOT-5和HJ-CCD遥感数据的LAI和叶干重空间填图趋势基本一致,前者监测精度高于后者。研究结果可为区域尺度小麦生长指标定量监测提供技术支撑。
     综合利用混合像元线性分解与数据同化算法,以高空间分辨率SPOT-5数据反演的LAI修正高时间分辨率HJ-CCD数据反演的LAI序列,融合生成了覆盖冬小麦主要生育期的高空间和时间分辨率的LAI序列,并结合SPOT-5反演的LAI和实测LAI值分析了像元纯度、高空间分辨率遥感数据同化景数对融合效果的影响。结果表明,采用数据融合方法生成的LAI与检验LAI具有较高的一致性,像元纯度对融合效果影响较大;基于2景SPOT-5影像能够提高LAI序列估测精度,且优于基于1景SPOT-5影像的融合效果,显示适当增加高空间分辨率影像景数可提高融合精度。以类似方法,分别生成了高空间分辨率叶干重、叶片氮含量和氮积累量序列。
     基于融合的高空间分辨率和高时间分辨率时序遥感数据,综合分析小麦关键生育期内的多时相遥感数据与小麦籽粒产量和蛋白质含量的定量关系,筛选出了小麦籽粒产量和蛋白质含量预测的最佳生育时期和适宜光谱参数,构建了小麦产量品质预测方法和模型。结果表明,小麦最佳估产时期为灌浆前期,其次为开花期,而基于拔节期~灌浆前期累积的光谱指数能更有效的预测小麦产量,比单时相光谱指数预测精度更高。小麦蛋白质含量预测最佳时期为开花期,而基于拔节期~开花期累积的光谱指数因包含了小麦主要生育期的生长动态信息,对小麦蛋白质含量预测结果更为可靠。
As the frontier modern information technology, the remote sensing can collect the nitrogen and growth status of crop in the field rapidly and accurately in large scale, which offers important technical support for implementation of precision farming and realizing high yield, good, quality and high efficiency in modern agricultural production. Multi-source remote sensing information can obtain more abundant and accurate information than single remote sensing data, and can improve the accuracy of analysis and extraction of remote sensing information in monitoring crop growth.
     In this study, the technology based on fusing multi-source remote sensing information was applied to growth monitoring in wheat. A series of field experiments with different nitrogen levels were carried out, multi-plat wheat spectral reflectance were obtained with different scales and temporal images and ground hyperspectral spectroradiometer, field sampling and testing synchronously implemented. Then, based on the technology of fusing multi-source remote sensing information and analysis of spectral reflectance and mathematical statistic, the models that monitoring wheat nitrogen status and growth characters based on fusing multi-source remote sensing information were established in this paper. The result can offer a technological support for monitoring wheat growth status with remote sensing in large scale.
     A pure pixel spectrum extraction method was proposed based on spectral response function and pixel unmixing by coupling SPOT-5, ground-spectrum and field measured data of different wheat ecological zones in this paper. The quantitative relationships between leaf nitrogen concentration (LNC) and leaf nitrogen accumulation (LNA) of wheat and simulated, measured and pure pixel spectra have been developed. The results showed that the sequence of estimation accuracy was simulated, pure and measured pixel spectra respectively. But leaf nitrogen status monitoring model based on simulated pixel spectra couldn't be extrapolated directly to regional level. In addition, the model testing results based on independent data indicated that the monitoring model based on pure pixel spectra performed well in different wheat ecological areas. Which maybe contribute to pixel unmixing based on integrating ground-and space-remotely sensed data. Therefore, the pure pixel spectrum extraction method can be applied to remotely sensed data with different spatial and spectral resolutions and estimate wheat nitrogen status in regional scale.
     The performance of different scale remote sensing data was evaluated in terms of the accuracy of monitoring model based on coupling ground-spectrum, SPOT-5, HJ-CCD and field measured data of different wheat ecological zones, years and nitrogen level in this paper. The results showed there are differences in the reflectance of same bands based on different scale remote sensing data, but their near-infrared band were linearly related significantly to LAI and leaf dry weight. The sequence of estimation accuracy was ground-spectrum, simulated, pure and measured pixel spectra respectively. In addition, SPOT-5and HJ-CCD images have a highly uniform spatial distribution pattern of wheat LAI and leaf dry weight, but the former was higher than the latter in the estimation accuracy. Nevertheless, these results offer a technological support for regional quantitative monitoring of wheat.
     By combining the techniques of linear pixel unmixing and data assimilation, the LAI based on SPOT-5image with high spatial resolution was used to adjust the time-series LAI based on HJ-CCD image with high temporal resolution, and LAI series covering the whole winter wheat growth period and with high spatial and temporal resolutions were generated. The effects of pixel purity and the number of high spatial image on the performance of fusing method were analyzed by comparing the LAI with fusing method and LAI from SPOT-5image or observed LAI. The results showed that the estimated LAI with fusing method has high consistency with observed LAI and the pixel purity is main obstacle factor. The fusion results based on two scenes of SPOT-5images are better than that based on one image. Meanwhile, leaf dry weight, leaf nitrogen concentration and leaf nitrogen accumulation series with high spatial and temporal resolutions were generated based on the data fusion.
     Quantitative relations between multi-temporal remote sensing data in main growth period of wheat and yield and protein content were analyzed based on the time series data fused by fusing high spatial and temporal resolution remote sensing data. On this basis, the optimum period predicting yield and protein content was selected and predicting models were constructed. The results showed the optimum period predicting wheat yield was initial filling, secondly anthesis. Cumulative value of spectral parameters from jointing to initial filling was highly correlated with grain yield and the predicting accuracy was higher than mono temporal. Meanwhile, the results also showed the optimum period predicting wheat grain protein content was anthesis. Cumulative value of spectral parameters from jointing to anthesis could reflect dynamic growth information of wheat main growth stages, which predicting result was more stable than mono temporal spectral parameters.
引文
[1]曹卫星.农业信息学[M].中国农业出版社,2004.
    [2]田永超,朱艳,姚霞,刘小军,曹卫星.基于光谱信息的作物氮素营养无损监测技术[J].生态学杂志,2007,26(9):1454-1463.
    [3]王纪华,赵春江,黄文江等.农业定量遥感基础与应用[M].科学出版社,2008.
    [4]Wiegand, C L, Richardson, A J, Kanemasu, E T. Leaf area index estimates for wheat from LANDSAT and their implications for evapotranspiration and crop modeling[J]. Agronomy Journal, 1979,71(2):336-342.
