用户名: 密码: 验证码:
蚕豆CDPK基因克隆、表达分析和玉米V-ATPase A亚基磷酸化位点鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙依赖蛋白激酶(CDPKs)是一类仅在植物和部分原生生物中存在的丝氨酸/苏氨酸蛋白激酶。CDPKs是Hetherington和Trewavas(1982)在豌豆中首先报道的,并由Harmon等(1987)在大豆中第一次得到纯化和鉴定。自从Harper等(1991)从大豆中首次克隆出编码CDPK的基因以来,至今已在16种高等植物、6种低等植物和4种原生生物中克隆出95个CDPK基因。CDPKs是一个多基因家族,其中拟南芥有34个CDPKs。CDPKs在植物钙信号转导中具有重要的作用,越来越多的证据表明,在植物碳氮代谢、离子和水分跨膜运输、细胞骨架调节、气孔运动调节、生长发育调节以及生物和非生物胁迫应答反应中均有CDPKs的参与。
     本研究采用RT-PCR技术并结合RACE策略,成功地首次从蚕豆下表皮和叶片中克隆了编码CDPK的全长cDNAr VfCPK1和cDNA片段VfCPK2,并对VfCPK1的表达特征进行了初步研究。研究结果表明,用RT-PCR技术,以CDPKs激酶区的保守氨基酸设计的一对简并引物,从蚕豆下表皮中扩增到了3个141 bp(141-1、141-2和141-3)的cDNA片段;用RACE技术,以141-1序列设计的一对基因特异性引物,克隆到全长cDNA序列VfCPK1。用RT-PCR技术,以CDPKs激酶区和连接区的保守氨基酸设计的一对简并引物,从蚕豆叶片中还扩增到了3个618 bp(618-1、618-2和618-3)的cDNA片段;用RACE技术,以618-1序列设计的一对基因特异性引物,克隆到了还缺少5’末端的cDNA片段VfCPK2。
     VfCPK1的全长为1785 bp,其中编码区为1479bp,可编码493个AA,5’非编码区为127bp,3’非编码区为179bp,中间含有加尾信号AATAAA,末尾是poly(A)。由编码区推测的VfCPK1的493个氨基酸序列具有已报道的CDPK的所有典型结构特征,由N端到C端可分为可变区、激酶区、连接区和调节区四个结构域。N端的可变区有26个氨基酸残基,没有豆蔻酰化所必需的保守序列MGXXC(S/Q)XXT,因此推测VfCPK1可能是水溶性蛋白。VfCPK1具有明显的Ca~(2+)/钙调素依赖蛋白激酶及丝氨酸/苏氨酸蛋白激酶的激酶区以及类似于钙调素的钙结合区。激酶区长264个氨基酸残基,具有所有11个保守的亚结构域和15个对于真核生物丝氨酸/苏氨酸蛋白激酶所必需的保守的氨基酸残基。连接区有31个氨基酸残基。C端的调节区有162个氨基酸残基,有4个非常保守的EF手性钙结合结构域。
     推测的VfCPK1蛋白质序列与植物中的许多CDPKs具有很高的同源性,包括大豆种子CDPKa(同源性82%;29892113)、大豆SK5(CDPKα;同源性82%;116054)、大豆种子CDPKb(同源性80%;29892204)、马铃薯RiCDPK2(同源性79%;15289760)、大豆CDPKβ(同源性79%;2501764)、水稻CDPK(同源性78%;34147319)、玉米ZmCPK11(同源性78%;31747505)等。与拟南芥34个CDPKs相比,VfCPK1与AtCPK12、AtCPK4和AtCPK11的同源性最高,分别为77%、75%和74%。
     通过Northem和Western blot分析,我们研究了蚕豆钙依赖蛋白激酶VfCPK1在蚕豆不同部位包括根、茎、叶、叶肉和下表皮中的mRNA和蛋白质水平上的表达情况以及不同外界胁迫处理对VfCPK1表达的影响。实验结果表明,无论是在mRNA还是蛋白质水平上,VfCPK1都是在叶片中的表达量显著高于根和茎中的表达量,尤其是在下表皮中的表达量最大,而在根和茎中的表达量低。因此,VfCPK1主要分布于蚕豆的叶片中,尤其在下表皮中。
     当用不同浓度的PEG和不同的处理时间处理蚕豆叶片时,在mRNA和蛋白质水平上,
    
    垮℃尸犬了在叶片中的表达量都有增加。当PEG处理浓度为20%时,学,尤了的表达量最大。无
    论是在转录还是蛋白质水平上,20%PEG处理Zh后,吠沪尤少在叶片中的表达量开始升高,
    处理sh后,表达量达到最大。当用100林M ABA对蚕豆叶片胁迫处理不同时间后,叨护犬了在
    叶片中的转录水平的变化呈现出类似于20%PEG不同时间处理的表达模式。这表明,干早胁迫
    或外源ABA诱导了叨,犬了在蚕豆叶片中的表达。当用Cacl:处理叶片时,叨,犬了在蚕豆叶
    片中的表达显著增加,而用Mgcl:和Nacl处理时,叨,犬了的表达没有变化,说明c扩+不仅是
    cDPK的酶活性依赖因子,而且还能刺激cDPK的基因表达。另外,低温(4℃)和高温(37℃)
    处理对巧℃尸犬了在蚕豆叶片中的表达没有影响。
     本论文还研究了玉米根液泡膜蛋白V.ATPaseA亚基磷酸化对V州ATPase活性的影响并鉴定了
    A亚基磷酸化位点。结果表明,A亚基的磷酸化可明显提高V.ATPase的ATP水解活性和H+转运
    活性。进一步研究表明,A亚基的潜在磷酸化位点为Ser525。就我们所知,这是首次确定植物
    v一ATPaseA亚基的磷酸化位点。据推测,玉米根V一ATPase的A亚基可能是在这个丝氨酸位点被
    CDPK磷酸化。
Calcium dependent protein kinases (CDPKs) are a kind of serine/threonine protein kinases that are only present in plants and some protests. CDPKs were firstly reported in pea by Hetherington and Trewavas(1982) and were initially purified and identified from soybean by Harmon et al (1987). Since the first gene encoding CDPK was cloned from soybean by Harper et al (1991), 95 genes encoding CDPKs have been so far cloned from 16 higher plants, 6 lower plants and 4 protests. CDPKs are a multigene family and there are 34 CDPKs in Arabidopsis thaliana. CDPKs play important roles in plant calcium signal transduction. There is increasing evidence that CDPKs participate in C/N metabolism, transmembrane transport of ion and water, cytoskeletal regulation, stomatal movement regulation, growth and development regulation and biotic and abiotic stress responses in plants.