    [5]Venkateswarlu B, Rao P K, Rao A V. Canopy analysis on the relationships between leaf area index and productivity in lowland rice, Oryza sativa, L[J]. Plant and Soil,1976,45(1):49-56.
    [6]Dobermann A, Pampolino M F. Indirect leaf area index measurement as a tool for characterizing rice growth at the field scale[J]. Communications on soil science and plant analysis,1995,26(9-10): 1507-1523.
    [7]谭昌伟,王纪华,黄文江,刘良云,黄义德,赵春江.夏玉米叶片全氮、叶绿素及叶面积指数的光谱响应研究[J].西北植物学报,2004,24(6):1041-1046.
    [8]冯伟.基于高光谱遥感的小麦氮素营养及生长指标监测研究[D].南京农业大学博士学位论文,2007.
    [9]Darvishzadeha R, Skidmorea A, Schlerfa M, Atzbergerb C, Corsia F, Choa M. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2008,63(4):409-426.
    [10]杨晓华,黄敬峰,王秀珍,王福民.基于支持向量机的水稻叶面积指数高光谱估算模型研究[J].光谱学与光谱分析,2008,28(8):1837-1841.
    [11]马茵驰,阎广建,丁文,王跃智.基于人工神经网络方法的冬小麦叶面积指数反演[J].农业工程学报,2009,25(12):187-192.
    [12]陈健,倪绍祥,李云梅.基于神经网络方法的芦苇叶面积指数遥感反演[J].国土资源遥感,2008,(2):62-67.
    [13]宋开山,张柏,王宗明,张渊智,刘焕军.基于人工神经网络的大豆叶面积高光谱反演研究[J].中国农业科学,2006,39(6):1138-1145.
    [14]Spanner M A, Pierce L L, Running S W, Peterson D L. The seasonality of AVHRR data of temperate coniferous forests:Relationship with leaf area index[J]. Remote Sensing of Environment, 1990,33(2):97-112.
    [15]何隆华,储开华,肖向明.Vegetation图像植被指数与实测水稻叶面积指数的关系[J].遥感学报,2004,8(6):672-676.
    [16]Myneni R B, Hoffman S, Knyazikhin Y, Knyazikhin Y, Privette J L, Glassy J, Tian Y, Wang Y, Song X, Zhang Y, Smith G R, Lotsch A, Friedl M, Morisette J T, Votava P, Nemani R R, Running S W. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data [J]. Remote Sensing of Enviroment,2002,83(1-2):214-231.
    [17]Yang P, Shibasaki R, Wu W B, Zhou Q B, Chen Z X, Zha Y,Shi Y, Tang H J. Evaluation of MODIS land cover and LAI products in cropland of North China Plain using in situ measurements and Landsat TM images[J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(10): 3087-3097.
    [18]靳华安,刘殿伟,王宗明,宋开山,李方,杨飞,杜嘉,李凤秀.三江平原湿地植被叶面积指数遥感估算模型[J].生态学杂志,2008,27(5):803-808.
    [19]Houborg R, Anderson M, Daughtry C. Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at the field scale[J]. Remote Sensing of Enviroment,2009,113(1):259-274.
    [20]Doraiswamy P C, Hatfield J L, Jackson T J, Akhmedov B, Prueger J, Stern A. Crop condition and yield simulations using Landsat and MODIS [J]. Remote Sensing of Environment,2004,92(4): 548-559.
    [21]Gonzalez-Sanpedro M C, Le Toan T, Moreno J, Kergoat L, Rubio E. Seasonal variations of leaf area index of agricultural fields retrieved from Landsat data [J]. Remote Sensing of Environment, 2007,112(3):810-824.
    [22]蔡博峰,绍霞.基于PROSPECT+SAIL模型的遥感叶面积指数反演[J].国土资源遥感,2007,(2):39-43.
    [23]吴彤,倪绍祥,李云梅,陈健.由冠层孔隙度反演植被叶面积指数的算法比较[J].南京师范大学学报自然科学版,2006,29(1):111-115.
    [24]方秀琴,张万昌.叶面积指数(LAI)的遥感定量方法综述[J].国土资源遥感,2003,(3):58-62.
    [25]Shibayama M, Akiyama T. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass[J]. Remote Sensing of Environment,1989, 27(2):119-127.
    [26]Shibayama M, Akiyama T. Estimating grain yield of maturing rice canopies using high spectral resolution reflectance measurement[J]. Remote Sensing of Environment,1991,36(1):45-53.
    [27]唐延林,王秀珍,王福民,王人潮.农作物LAI和生物量的高光谱法测定[J].西北农林科技大学学报(自然科学版),2004,32(11):100-104.
    [28]鞠昌华.利用地-空高光谱遥感监测小麦氮素状况与生长特征[D].南京农业大学博士学位论文,2008.
    [29]Shibayama M, Akiyama T. A spectroradiometer for field use Ⅶ.Radiometric estimation of nitrogen levels in field rice canopies[J]. Japanese Journal of Crop Science,1986,66(4):430-445.
    [30]朱艳,吴华兵,田永超,姚霞,刘小军,周治国,曹卫星.基于冠层反射光谱的棉花叶片氮含量估测[J].应用生态学报,2007,18(10):2263-2268.
    [31]Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression[J]. Remote Sensing of Environment,2003,86(4):542-553.
    [32]Li Y, Demetriades-Shah T H, Kanemasu E T, Shultis J K, Kirkham M B. Use of second derivatives of canopy reflectance for monitoring prairie vegetation over different soil backgrounds[J]. Remote Sensing of Environment,1993,44(1):81-87.
    [33]王秀珍,黄敬峰,李云梅,沈掌泉,王人潮.高光谱数据与水稻农学参数之间的相关分析[J].浙江大学学报(农业与生命科学版).2002,28(3):283-288.
    [34]Johnson L F, Billow C R. Spectrometric estimation of total nitrogen concentration in Douglaafir foliage[J]. International Journal of Remote Sensing,1996,17(3):489-500.
    [35]Johnson L F, Hlavka C A, Peterson D L. Multivariate analysis of AVRIS data for canopy biochemistry estimation along the Oregon transect[J]. Remote Sensing of Environment,1994, 47(2):216-230.
    [36]Feng W Yao X, Zhu Y, Tian Y C, Cao W X. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat[J]. European Journal of Agronomy,2008,28(3):394-404.
    [37]Zhao C J, Liu L Y, Wang J H, Huang W J, Song X Y, Li C J. Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress[J]. International Journal of Applied Earth Observation and Geoinformation,2005,7(1):1-9.