    Using RT-PCR and RACE techniques, a full-length cDNA VfCPKl and a partial cDNA VJCPK2 were firstly successfully cloned from broad bean epidermal peels and leaves respectively, and a preliminary study was conducted on the expression pattern of VfCPKl. The results indicated that using RT-PCR with two degenerate primes designed from conserved amino acids of CDPK kinase domains, three 141 bp cDNA fragments (141-1, 141-2 and 141-3) were cloned from broad bean epidermal peels, and by RACE techniques, a full-length cDNA VfCPKl was cloned from broad bean epidermal peels with two gene-specific primes designed according to the 141-1 sequence. Using RT-PCR with two degenerate primes designed from conserved amino acids of CDPK kinase and autoinhibitory domains, three 618 bp cDNA fragments (618-1. 618-2 and 618-3) were also isolated from broad bean leaves, and a partial cDNA VJCPK2 lacking 5' end was isolated from broad bean leaves with two gene-specific primers designed according to the 618-1 sequence.
    The VfCPKl cDNA is 1785 bp long with an open reading frame of 1479 bp encoding for a protein of 493 amino acids, a 5'-untranslated region of 127 bp and a 3'-untranslated region of 179 bp containing AATAAA and poly (A) tail. The predicted VfCPKl protein with 493 amino acids contains all the structural characteristics of reported CDPKs and there are four domains of a variable domain, a kinase domain, an autoinhibitory domain and a calmodulin-like domain from N- to C-terminal end. At the N-terminal end is the variable domain of 26 amino acids in length, which has no conserved MGXXC(S/Q)XXT sequence essential for N-myristoylation. So it is conferred that the VfCPKl is a soluble protein. The VfCPKl has an obvious kinase catalytic domain for Ca2+/calmodulin dependent protein kinases and serine/ threonine protein kinases, and a calcium-binding domain like calmodulin. The kinase catalytic domain is 264 amino acids in length and contains all of 11 conserved subdomains and 15 invariant amino acid residues essential fo
    r eukaryotic serine/threonine protein kinases. The autoinhibitory domain is 31 amino acids in length. At the C-terminal end is a calmodulin-like domain of 162 amino acids in length, which has four highly conserved Ca2+-binding EF hands.
    The putative protein sequence of VfCPKl shares a remarkably high degree of amino acid identity with other CDPKs in plants, including seed CDPKa in soybean (82% identity; GenBank 29892113), SK5 (CDPKa) in soybean (82% identity; GenBank 116054), seed CDPKb in soybean
    
    
    (80% identity; GenBank 29892204), RiCDPK2 in potato (79% identity; GenBank 15289760), seed CDPKP in soybean (79% identity; GenBank 2501764), a CDPK in rice (78% identity; Genbank 34147319), ZmCPK11 in maize (78% identity; GenBank 31747505), and so on. When compared to 34 Arabidopsis CDPKs, VfCPKl shows higher homology to AtCPK12, AtCPK4 and AtCPK11 with amino acid identity 77%, 75% and 74% respectively.
    By Northern and Western blot analysis, we examined expression pattern of VfCPK1 in different parts including roots, stems, leaves, mesophylls and epidermal peels in broad bean at mRNA or protein levels, and effects of different external stress treatments on VfCPKl
引文
车发云,夏其昌.磷酸化底物肽的硫代磷酸化及荧光标记.生物化学与生物物理学报,2000,32:69-73.