    [38]李卫国,王纪华,赵春江,童庆禧,刘良云.基于TM影像的冬小麦苗期长势与植株氮素遥感监测研究[J].遥感信息,2007,(2):12-15.
    [39]陈君颖,田庆久,亓雪勇,刘晓臣,管仲.基于Hyperion影像的水稻冠层生化参量反演[J].遥感学报,2009,13(6):1114-1121.
    [40]张霞,刘良云,赵春江,张兵.利用高光谱遥感图像估算小麦氮含量[J].遥感学报,2003,7(3),176-181.
    [41]田永超.利用地-空高光谱遥感监测小麦氮素状况与生长特征[D].南京农业大学博士学位论文,2008.
    [42]鞠昌华.利用地-空高光谱遥感监测小麦氮素状况与生长特征[D].南京农业大学博士学位论文,2008.
    [43]Shibayama M, Akiyama T. Estimating grain yield of maturing rice canopies using high spectral resolution reflectance measurement[J]. Remote Sensing of Environment,1991,36(1):45-53.
    [44]王延颐.植被指数与水稻长势及产量结构要素关系的研究[J].国土资源感,1996,(1):55-59.
    [45]吉书琴,陈鹏狮,张玉书.水稻遥感估产的一种方法[J].应用气象学报,1997,8(4):509-512.
    [46]Serrano L, Filella I, Penuelas J. Remote sensing of biomass and yield of winter wheat under different nitrogen supplies[J]. Crop Science,2000,40(3):723-731.
    [47]Rudorff B F T, Batista G T. Spectral response of wheat and its relationship to agronomic variables, in the tropical region[J]. Remote Sensing of Environment,1990,31(1):53-63.
    [48]侯英雨,王石立.基于作物植被指数和温度的产量估算模型研究.地理学与国土研究[J].2002,18(3):105-107.
    [49]任建强,陈仲新,唐华俊.基于MODIS-NDVI的区域冬小麦遥感估产——以山东省济宁市为例[J].应用生态学报,2006,17(12):2371-2375.
    [50]Osborne S L, Schepers J S, Francis D D, Schlemmer M R. Use of spectral radiance to estimate in-season biomass and grain yield in nitrogen- and water-stressed corn[J]. Crop Science,2002, 42(1):165-171.
    [51]刘良云,王纪华,黄文江,赵春江,张兵.利用新型光谱指数改善冬小麦估产精度.农业工程学报[J].2004,20(1):72-175.
    [52]Xue L H, Cao W X, Yang L Z. Predicting grain yield and protein content in winter wheat at different N supply levels using canopy reflectance spectra[J]. Pedosphere,2007,17(5):646-653.
    [53]冯伟,朱艳,田永超,姚霞,郭天财,曹卫星.基于高光谱遥感的小麦籽粒产量预测模型研究.麦类作物学报[J].2007,27(6):1076-1084.
    [54]薛利红,曹卫星,罗卫红.基于冠层反射光谱的水稻产量预测模型[J].遥感学报,2005,9(1):100-105.
    [55]侯新杰,蒋桂英,白丽,王冀川,凌红波,季春辉.高光谱遥感特征参数与棉花产量及其构成因子的关系研究[J].遥感信息,2008,(2):10-16.
    [56]杨星卫,薛正平,陆贤.水稻遥感动力估产模拟初探[J].遥感学报,1994,9(4):280-286.
    [57]王人潮,黄敬峰.水稻遥感估产[M].中国农业出版社,2002.
    [58]Moriondo M, Maselli F, Bindi M. A simple model of regional wheat yield based on NDVI data[J]. European Journal of Agronomy,2007,26(3):266-274.
    [59]Dente L, Satalino G, Mattia F, Rinaldi M. Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield[J]. Remote Sensing of Environment, 2008,112(4):1395-1407.
    [60]王航,朱艳,马孟莉,李文龙,顾凯健,曹卫星,田永超.基于更新和同化策略相结合的遥感信息与水稻生长模型耦合技术的研究[J].生态学报,2012,32(14):4505-4515.
    [61]Hansen P M, Jorgensen J R, Thomsen A. Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression[J]. Journal of Agriculture Science,2002,139(3):307-318.
    [62]田永超,朱艳,曹卫星,范雪梅,刘小军.利用冠层反射光谱和叶片SPAD值预测小麦籽粒蛋白质和淀粉的积累[J].中国农业科学,2004,37(6):808-813.
    [63]薛利红,曹卫星,李映雪,周冬琴,李卫国.水稻冠层反射光谱特征与籽粒品质指标的相关性研究[J].中国水稻科学,2004,18(5):431--436.
    [64]Zhao C J, Liu L Y, Wang J H, Huang W J, Song X Y, Li C J. Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress[J]. International Journal of Applied Earth Observation and Geoinformation,2005,7(1):1-9.
    [65]张旭东.卫星遥感监测江苏小麦籽粒产量和品质初步探索[D].扬州大学硕士学位论文,2009.
    [66]王纪华,李存军,刘良云,黄文江,赵春江.作物品质遥感监测预报研究进展[J].中国农业科学,2008,41(9):2633-2640.
    [67]王纪华,黄文江,赵春江,杨敏华,王之杰.利用光谱反射率估算叶片生化组分和籽粒品质指标研究[J].遥感学报,2003,7(4):277-284.
    [68]田永超,朱艳,曹卫星,范雪梅,刘小军.利用冠层反射光谱和叶片SPAD值预测小麦籽粒蛋白质和淀粉的积累[J].中国农业科学,2004,37(6):808-813.
    [69]李映雪,朱艳,田永超,尤小涛,周冬琴,曹卫星.小麦冠层反射光谱与籽粒蛋白质含量及相关品质指标的定量关系[J].中国农业科学,2005,38(7):1332-1338.
    [70]冯伟,朱艳,曹卫星,朱云集,郭天财.利用冠层光谱监测小麦籽粒蛋白质积累动态[J].作物学报,2009,35(7):1320-1327.
    [71]陈鹏飞,王吉顺,潘鹏,徐于月,姚凌.基于氮素营养指数的冬小麦籽粒蛋白质含量遥感反演[J].农业工程学报,2011,27(9):75-80.
    [72]黄文江,王纪华,刘良云,赵春江,宋晓宇,马智宏.冬小麦品质的影响因素及高光谱遥感监测方法[J].遥感技术与应用,2004,19(3):143-148.
    [73]Gupta R K, Prasad S, Rao G H, Nadham T S V. District level wheat yield estimation using NOAA/AVHRR NDVI temporal profile[J]. Advances in Space Research,1993,13(5):253-256.