    陈武,陈珈.盐胁迫对玉米根尖质膜受钙激活蛋白激酶的影响.植物生理学报,1998,24(4):367-372
    陈武,陈珈.玉米根尖质膜的受钙激活蛋白激酶的特性.植物学报,1999,41(2):166-170
    李晓鹏,杜林方,梁厚果,吴宛荪.PsⅡ反应中心D1蛋白的小肽抗体的制备和鉴定.生物化学与生物物理进展,1997,24(3):283-288
    刘贯山,陈珈.钙依赖蛋白激酶(CDPKs)在植物钙信号转导中的作用.植物学通报,2003,20(2):160-167
    萨姆布鲁克J,拉塞尔DW著,黄培堂等译.分子克隆(第三版),科学出版社,2002
    夏朝晖,李晓薇,余和芬,陈珈.盐和干旱胁迫对燕子掌叶片液泡膜H~+-ATPase活性的影响.植物生理学报,2000,26:433-436
    Abo-el-Saad M, Wu R. A rice membrane calcium-dependent protein kinase is induced by gibberellin. Plant Physiol, 1995, 108:787-793
    Alex LA, Simon MI. Protein histidine kinases and signal transduction in prokaryotes and eukaryotes. Trend in Genet, 1994, 10:133-138
    Allan AC, Frieker MD, Ward J, Beale M, Trewavas AJ. Caged ABA-induced calcium transients in guard cells of Commelina communls are dependent on previous growth temperature. Plant Cell, 1994, 6:1319-1328
    Allwood EG, Smertenko AP, Hussey PJ. Phosphorylation of plant actin-depolymerising factor by calmodulin-like domain protein kinase. FEBS Lett, 2001,499:97-100
    Anderberg RJ, Walker-Simmoms MK. Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc Natl Acad Sci USA, 1992, 89:10183-10187
    Anil VS, Rao KS. Purification and characterization of a Ca~(2+)-dependent protein kinase from sandalwood(Santalum album L.): evidence for Ca~(2+)-induced conformational changes. Phytochemistr, 2001, 58:203-212
    Berberich T, Kusano T. Cycloheximide induces a subset of low temperature-inducible genes in maize. Mol Gen Genet, 1997, 254:275-283
    Berkowitz G, Zhang X, Mercier R, Leng Q, Lawton M. Co-expression of calcium-dependent protein kinase with the inward rectified guard cell K~+ channel KAT1 alters current parameters in Xenopus laevis oocytes. Plant Cell Physiol, 2000, 41:785-790
    Biermann B, Johnson EC, Feldman L. Characterization and distribution of a maize cDNA encoding a peptide similar to the catalytic region of second messenger dependent protein kinases. Plant Physiol, 1990, 94:1609-1615
    Blatt MR. Potassium channel currents in intact stomatal guard cells: rapid enhancement by abscisic
    
    acid. Planta, 1990, 180:445-455
    Blom N, Gammeltoft S, Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol, 1999, 294:1351-1362
    Bogre L, Calderini O, Binarova P, Mattaueh M, Till S, Kiegerl S, Jonak C, Pollaschek C, Barker P, Huskisson N, Hirt H, Heberle-Bors E. A AMP kinase is activated late in plant mitosis and becomes localized to the plant of cell division. Plant Cell, 1999, 11:101-114
    Bogre L, Ligterink W, Heberle-Bors E, Hirt H. Mechanosensors in plants. Nature, 1996, 383: 489-490
    Borson ND, Sato WL, Drewes LR. A lock-docking oligo(dt) primer for 5'and 3'RACE PCR. PCR Methods Applic, 1992, 2:144-148
    Botella JR, Arteca JM, Somodevilla M, Arteca RN. Calcium-dependent protein kinase gene expression in response to physical and chemical stimuli in mung bean(Vigna radiata). Plant Mol Biol, 1996, 30:1129-1137
    Bourret RB, Borkovieh KA, Simon MI. Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu Rev Chem, 1991, 60:401-441
    Breviario D, Morello L, Giani S. Molecular cloning of two novel rice cDNA sequences encoding putative calcium-dependent protein kinases. Plant Mol Biol, 1995, 27:953-967
    Camoni L, Fullone MR, Marra M, Adueci P. The plasma membrane H+-ATPase from maize roots is phosphorylated in the C-terminal domain by a calcium-dependent protein kinase. Physiol Plant, 1998a, 104:549-555
    Camoni L, Harper JF, Paimgren MG. 14-3-3 proteins activate a plant calcium-dependent protein kinase(CDPK). FEBS Lett, 1998b, 430:381-384
    Carrera AC, Alexandrov K, Roberts TM. The conserved lysine residue of the catalytic domain of protein kinases in actively involved in the phosphotransfer reaction and not required for anchoring ATP. Prot Natl Acad Sci USA, 1993, 90:442-446
    Chen S(陈硕), Chen J(陈珈), Wang XC(王学臣). Existence and characteristics of tonoplast-bound protein kinase in the cell of maize root. Acta Bot Sin(植物学报), 2002, 44(6):661-666
    Cheng S-H, Willmann MR, Chen H-C, Sheen J. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol, 2002, 129:469-485
    Chenk PW, Snaar-Jagalska BE. Signal perception and transduction: the role of protein kinases. Biochim Biophys Acta, 1999, 1449:1-24
    Chico JM, Raices M, Tellez-Inon MT, Ulloa RM. A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants. Plant Physiol, 2002, 128:256-270
    Chitlaru E, Seger R, Pick U. Activation of a 74kDa plasma membrane protein kinase by hyperosmotic shocks in the halotolerant alga Dunaliella salina. J Plant Physiol, 1997, 151:429-436
    Chung HJ, Sehnke PC, Ferl RJ. The 14-3-3 proteins: cellular regulators of plant metabolism. Trends Plant Sci, 1999, 4:367-371