    [74]Spanner M A, Pierce L L, Running S W, Peterson D L. The seasonality of AVHRR data of temperate coniferous forests:Relationship with leaf area index[J]. Remote Sensing of Environment, 1990,33(2):97-112.
    [75]Quarmby N A, Milnes M, Hindle T L, Silleos N. The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and prediction[J]. International Journal of Remote Sensing,14(2):199-210.
    [76]何隆华,储开华,肖向明.Vegetation图像植被指数与实测水稻叶面积指数的关系[J].遥感学报,2004,8(6):672-676.
    [77]肖志强,王锦地,王(躇)森.中国区域MODIS LAI产品及其改进.遥感学报[J].遥感学报,2008,12(6):993-1000.
    [78]Fensholt R, Sandholt I, Rasmussen M S. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements[J]. Remote Sensing of Environment,2004,91(3-4):490-507.
    [79]Ulfarsson M O, Benediktsson J A, Sveinsson J R. Data fusion and feature extraction in the wavelet domain[J]. International Journal of Remote Sensing,2003,24(20):3933-3945.
    [80]Chibani Y, Houacine A. The joint use of IHS transform and redundant wavelet decomposition for fusing multispectral and panchromatic images[J]. International Journal of Remote Sensing,2002, 23(18):3821-3833.
    [81]Shi W, Zhu C, Zhu C, Yang X. Multi-Band wavelet for fusing SPOT panchromatic and multispectral images[J]. Photogrammetric Engineering & Remote Sensing,2003,69(5):513-520.
    [82]Myint S W, Lam N, Tyler J. An evaluation of four different wavelet decomposition procedures for spatial feature discrimination in urban areas[J]. Transactions in GIS,2002,6(4):403-429.
    [83]Kogan F N. Operational space technology for global vegetation assessment[J]. Bulletin of the American meteorological society,2001,82(9):1949-1964.
    [84]Metternicht G. Vegetation indices derived from high-resolution airborne videography for precision crop management[J]. International Journal of Remote Sensing,2003,24(14):2855-2877.
    [85]裴志远,杨邦杰.多时相归一化植被指数NDVI的时空特征提取与作物长势模型的设计[J].农业工程学报,2000,16(5):20-22.
    [86]王广军,武文波.多源遥感数据融合方法探讨[J].辽宁工程技术大学学报(自然科学版),2004,23(3),299-301.
    [87]蒙继华,吴炳方,杜鑫,钮立明,张飞飞.高时空分辨率NDVI数据集构建方法[J].遥感学报,2011,15(1):44-59.
    [88]Busetto L, Meroni M, Colombo R. Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series[J]. Remote Sensing of Environment,2008, 112(1):118-131.
    [89]万华伟,王锦地,肖志强.融合MODIS与ASTER数据生成高空间分辨率时间序列LAI方法研究[J].北京师范大学学报(自然科学版),2006,43(3):303-308.
    [90]Liu L Y, Wang J H, Bao Y S, Huang W J, Ma Z H, Zhao C J. Predicting winter wheat condition, grain yield and protein contentusing multi-temporal EnviSat-ASAR and Landsat TM satellite images[J]. International Journal of Remote Sensing,2006,27(4):737-753.
    [91]Moran M, Inoue Y, Barnes E M. Opportunities and limitations for image-based remote sensing in precision crop management[J]. Remote Sensing of Environment,1997,61(3):319-346.
    [92]梅安新,彭望碌,秦其明,刘慧平.遥感导论[M].高等教育出版社,2001.
    [93]Goetz, A. Three decades of hyperspectral remote sensing of the earth:a personal view[J]. Remote Sensing of Environment,2009,113(1):5-16.
    [94]卫建军,李新平,赵东波,梁伟.混合像元分离的研究进展[J].水土保持研究,2006,13(5):103-105.
    [95]张良培,张立福.高光谱遥感[M].武汉大学出版社,2005.
    [96]曹卫星.农业信息学[M].中国农业出版社,2004.
    [97]郎爱军.航空多光谱数据与地面光谱数据之间相关性研究[J].遥感学报,1992,7(3):226-236.
    [98]王海平,曲国林,胡云中.遥感数据(TM)的地空相关性研究及其在成矿预测中的应用[J].国土资源遥感,1997,(3):19-28.
    [99]王秀珍,黄敬峰,李云梅,王人潮.水稻叶面积指数的多光谱遥感估算模型研究[J].遥感技术与应用,2003,18(2):57-65.
    [100]王福民,黄敬峰,唐延林,王秀珍.采用不同光谱波段宽度的归一化植被指数估算水稻叶面积指数[J].应用生态学报,2007,18(11):2445-2450.
    [101]王福民,黄敬峰,王秀珍,陈拉,唐延林.波段位置和宽度对不同生育期水稻NDVI影响研究[J].遥感学报,2008,12(4):626-632.
    [102]鞠昌华.利用地-空高光谱遥感监测小麦氮素状况与生长特征[D].南京农业大学博士学位论文,2008.
    [103]田永超.基于高光谱遥感的水稻氮素营养参数监测研究[D].南京农业大学博士学位论文,2008.
    [104]万华伟,王锦地,屈永华,焦子锑,张颢.植被波谱空间尺度效应及尺度转换方法初步研究[J].遥感学报,2008,12(4):538-545.
    [105]Cairns B, Russell E E, LaVeigne J D, Tennant P M. Research scanning polarimeter and airborne usage for remote sensing of aerosols[C]. Proceedings of SPIE,2003,5158:33-44.
    [106]赵春江,宋晓宇,王纪华,刘良云,李存军.基于6S模型的遥感影像逐像元大气纠正算法[J].光学技术,2007,33(1):11-15.
    [107]Chavez JR P T. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data[J]. Remote Sensing of Environment,1988,24(3):459-479.
    [108]万华伟,王锦地,屈永华,焦子锑,张颢.植被波谱空间尺度效应及尺度转换方法初步研究[J].遥感学报,2008,12(4):538-545.
    [109]钱少猛,蔺启忠,陈雪.改进的混合像元分解法用于快速水污染遥感评价研究[J].地理与地理信息科学,2003,19(2):36-38.
    [110]吴柯,张良培,李平湘.一种端元变化的神经网络混合像元分解方法[J].遥感学报,2007,11(1):20-26.
    [1]Analytical Spectral Devices (ASD). Inc. FieldSpec Pro User's guide.2002
    [2]Research Systems Inc (RSI). ENVI Programmer's Guide, Version 4.7,2009.
    [3]任建强,刘杏认,陈仲新,周清波,唐华俊.基于作物生物量估计的区域冬小麦单产预测[J].应用生态学报,2009,20(4):872-878.