    Cohen P. The discovery of protein phosphatases; from chaos and confusion to an understanding of their
    
    role in cell regulation and human disease. Bioessays, 1994, 16:583-588
    Dammann C, Iehida A, Hong B, Romanowsky SM, Hrabak EM, Harmon AC, Piekard BG, Harper JF. Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis. Plant Physiol, 2003, 132:1840-1848
    Davies WJ, Zhang J. Root signals and the regulation of growth and development of plants in drying soil. Annv Rev Plant Physiol Plant Mol Biol, 1991, 42:55-76
    Davletova S, Meszaros T, Miskolezi P, Obersehall A, Torok K, Magyar Z, Dudits S, Deak M. Auxin and heat shock activation of a novel member of the calmodulin-like domain protein kinase gene family in cultured alfalfa cells. J Exp Bot, 2001, 52:215-221
    De Meyts P, Christoffersen CT, Urs B, Wallaeh B, Grnskov K, Yakushiji F, Shymko RM. Role of the time factor in signaling specificity: Application to mitogenic and metabolic signaling by the insulin and insulin-like growth factor-Ⅰ receptor tyrosine kinases. Metabolism Suppl, 1995, 44:2-11
    Denton RM, Tavare JM. Does mitogen-activated-protein kinase have a role in insulin action? The cases for and against. Eur J Biochem, 1995, 227:597-611
    Draetta G, Piwnica-Worms H, Morrison D, Druker B, Roberts T, Beach D. Human cdc2 protein kinase is a major cell-cycle regulated tyrosine kinase substrate. Nature, 1988, 336:738-744
    Dunn PP, Bumstead JM, Tomley FM. Sequence, expression and localization of calmodulin-domain protein kinases in Eimeria tenella and Eirneria maxima. Parasitology, 1996, 113:439-448
    Eek M J, Atwell SK, Shoelson SE, Harrison SC. Structure of the regulatory domains of the Src-family tyrosine kinase Lck. Nature, 1994, 368:764-769
    Ellard-Ivey M, Hopkins RB, White TJ, Lomax TL. Cloning, expression and N-terminal myristoylation of CpCPK1, a calcium-dependent protein kinase from zucchini(Cucurbita pepo L.). Plant Mol Biol, 1999, 39:199-208
    Estruch JJ, Kadwell S, Merlin E, Crossland L. Cloning and characterization of a maize pollen-specific calcium-dependent calmodulin-independent protein kinase. Proc Natl Acad Sci USA, 1994, 91:8837-8841
    Fadden P, Haystead TAJ. Quantitative and selective fluorophore labeling of phosphoserine on peptides and proteins: characterization at the attomole level by capillary electrophoresis and laser-induced fluorescence. Anal Biochem, 1995, 225:81-88
    Farber PM, Graeser R, Franklin RM, Kappes B. Molecular cloning and characterization of a second calcium-dependent protein kinase of Plasmodium falciparum. Mol Biochem Parasitol, 1997, 87:211-216
    Feuillet C, Reuzeau C, Kjellbom B, Keller B. Molecular characterization of a new type of receptor-like kinase(wlrk) gene family in wheat. Plant Mol Biol, 1998, 37:943-953
    Fiseher-Sehliebs E, Ball E, Berndt E, Besemfelder-Butz E, Binzel ML, Drobny M, Muhlenhoff D, Muller ML, Rakowski K, Ratajezak R. Differential immunological cross-reactions with antisera against the V-ATPase of Kalanchoe daigremontiana reveal structural differences of V-ATPase subunits of different plant species. Biol Chem, 1997, 378:1131-1139
    
    
    Fischer EH. Protein phosphorylation and cellular regulation Ⅱ(Nobel lecture). Angew Chem Int Ed Engl, 1993, 32:1130-1137
    Franklin-Tong VE, Ryde JP, Read ND, Trewavas AJ. The self incompatibility response in Papaver rhoeas is mediated by free cytosolic calcium. Plant J, 1993, 4:163-177
    Frattini M, Morello L, Breviario D. Rice calcium-dependent protein kinase isoforms OsCDPK2 and OsCDPK11 show different responses to lightand different expression patterns during seed development. Plant Mol Biol, 1999, 41:753-764
    Frohman MA. Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: thermal RACE. Methods Enzymol, 1993, 218:340-356
    Frohman MA, Dush MK, Martin GR. Rapid production of full-length cDNA from rare transcripts: amplification using a single gene-specific oligonucleotide prider. Proc Natl Acad Sci, 1988, 85:8998-9002
    Frylinek L, Dubery IA. Protein kinase activities in ripening mango, Mangifera indica L. fruit tissue. Ⅰ: purification and characterization of a calcium-stimulated casein kinase I. Biochim Biophys Acta, 1998a, 1382:65-79
    Frylinck L, Dubery IA. Protein kinase activities in ripening mango, Mangifera indica L. fruit tissue. Ⅱ: purification and characterization of a casein kinase I. Physiol Plant, 1998b, 104:587-595
    Frylinck L, Dubery IA. Protein kinase activities in ripening mango, Mangifera indica L. fruit tissue. Ⅲ: purification and characterization of a calcium-regulated protein kinase. Biochim Biophys Acta, 1998c, 1387:342-354
    Gilroy S, Fricker M, Read ND, Trewavas AJ. Role of calcium in signal transduction of Commelina guard cells. Plant Cell, 1991, 3:333-344