    [4]资源卫星应用中心.2009年HJ-1A/B在轨绝对辐射定标系数[EB/OL].http://www.cresda.com/n16/n1100/nl370/65245.html.
    [5]Huang C, Davis L, Townshend J. An assessment of support vector machines for land cover classification[J]. International Journal of Remote Sensing,2002,23(4):725-749.
    [6]浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.
    [7]田庆久,闵祥军.植被指数研究进展[J].地球科学进展,1998,13(4),327-333.
    [8]赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.
    [9]Tian Y C, Yao X, Yang J, Hannaway D B, Zhu Y. Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground-and space-based hyperspectral reflectance[J]. Field Crops Research,2011,120(2):299-310.
    [10]Cropscan. Data logger controller, user's guide and technical reference[M]. CROPSCAN Inc, Rochester, MN,2000.
    [11]Rouse J W, Haas R H, Schell J A. Monitoring the vernal advancement of retrogradation of natural vegetation[C]. NASA/GSFC, Type 3, Final Report. Greenbelt, MD, USA,1974,1-371.
    [12]Pearson R L, Miller D L. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie[C]. In:Proceedings of the Eighth International Symposium on Remote Sensing of Environment. Michigan:Ann Arbor.1972,2:1357-1381.
    [13]Richardson A J, Wiegand C L. Distinguishing vegetation from soil background information[J]. Photogrammetric Engineering and Remote Sensing,1977,43(12):1541-1552.
    [14]Huete A R. A soil-adjusted vegetation index(SAVI)[J]. Remote Sensing of Environment,1988, (25): 295-309.
    [15]Justice C O, Vermote E, Townshend J R G. The moderate resolution imaging spectroradiometer(MODIS):land remote sensing for global change research[J], IEEE Transactions on Geoscience and Remote Sensing.1998,36(4):1228-1250.
    [16]李强,赵伟.MATLAB数据处理与应用[M].北京:国防工业出版社,2001.
    [1]田永超,朱艳,姚霞,刘小军,曹卫星.基于光谱信息的作物氮素营养无损监测技术[J].生态学杂志,2007,26(9):1454-1463.
    [2]Zhu Y, Yao X, Tian Y C, Liu X J, Cao W X. Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice[J]. International Journal of Applied Earth Observation and GeoInformation,2008,10(1):1-10.
    [3]Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression[J]. Remote Sensing of Environment,2003,86(4):542-553.
    [4]冯伟,朱艳,田永超,曹卫星,姚霞,李映雪.基于高光谱遥感的小麦叶片氮积累量[J].生态学报,2008,28(1):23-32.
    [5]陈君颖,田庆久,亓雪勇,刘晓臣,管仲.基于Hyperion影像的水稻冠层生化参量反演[J].遥感学报,2009,13(6):1114-1121.
    [6]Zhao C J, Liu L Y, Wang J H, Huang W J, Song X Y, Li C J. Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress[J]. International Journal of Applied Earth Observation and GeoInformation,2005,7(1):1-9.
    [7]张浩,姚旭国,张小斌,郑可锋.区域水稻穗期叶片氮素的遥感估测初探[J].核农学报,2009,23(3):364-368.
    [8]黄彦,朱艳,王航,姚鑫锋,曹卫星,Hannaway D B,田永超.基于遥感与模型耦合的冬小麦生长预测[J].生态学报,2011,31(4):1073-1084.
    [9]Reyniers M, Vrindts E. Measuring wheat nitrogen status from space and ground-based platform. International Journal of Remote Sensing,2006,27(3):549-567.
    [10]陈拉,黄敬峰,王秀珍.不同传感器的模拟植被指数对水稻叶面积指数的估测精度和敏感性分析[J].遥感学报,2008,12(1):143-151.
    [11]田永超.基于高光谱遥感的水稻氮素营养参数监测研究[D].南京农业大学,2008.
    [12]万华伟,王锦地,张永强,项月琴,焦子锑,张霄羽.用MODIS数据监测冬小麦冠层反照率变化信息的方法研究[J].作物学报,2005,31(12):1572-1578.
    [13]Busetto L, Meroni M, Colombo R. Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series[J]. Remote Sensing of Environment,2008, 112(1):118-131.
    [14]叶泽田,顾行发.利用MIVIS数据进行遥感图像模拟的研究[J].测绘学报,2008,29(3):235-239.
    [15]Small C. Estimation of urban vegetation abundance by spectral mixture analysis[J]. International Journal of Remote Sensing,2001,22(7):1305-1334
    [16]Tian Y C, Yao X, Yang J, Cao W X, Hannaway D B, Zhu Y. Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground-and space-based hyperspectral reflectance[J]. Field Crops Research,2011,120(2):299-310
    [17]姚霞,刘小军,王薇,田永超,曹卫星,朱艳.基于减量精细采样法估算小麦叶片氮积累量的最佳归一化光谱指数[J].应用生态学报,2010,21(12):3175-3182.
    [18]Abou-Ismail O, Huang J F, Wang R C. Rice yield estimation by integrating remote sensing with rice growth simulation model[J]. Pedosphere,2004,14(4):519-526.
    [19]鲍艳松,王纪华,刘良云,李小文,李翔,黄文江,唐怡.不同尺度冬小麦氮素遥感监测方法及其应用研究[J].农业工程学报,2007,23(2):139-144.
    [20]易秋香.不同遥感水平水稻氮素信息提取研究[D].浙江大学,2008.
    [21]Pacheco A, McNairn H. Evaluating multispectral remote sensing and spectral unmixing analysis for crop residue mapping[J]. Remote Sensing of Environment,2010,114(10):2219-2228
    [22]万华伟,王锦地,屈永华,焦子锑,张颢.植被波谱空间尺度效应及尺度转换方法初步研究[J].遥感学报,2008,12(4):538-545.
    [1]Moran M, Inoue Y, Barnes E. Opportunities and limitations for image-based remote sensing in precision crop management[J]. Remote Sensing of Environment,1997,61(3):319-346.
    [2]陈述彭.遥感在农业科学技术中的应用[M].北京:科学出版社,1990.
    [3]周成虎.洪涝灾害遥感监测研究[J].地理研究,1993,12(3):63-68.
    [4]Jordan C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology,1969, 50(4):663-666.
    [5]Richardson A J, Wiegand C L. Distinguishing vegetation from soil background information[J]. Photogrammetric Engineering and Remote Sensing,1977,43(12):1541-1552.
    [6]Shibayama M, Akiyama T. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass[J]. Remote Sensing of Environment,1989, 27(2):119-127.
    [7]刘伟东,项月琴,郑兰芬,董庆禧,吴长山.高光谱数据与水稻指数及叶绿素密度的相关分析[J].遥感学报,2000,4(4):279-283.
    [8]王秀珍,黄敬峰,李云梅,王人潮.水稻地上鲜生物量的高光谱遥感估算模型研究[J].作物学报,2003,29(6):815-821.
    [9]田永超,杨杰,姚霞,朱艳,曹卫星.高光谱植被指数与水稻叶面积指数的定量关系[J].应用生态学报,2009,20(7):1685-1690.
    [10]Spanner M A, Pierce L L, Running S W, Peterson D L. The seasonality of AVHRR data of temperate coniferous forests:Relationship with leaf area index[J]. Remote Sensing of Environment, 1990,33(2):97-112.
    [11]何隆华,储开华,肖向明. Vegetation图像植被指数与实测水稻叶面积指数的关系[J].遥感学报,2004,8(6):672-676.
    [12]Myneni R B, Hoffman S, Knyazikhin Y, Knyazikhin Y, Privette J L, Glassy J, Tian Y, Wang Y, Song X, Zhang Y, Smith G R, Lotsch A, Friedl M, Morisette J T, Votava P, Nemani R R, Running S W. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data[J]. Remote Sensing of Enviroment,2002,83(1-2):214-231.
    [13]谭昌伟,王纪华,朱新开,王妍,王君婵,童璐,郭文善.基于Landsat TM影像的冬小麦拔节期主要长势参数遥感监测[J].中国农业科学,2011,44(7):1358-1366.
    [14]靳华安,刘殿伟,王宗明,宋开山,李方,杨飞,杜嘉,李凤秀.三江平原湿地植被叶面积指数遥感估算模型[J].生态学杂志,2008,27(5):803-808.
    [15]Houborg R, Anderson M, Daughtry C. Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at the field scale[J]. Remote Sensing of Enviroment,2009,113(1):259-274.
    [16]张竞成,顾晓鹤,王纪华,黄文江,何馨,王慧芳.基于HJ-CCD与TM影像的水稻LAI估测一致性分析[J].农业工程学报,2010,26(7):186-193.
    [17]陈鹏飞,王卷乐,廖秀英,尹芳,陈宝瑞,刘睿.基于环境减灾卫星遥感数据的呼伦贝尔草地地上生物量反演研究[J].自然资源学报,2010,25(7):1122-1131.
    [18]田永超,朱艳,姚霞,刘小军,曹卫星.基于光谱信息的作物氮素营养无损监测技术[J].生态学杂志,2007,26(9):1454-1463.
    [19]陈拉,黄敬峰,王秀珍.不同传感器的模拟植被指数对水稻叶面积指数的估测精度和敏感性分析[J].遥感学报,2008,12(1):143-151.
    [20]Broge N H, Mortensen J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data[J]. Remote Sensing of Environment,2002,81(1): 45-57.
    [21]Knox N M, Skidmore A K, Schlerf M, de Boer W F, van Wieren S E, van der Waal C, Prins H H T, Slotow R. Nitrogen prediction in grasses:effect of bandwidth and plant material state on absorption feature selection[J]. International Journal of Remote Sensing,2010,31(3):691-704.
    [22]王来刚,田永超,李文龙,朱艳,曹卫星.基于地-空遥感耦合的冬小麦叶片氮积累量估算[J].应用生态学报,2012,23(1):73-80.
    [23]王来刚,王备战,冯伟,郑涛,冯晓,郑国清.SPOT-5与HJ遥感影像用于冬小麦氮素监测的效果对比[J].麦类作物学报,2011,31(2):331-336.
    [24]Chen P, Haboudane D, Tremblay N, Wang J, Vigneault, P, Li B. New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat[J]. Remote Sensing of Environment, 2010,114(9):1987-1997.
    [25]宋晓宇,黄文江,王纪华,刘良云,李存军.ASTER卫星遥感影像在冬小麦品质监测方面的初步应用[J].农业工程学报,2006,22(9):148-153.
    [1]Doraiswamy P C, Hatfield J L, Jackson T J, Akhmedov B, Prueger J, Sterm A. Crop condition and yield simulations using Landsat and MODIS[J]. Remote Sensing of Environment,2004,92(4): 548-559.
    [2]Abou-Ismail O, Huang J F, Wang R C. Rice yield estimation by integrating remote sensing with rice growth simulation model[J]. Pedosphere,2004,14(4):519-526.
    [3]Spanner M A, Pierce L L, Running S W, Peterson D L. The seasonality of AVHRR data of temperate coniferous forests:Relationship with leaf area index[J]. Remote Sensing of Environment, 1990,33(2):97-112.
    [4]何隆华,储开华,肖向明.Vegetation图像植被指数与实测水稻叶面积指数的关系[J].遥感学报,2004,8(6):672-676.
    [5]Myneni R B, Hoffman S, Knyazikhin Y. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data[J]. Remote Sensing of Enviroment,2002,83(1/2): 214-231.
    [6]Yang P, Shibasaki R Wu W B, Zhou Q, Chen Z. Evaluation of MODIS land cover and LAI products in cropland of North China Plain using in situ measurements and Landsat TM images[J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(10):3087-3097.
    [7]靳华安,刘殿伟,王宗明,宋开山,李方,杨飞.三江平原湿地植被叶面积指数遥感估算模型[J].生态学杂志,2008,27(5):803-808.
    [8]Houborg R, Anderson M, Daughtry C. Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at the field scale[J]. Remote Sensing of Environment,2009,113(1):259-274.
    [9]蒙继华,吴炳方,杜鑫,钮立明,张飞飞.高时空分辨率NDVI数据集构建方法[J].遥感学报,2011,15(1):44-59.
    [10]Busetto L, Meroni M, Colombo R. Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series[J]. Remote Sensing of Environment,2008, 112(1):118-131.
    [11]张竞成,顾晓鹤,王纪华,黄文江,何馨,王慧芳.基于HJ-CCD与TM影像的水稻LAI估测一致性分析[J].农业工程学报,2010,26(7):186-193.
    [12]王来刚,王备战,冯伟,郑涛,冯晓,郑国清SPOT-5与HJ遥感影像用于冬小麦氮素监测的效果对比[J].麦类作物学报,2011,31(2):331-336.
    [13]Yu F, Price, K P, Ellis J, Kastens D. Satellite observations of the seasonal vegetation growth in central Asia:1982-1990[J]. Photogrammetric Engineering & Remote Sensing,2004,70(4): 461-469.