    Grabski S, Arnoys E, Busch B, Schindler M. Regulation of actin tension in plant cells by kinases and phosphatases. Plant Physiol, 1998, 116:279-290
    Guenther JF, Roberts DM. Water-selective and multifunctional aquaporins from Lotus japonicus nodules. Planta, 2000, 210:741-748
    Hanks SK, Quinn AM. Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Meth Enzymol, 1991, 200:38-62
    Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science, 1988, 241:42-52
    Harmon AC, Gribskov M, Gubrium E, Harper JF. The CDPK superfamily of protein kinases. New Phytol, 2001, 151:175-183
    Harmon AC, Gribskov M, Harper JE CDPKs-a kinase for every Ca~(2+) signal? Trends Plant Sci, 2000, 5:154-159
    Harmon AC, Lee J-Y, Yoo BC, Shao J. Plant membrane-associated protein kinases. In M Smallwood, P Knox, D Bowles, eds, Membranes: Specilized Functions in Plant Cells. Bios Scientific Publishers, 1996, Oxford, pp 137-150
    
    
    Harmon AC, Putnam-Evans C, Cormier MJ. A calcium-dependent but calmodulin-independent protein kinase from soybean. Plant Physiol, 1987, 83:830-837
    Harmon AC, Yoo BC, McCaffery C. Pseudosubstrate inhibition of CDPK, a protein kinase with a calmodulin-like domain. Biochemistry, 1994, 33:7278-7287
    Harper JF, Binder BM, Sussman MR. Calcium and lipid regulation of an Arabidopsis protein kinase expressed in Escherichia coli Biochemistry, 1993, 32:3282-3290
    Harper JF, Huang J-F, Lloyd SJ. Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin-like domain. Biochemistry, 1994, 33:7267-7277
    Harper JF, Sussman MR, Sehaller GE, Putnam-Evans C, Charbonneau H, Harmon AC. A calcium-dependent protein kinase with a regulatory domain similar to calmodulin. Science, 1991, 252:951-954
    Harvey R J, Darlison NG. Random-primed cDNA synthesis facilitates the isolation of multiple 5'-cDNA ends by RACE. Nucleic Acids Res, 1991, 19:4002
    Hetherington AM, Trewavas A. Calcium-dependent protein kinase in pea shoot membranes. FEBS lett, 1982, 145:67-71
    Hong SW, Jon JH, Kwak JM, Nam HG. Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol, 1997, 113:1203-1212
    Hong Y, Takano M, Liu CM, Gasch A, Chye ML, Chua NH. Expression of three members of the calcium-dependent protein kinase gene family in Arabidopsis thaliana. Plant Mol Biol, 1996, 30:1259-1275
    Hrabak EM. Calcium-dependent protein kinases and their relatives. Adv Bot Res, 2000, 2:185-223
    Hrabak EM, Dickmann LJ, Satterlee JS, Suaaman MR. Characterization of eight new members of the calmodulin-like domain protein kinase gene family from Arabodopsis thaliana. Plant Mol Biol, 1996, 31:405-412
    Huang JF, Teyton L, Harper JF. Activation of a Ca~(2+)-dependent protein kinase involves intramolecular binding of a calmodulin-like regulatory domain. Biochemistry, 1996, 35:13222-13230
    Huang JZ, Hardin SC, Huber SC. Identification of a novel phosphorylation motif for CDPKs: phosphorylation of synthetic peptides lacking basic residues at P-3/P-4. Arch Biochem Biophys, 2001, 393:61-66
    Hubbard M J, Cohen E On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci, 1993, 18:172-177
    Hunter T, Karin M. The regulation of transcription by phosphorylation. Cell, 1992, 70:375-387
    Hwang I, Sze H, Harper JF. A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca~(2+) pupm (ACA2) located in the endoplasmic reticulum of Arabodopsis. Proc Natl Acad Sci USA, 2000, 97:6224-6229
    Jain R, Gomer RH, Murtagh JJ. Increasing specificity from the PCR-RACE technique. Biotechniques,
    
    1992, 12:58-59
    Jans DA. Regulation of protein transport to the nucleus by phosphorylation. Biochem J, 1995, 311: 705-716
    Jefferies HBJ, Reinhard C, Kozma SC, Thomas G. Rapamycin selectively represses translation of the "polypyrimidine tract" mTNA family. Proc Natl Acad Sci USA, 1994, 91:4441-4445
    Jeong S, Nikiforov TT. Kinase assay based on thiophosphorylation and biotinylation. BioTechniques, 1999, 27:1232-1238
    Johnson CH, Knight MR, Kondo T, Masson P, Sedbrook J, Haley A, Trewaras A. Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science, 1995, 269:1863-1865
    Johnson KD, Chrispeels MJ. Tonoplast-bound protein kinase phosphorylates tonoplast intrinsic protein. Plant Physiol, 1992, 100:1787-1795
    Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H. Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA, 1996, 93:11274-11279
    Kalman M, Kalman ET, Cashel M. Polymerase chain reaction amplification with a single specidic primer. Biochem Biophys Res Commun, 1990, 167:504-506
    Kaplan DR, Stephens RM. Neurotrophin signal transduction by the Trk receptor. J Neurobiol, 1994, 25:1404-1417