    [14]吴文斌,杨鹏,唐华俊,周清波, Shibasaki Ryosuke,张莉.两种NDVI时间序列数据拟合方法比较[J].农业工程学报,2009,25(11):183-188.
    [15]Chen J, Jonsson P, Tamura M, Gu Z, Matsushita B, Eklundh L. A simple method for reconstructing a high-quality NDVI Time-series data set based on the Savitzky-Golay Filter [J]. Remote sensing of Environment,2004,91(3/4):332-344.
    [16]Gao F, Masek J, Schwaller M, Hall F. On the blending of the Landsat and MODIS surface reflectance:predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44(8):2207-2218.
    [17]Hansen M C, Roy D P, Lindquist E, Adusei B, Justice C O, Alstatt A. A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin[J]. Remote sensing of Environment,2008,112(5):2495-2513.
    [18]万华伟,王锦地,肖志强.融合MODIS与ASTER数据生成高空间分辨率时间序列LAI方法研究[J].北京师范大学学报(自然科学版),2006,43(3):303-308.
    [1]江东,王乃斌,杨小唤.我国粮食作物卫星遥感估产的研究[J].自然杂志,1999,21(6):351-355.
    [2]黄绍文,金继运,董悦厚,何萍,徐恒永,杨俐苹.追肥运筹对优质小麦产量和品质的影响[J].土壤肥料,2002,(2):3-6.
    [3]Teng W L. AVHRR monitoring of U.S crops during the 1998 drought[J]. Photogrammetric Engineering and Remote Sensing,1990,56:1143-1146.
    [4]Murthy C S, Thiruvengadachari S, Raju P V, Jonna S. Improved ground sampling and crop yield estimation using satellite data[J]. International Journal of Remote Sensing,1996,17(5):945-956.
    [5]Doraiswany P C, Cook P W. Spring wheat yield assessment using NOAA-AVHRR data[J]. Canada Journal of Remote Sensing,1995,21(1):43-51.
    [6]Liu L Y, Wang J H, Bao Y S, Huang W J, Ma Z H, Zhao C J. Predicting winter wheat condition, grain yield and protein content using multi-temporal EnviSat-ASAR and Landsat TM satellite images[J]. International Journal of Remote Sensing,2006,27(4):737-753.
    [7]闫利平,陈红,陶卫江.基于SPOT高分辨率遥感数据的农作物估产方法研究[J].安徽农业科学,2007,35(23):7054-7056.
    [8]王长耀,林文鹏.基于MODIS EVI的冬小麦产量遥感预测研究[J].农业工程学报,2005,21(10):90-94.
    [9]Shibayama M, Akiyama T. Estimating grain yield of maturing rice canopies using high spectral resolution reflectance measurement[J]. Remote Sensing of Environment,1991,36(1):45-53.
    [10]王延颐.植被指数与水稻长势及产量结构要素关系的研究[J].国土资源感,1996,(1):55-59.
    [11]吉书琴,陈鹏狮,张玉书.水稻遥感估产的一种方法[J].应用气象学报,1997,8(4):509-512.
    [12]Serrano L, Filella I, Penuelas J. Remote sensing of biomass and yield of winter wheat under different nitrogen supplies[J]. Crop Science,2000,40(3):723-731.
    [13]Rudorff B F T, Batista G T. Spectral response of wheat and its relationship to agronomic variables in the tropical region[J]. Remote Sensing of Environment,1990,31(1):53-63.
    [14]侯英雨,王石立.基于作物植被指数和温度的产量估算模型研究.地理学与国土研究[J].2002,18(3):105-107.
    [15]Xue L H, Cao W X, Yang L Z. Predicting grain yield and protein content in winter wheat at different N supply levels using canopy reflectance spectra[J]. Pedosphere,2007,17(5):646-653.
    [16]冯伟,朱艳,田永超,姚霞,郭天财,曹卫星.基于高光谱遥感的小麦籽粒产量预测模型研究.麦类作物学报[J].2007,27(6):1076-1084.
    [17]杨星卫,薛正平,陆贤.水稻遥感动力估产模拟初探[J].遥感学报,1994,9(4):280-286.
    [18]王人潮,黄敬峰.水稻遥感估产[M].中国农业出版社,2002.
    [19]Moriondo M, Maselli F, Bindi M. A simple model of regional wheat yield based on NDVI data[J]. 2007,26(3):266-274.
    [20]Dente L, Satalino G, Mattia F, Rinaldi M. Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield[J]. Remote Sensing of Environment, 2008,112(4):1395-1407.
    [21]黄彦,朱艳,王航,姚鑫锋,曹卫星,Hannaway D B,田永超.基于遥感与模型耦合的冬小麦生长预测[J].生态学报,2011,31(4):1073-1084.
    [22]Hansen P M, Jorgensen J R, Thomsen A. Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression[J]. Journal of Agriculture Science,2002,139(3):307-318.
    [23]田永超,朱艳,曹卫星,范雪梅,刘小军.利用冠层反射光谱和叶片SPAD值预测小麦籽粒蛋白质和淀粉的积累[J].中国农业科学,2004,37(6):808-813.
    [24]Zhao C J, Liu L Y, Wang J H, Huang W J, Song X Y, Li C J. Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress[J]. International Journal of Applied Earth Observation and Geoinformation,2005,7(1):1-9.
    [25]王纪华,李存军,刘良云,黄文江,赵春江.作物品质遥感监测预报研究进展[J].中国农业科学,2008,41(9):2633-2640.
    [26]王纪华,黄文江,赵春江,杨敏华,王之杰.利用光谱反射率估算叶片生化组分和籽粒品质指标研究[J].遥感学报,2003,7(4):277-284.
    [27]冯伟,姚霞,田永超,朱艳,刘小军,曹卫星.小麦籽粒蛋白质含量高光谱预测模型研究[J].作物学报,2007,33(12):1935-1942.
    [28]刘良云,王纪华,黄文江,赵春江,张兵,童庆禧.利用新型光谱指数改善冬小麦估产精度[J].农业工程学报,20,20(1):172-175.
    [29]唐延林,黄敬峰,王人潮,王福民.水稻遥感估产模拟模式比较[J].农业工程学报,2004,20(1):166-171.
    [30]徐新刚,王纪华,黄文江,李存军,杨小冬,顾晓鹤.基于权重最优组合和多时相遥感的作物估产[J].农业工程学报,2009,25(9):137-142.