    Kawasaki T, Hayashida N, Baba T, Shinozaki K, Shimada H. The gene encoding a calcium-dependent protein kinase located near the sbel gene encoding starch branching enzyme □ is specifically expressed in developing rice seeds. Gene, 1993, 129:183-189
    Kawasald-Nishi S, Nishi T, Forgac M. Proton translocation driven by ATP hydrolysis in V-ATPases. FEBS Lett, 2003, 545:76-85
    Kemp BE, Pearson RB. Protein kinase recognition sequence motifs. TIBS, 1990, 15:342-346
    Kim K, Messinger LA, Nelson DL. Ca~(2+)-dependent protein kinase of Paramecium cloning provides evidence of a multigene family. Eur J Biochem, 1998, 251:605-612
    Klink R, Hasehke HP, Kramer D, Luttge U. Membrane particles, proteins and ATPase activity of tonoplast vesicles ofMesembryanthemum crystallinum in the C-3 and CAM state. Bot Acta, 1990, 103:24-31
    Knight MR, Campbell AK, Smith SM, Trewavas AJ. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors or cytoplasmatic calcium. Nature, 1991, 352:524-526
    Kovtun Y, Chui WL, Zeng W, Sheen J. Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature, 1998, 395:716-720
    Krebs EC. Protein phosphorylation and cellular regulation Ⅰ(Nobel lecture). Angew Chem Int Ed Engl, 1993, 32:1122-1129
    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 222:680-685
    Lakatos L, Hutvagner G, Banfalvi Z. Potato protein kinase StCPK1: a putative evolutionary link
    
    between CDPKs and CRKs. Biochim Biophys Acta: Gene Structure and Expression, 1998, 1442:101-108
    Lawton MA, Yamamoto RT, Hanks SK, Christopher L. Molecular cloning of plant transcript encoding protein kinase homologs. Proc Natl Acad Sci USA, 1989, 86:3140-3144
    Lebrun-Garcia A, Ouaked F, Chiltz A, Pugin A. Activation of MAPK homologues by elicitors in tobacco cells. Plant J, 1998, 15:773-781
    Lee JH, Montagu MV, Verbruggen N. A highly conserved kinase is an essential component for stress tolerance in yeast and plant cells. Proc Natl Acad Sci USA, 1999, 96:5873-5877
    Lee JY, Roberts DM, Harmon AC. Isolation of two new CDPK isoforms (Accession Nos. U69173 and U69174) from soybean (Glycine max L.) (PGR97-128). Plant Physiol, 1997, 115:314
    Li J, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell, 1997, 90:929-938
    Li J, Lee Y-RJ, Assmann SM. Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel. Plant Physiol, 1998, 116:785-795
    Li JL, Baker DA, Cox LS. Sexual stage-specific expression of a third calcium-dependent protein kinase from Plasmodiurnfalciparum. Biochem Biophys Acta, 2000, 1491:341-349
    Ligterink W, Kroj T, Nieden UZ. Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science, 1997, 276:2054-2057
    Lin X, Feng X, Watson JC. Differential accumulation of transcripts encoding protein kinase homologs in greening pea seedlings. Proc Natl Acad Sci USA, 1991, 88:6951-6955
    Lino B, Baizabal-Aguirre VM, Gonzalez de la Vara LE. The plasma-membrane H(+)-ATPase from beet root is inhibited by a calcium-dependent phosphorylation. Planta, 1998, 204:352-359
    Liu GS (刘贯山), Chen S (陈硕), Chen J (陈珈), Wang XC (王学臣). Identification of the phosphorylation site of the V-ATPase subunit A in maize roots. Acta Bot Sin (植物学报), 2004, 46:428-435
    Liu HY, Toyn JH, Chiang YL, Draper MP, Johnson LH, Denis CL. DBF2, a cell cycle-regluated protein kinse, is physically and functionally associated with the CCR4 transcriptional regulatory complex. EMBO J, 1997, 16:5289-5298
    Lu SX, Hrabak EM. An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum. Plant Physiol, 2002, 128:1008-1021
    Ma H. Protein phosphorylation in plants: enzymes, substrates and regulators. Trends Genet, 1993, 9: 228-230
    MacRobbie EAC. Calcium influx at the plasmalemma of the isolated guard cells of Commelina communis. Effect ofabscisic acid. Planta, 1989, 178:231-241
    Malho R, Read ND, Pais MS, Trewavas AJ. Role of cytosolic free calcium in the reorientation of pollen tube growth. Plant J, 1994, 5:331-341
    Martin ML, Buseoni L. A rice membrane-bound calcium-dependent protein kinase is activated in response to low temperature. Plant Physiol, 2001, 125:1442-1449
    
    
    Martin ML, Busconi L. Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation. Plant J, 2000, 24:429-435
    Martinez MC, Jorgensen J, Lawton MA, Lamb C J, Doerner PW. Spatial pattern of cdc2 expression in relation to meristem activity and cell proliferation during plant development. Proc Natl Acad Sci USA, 1992, 89:7360-7364
    Maudoux O, Batoko H, Oecking C, Gevaert K, Vandekerckhove J, Boutry M, Morsomme P. A plant plasma membrane H~+-ATPase expressed in yeast is activated by phosphorylation at its penultimate residue and binding of 14-3-3 regulatory proteins in the absence of fusicoccin. J Biol Chem, 2000, 275:17762-17770
    Maurel C, Reizer J, Schroeder JI, Chrispeels MJ. The vacuolar membrane protein γ-TIP creates water specific channels in Xenopus oocytes. EMBO J, 1993, 12:2241-2247
    McAinnsh MR, Brownlee C, Hetherington AM. Abscisic acid-induced elevation of guard cell cytosolic Ca~(2+) precedes stomatal closure. Nature, 1990, 343:186-188
    McGrath RB, Ecker JR. Ethylene signaling in Arabidopsis: events from the membrane to the nucleus. Plant Physiol Biochem, 1998, 36:103-113
    McKnight SL, Oliver M J, Putnam-Evans CL. Nucleotide sequence of a full-length cDNA (Accession No. U82087) encoding a calmodulin-like domain protein kinase(CDPK) from the moss Tortula ruralis(PGR97-123). Plant Physiol, 1997, 115:313
    Min KT, Hilditch CM, Diederich B, Errington J, Yudkin MD. σF, the first compartment-specific transcription factor of B. subtilis, is regulated by an anti-σ factor that is also a protein kinase. Cell, 1993, 74:735-742
    Mizoguchi T, Hayashida N, Yamaguchi-Shinozaki, Kamada H, Shinozaki K. Two genes that encode ribosomal-protein S6 kinase homologs are induced by cold or salinity stress in ,Arabidopsis thaliana. FEBS Lett, 1995, 358:199-204
    Mizoguchi T, Ichimura K, Shinozaki K. Environmental stress response in plants: the role of mitogen-activated protein kinases. Trends Biotech, 1997, 15:15-19
    Monroy AF, Dhindsa RS. Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25℃. Plant Cell, 1995, 7:321-331
    Morris PC. MAP kinase signal transduction pathways in plants. New Phytologist, 2001, 151:67-89
    Morsomme P, Boutry M. The plant plasma membrane H~+-ATPase: structure, function, and regulation. Biochim Biophys Acta, 2000, 1465:1-16
    Moutinho A, Trewavas AJ, Malho R. Relocation of a Ca~(2+)-dependent protein kinase activity during pollen tube reorientation. Plant Cell, 1998, 10:1499-1509
    Munoz-Dorado J, Inouye S, Inouye M. A gene encoding protein serine/threonine kinase is required for normal development of M. xanthus, a gram-negative bacterium. Cell, 1991, 67:995-1006
    Nishiyama R, Mizuno H, Okada S, Yamaguchi T, Takenaka M, Fukuzawa H, Ohyama K. Two mRNA species encoding calcium-dependent protein kinases are differentially expressed in sexual organs of Marchantia polymorpha through alternative splicing. Plant Cell Physiol, 1999,
    
    40:205-212
    Olsson A, Svennelid F, Ek B, Sommarrn M, Larsson C. A phosphothreonine residue at the C-terminal end of the plasma membrane H~+-ATPase is protected by fusicoccin-induced 14-3-3 binding. Plant Physiol, 1998, 118:551-555
    Patanjali SR, Parimoo S, Weissman SM. Construction of a uniform-abundance (normalized) cDNA library. Proc Natl Acad Sci USA, 1991, 88:1943-1947
    Patharkar OR, Cushman JC. A stress-induced calcium-dependent protein kinase from Mesombryanthemum crystallinum phosphorylates a two-component pesudo-response regulator. Plant J, 2000, 24:679-691
    Patil S, Takezawa D, Poovaiah BW. Chimeric plant calcium/calmodulin-dependent protein kinase gene with a neural visinin-like calcium-binding domain. Proc Natl Acad Sci USA, 1995, 92:4897-4901
    Pei ZM, Ward JM, Harper JF, Schroeder JI. A novel chloride channel in Vicia faba guard cell vacuoles activated by the serine/threonine kinase, CDPK. EMBO J, 1996, 15:6564-6574
    Peterson GL. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem, 1977, 83:346-356
    Pinontoan R, Yuasa T, Anderca MI, Matsuoka T, Uozumi N, Mori H, Muto S. Cloning of a cDNA encoding a 66-kDa Ca~(2+)-dependent protein kinase (CDPK) from Dunaliella tertiolecta (Chlorophyta). J Phycol, 2000, 36:545-552
    Poovaiah BW, Reddy ASN. Calcium and signal transduction in plants. Crit Rev Plant Sci, 1993, 12:185-211
    Putnam-Evans C, Harmon AC, Palevitz BA, Feehheimer M, Cormier MJ. Calcium dependent protein kinase is localized with F-actin in plant cells. Cell Motil Cytoskelet, 1989, 12:12-22
    Raices M, Chico JM, Tellez-Inon MT, Ulloa RM. Molecular characterization of StCDPK1, a calcium-dependent protein kinase from Solanum tuberosum that is induced at the onset of tuber development. Plant Mol Biol, 2001, 46:591-601
    Ratajczak R. Structure, function and regulation of the plant vacuolar H~+-translocating ATPase. Biochim Biophys Acta, 2000, 1465:17-36
    Reddy ASN. Calcium: silver bullet in signaling. Plant Sci, 2001,160:381-404
    Reuveni M. Utilization of metabolic energy under saline conditions: changes in properties of ATP dependent enzymes in plant cells grown under saline conditions. Biologia Plant, 1992, 34:181-191
    Reuveni M, Bennett AB, Bressan RA, Hasegawa PM. Enhanced H~+-transport capacity and ATP hydrolysis activity of the tonoplast H~+-ATPase after NaCl adaptation, Plant Physiol, 1990, 94:524-530