    [31]黎锐,李存军,徐新刚,王纪华,杨小冬,黄文江,潘瑜春.基于支持向量回归(SVR)和多时相遥感数据的冬小麦估产[J].农业工程学报,2009,25(7):114-117.
    [32]曹卫星,姜东,郭文善,王龙俊.小麦品质生理生态及调优技术[M].北京:中国农业出版社,2005.
    [33]徐新刚,吴炳方,蒙继华,李强子,黄文江,刘良云.农作物单产遥感估算模型研究进展[J].农业工程学报,2008,24(2):290-298.
    [1]田永超,朱艳,姚霞,刘小军,曹卫星.基于光谱信息的作物氮素营养无损监测技术[J].生态学杂志,2007,26(9):1454-1463.
    [2]Zhu Y, Yao X, Tian Y C, Liu X J, Cao W X. Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice[J]. International Journal of Applied Earth Observation and GeoInformation,2008,10(1):1-10.
    [3]Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression[J]. Remote Sensing of Environment,2003,86(4):542-553.
    [4]冯伟,朱艳,田永超,曹卫星,姚霞,李映雪.基于高光谱遥感的小麦叶片氮积累量[J].生态学报,2008,28(1):23-32.
    [5]陈君颖,田庆久,亓雪勇,刘晓臣,管仲.基于Hyperion影像的水稻冠层生化参量反演[J].遥感学报,2009,13(6):1114-1121.
    [6]Zhao C J, Liu L Y, Wang J H, Huang W J, Song X Y, Li C J. Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress[J]. International Journal of Applied Earth Observation and GeoInformation,2005,7(1):1-9.
    [7]张浩,姚旭国,张小斌,郑可锋.区域水稻穗期叶片氮素的遥感估测初探[J].核农学报,2009,23(3):364-368.
    [8]黄彦,朱艳,王航,姚鑫锋,曹卫星.基于遥感与模型耦合的冬小麦生长预测[J].生态学报,2011,31(4):1073-1084.
    [9]鲍艳松,王纪华,刘良云,李小文,李翔,黄文江,唐怡.不同尺度冬小麦氮素遥感监测方法及其应用研究[J].农业工程学报,2007,23(2):139-144.
    [10]易秋香.不同遥感水平水稻氮素信息提取研究[D].浙江大学,2008.
    [11]Chen P, Haboudane D, Tremblay N, Wang J, Vigneault, P, Li B. New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat[J]. Remote Sensing of Environment, 2010,114(9):1987-1997.
    [12]Pacheco A, McNairn H. Evaluating multispectral remote sensing and spectral unmixing analysis for crop residue mapping[J]. Remote Sensing of Environment,2010,114(10):2219-2228
    [13]万华伟,王锦地,屈永华,焦子锑,张颢.植被波谱空间尺度效应及尺度转换方法初步研究[J].遥感学报,2008,12(4):538-545.
    [14]宋晓宇,黄文江,王纪华,刘良云,李存军.ASTER卫星遥感影像在冬小麦品质监测方面的初步应用[J].农业工程学报,2006,22(9):148-153.
    [15]Doraiswamy P C, Hatfield J L, Jackson T J, Akhmedov B, Prueger J, Sterm A. Crop condition and yield simulations using Landsat and MODIS[J]. Remote Sensing of Environment,2004,92(4): 548-559.
    [16]Abou-Ismail O, Huang J F, Wang R C. Rice yield estimation by integrating remote sensing with rice growth simulation model[J]. Pedosphere,2004,14(4):519-526.
    [17]Spanner M A, Pierce L L, Running S W, Peterson D L. The seasonality of AVHRR data of temperate coniferous forests:Relationship with leaf area index[J]. Remote Sensing of Environment, 1990,33(2):97-112.
    [18]何隆华,储开华,肖向明.Vegetation图像植被指数与实测水稻叶面积指数的关系[J].遥感学报,2004,8(6):672-676.
    [19]Myneni R B, Hoffman S, Knyazikhin Y. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data[J]. Remote Sensing of Enviroment,2002,83(1/2): 214-231.
    [20]Yang P, Shibasaki R Wu W B. Evaluation of MODIS land cover and LAI products in cropland of North China Plain using in situ measurements and Landsat TM images[J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(10):3087-3097.
    [21]靳华安,刘殿伟,王宗明,宋开山,李方,杨飞.三江平原湿地植被叶面积指数遥感估算模型[J].生态学杂志,2008,27(5):803-808.
    [22]Houborg R, Anderson M, Daughtry C. Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at the field scale[J]. Remote Sensing of Environment,2009,113(1):259-274.
    [23]Hansen M C, Roy D P, Lindquist E, Adusei B, Justice C O, Alstatt A. A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin[J]. Remote sensing of Environment,2008,112(5):2495-2513.
    [24]Gao F, Masek J, Schwaller M, Hall F. On the blending of the Landsat and MODIS surface reflectance:predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44(8):2207-2218.
    [25]Liu L Y, Wang J H, Bao Y S, Huang W J, Ma Z H, Zhao C J. Predicting winter wheat condition, grain yield and protein content using multi-temporal EnviSat-ASAR and Landsat TM satellite images[J]. International Journal of Remote Sensing,2006,27(4):737-753.
    [26]闫利平,陈红,陶卫江.基于SPOT高分辨率遥感数据的农作物估产方法研究[J].安徽农业科学,2007,35(23):7054-7056.
    [27]Doraiswany P C, Cook P W. Spring wheat yield assessment using NOAA-AVHRR data[J]. Canada Journal of Remote Sensing,1995,21(1):43-51.
    [28]王长耀,林文鹏.基于MODIS EVI的冬小麦产量遥感预测研究[J].农业工程学报,2005,21(10):90-94.
    [29]刘良云,王纪华,黄文江,赵春江,张兵,童庆禧.利用新型光谱指数改善冬小麦估产精度[J].农业工程学报,20,20(1):172-175.
    [30]唐延林,黄敬峰,王人潮,王福民.水稻遥感估产模拟模式比较[J].农业工程学报,2004,20(1):166-171.
    [31]徐新刚,王纪华,黄文江,李存军,杨小冬,顾晓鹤.基于权重最优组合和多时相遥感的作物估产[J].农业工程学报,2009,25(9):137-142.
    [32]黎锐,李存军,徐新刚,王纪华,杨小冬,黄文江,潘瑜春.基于支持向量回归(SVR)和多时相遥感数据的冬小麦估产[J].农业工程学报,2009,25(7):114-117.
    [33]徐新刚,吴炳方,蒙继华,李强子,黄文江,刘良云.农作物单产遥感估算模型研究进展[J].农业工程学报,2008,24(2):290-298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700