    Ritchie S, Gilroy S. Calcium-dependent protein phosphorylation may mediate the gibberellic acid response in barley aleurone. Plant Physiol, 1998, 116:765-776
    Robert S. Rapid amplification of genomic ends(RACE) as a simple method to clone flanking genomic DNA.,Elsevier Science B.V. Gene, 1997, 194:273-276
    
    
    Roberts DM. Detection of a calcium-activated protein kinase in Mougeotia by using synthetic peptide substrates. Plant Physiol, 1989, 91:1613-1619
    Roberts DM. Protein kinase with calmodulin-like domains: novel targets of calcium signals in plants. Curr Opin Cell Biol, 1993, 5:242-246
    Roberts DM, Harmon AC. Calcium-modulated proteins: targets of intracellular calcium signals in higher plants. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43:375-414
    Roekel B, Chert J, Ratajezak R, Luttge U. Day-night changes of the amount of subunit-c transcript of the V-ATPase in suspension cells of Mesembryanthemum crystallinum L. J Plant Physiol, 1998, 152:189-193
    Romeis T, Ludwig AA, Martin R, Jones JDG. Calcium-dependent protein kinases play an essential role in a plant defense response. EMBO J, 2001, 20:5556-5567
    Romeis T, Piedras P, Jones JDG. Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defense response. Plant Cell, 2000, 12:803-815
    Rutschmann F, Stalder U, Piotrowski M, Oecking C, Sehaller A. LeCPK1, a Calcium-Dependent Protein Kinase from Tomato. Plasma Membrane Targeting and Biochemical Characterization. Plant Physiol, 2002, 129:156-168
    Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. Over-expression of a single Ca~(2+)-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J, 2000, 23:319-327
    Saijo Y, Hata S, Sheen J, Izui K. cDNA cloning and prokaryotic expression of maize calcium-dependent protein kinases. Biochim Biophys Acta, 1997, 1350:109-114
    Saijo Y, Kinoshita N, Ishiyama K, Hata S, Kyozuka J, Hayakawa T, Nakamura T, Shimamoto K, Yamaya T, Izui K. A Ca~(2+)-dependent protein kinase that endows rice plants with cold-and salt-stress tolerance functions in vascular bundles. Plant Cell Physiol, 2001, 42:1228-1233
    Sanders D, Brownlee C, Harper JF. Communicating with calcium, Plant Cell, 1999, 11:691-706
    Sano H, Youssefian S. Light and nutritional regulation of transcripts encoding a wheat protein kinase with isozyme specific antibodies. Oncogenes, 1994, 5:1775-1780
    Saraste M, Sibbald PR, Wittinghofer A. The P-loop-a common motif in ATP-and GTP-binding proteins. Trends Biochem Sci, 1990, 15:430-434
    Sasaki T, Matsumoto T, Yamamoto K, et al. The genome sequence and structure of rice chromosome 1. Nature, 2002, 420:312-316
    Sehaller GE, Sussman MR. Phosphorylation of the plasma membrane H~+-ATPase of oat roots by a calcium-stimulated protein kinase. Planta, 1988, 173:509-518
    Seger R, Krebs EG. The MAP kinase signaling cascade. FASEB J, 1995, 9:726-735
    Seo S, Okamoto M, Seto H, Ishizuka K, Sano H, Ohashi Y. Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science, 1995,270:1988-1992
    Shacldock P, Read ND, Trewavas AJ. Cytosolic free calcum mediates red light-induced photomorphogenesis. Nature, 1992, 358:753-755
    
    
    Sheen J. Ca~(2+)-dependent protein kinases and stress signal transduction in plants. Science, 1996, 274:1900-1902
    Skriver K, Mundy J. Gene expression in response to abscisic acid and osmotic stress. Plant Cell, 1990, 2:503-512
    Solomon MJ, Glotzer M, Lee TH, Philippe M, Kirschner MW. Cyclin activation of p34 cdc2. Cell, 1990, 63:1013-1024
    Sopory SK, Munshi M. Protein kinases and phosphatases and their role in cellular signaling in plants. Crit Rev Plant Sci, 1998, 17:245-318
    Stock JB, Stock AM, Mottonen JM. Signal transduction in bacteria. Nature, 1990, 344:395-400
    Stone JM, Walker,JC. Plant protein kinase families and signal transduction. Plant Physiol, 1995, 108: 451-457
    Suen KL, Choi JH. Isolation and sequence analysis of a cDNA clone for a carrot calcium-dependent protein kinase: homology to calcium/calmodulin-dependent protein kinases and to calmodulin. Plant Mol Biol, 1991, 17:581-590
    Sun H, Tonks NK. The coordinated action of protein tyrosine phosphatases and kinases in cell signalling. Trends Biochem Sci, 1994, 19:480-485
    Sze H. H~+-translocating ATPase: advances using membrane vesicles. Annu Rev Plant Physiol, 1985, 36:175-208
    Takezawa D, Patil S, Bhatla A, Poovaiah BW. Calcium-dependent protein kinase genes in corn roots. J Plant Physiol, 1996, 149:329-335
    Tena G, Renaudin JP. Cytosolic acidification but not auxin at physiological concentration is an activator of MAP kinase in tobacco. Plant J, 1998, 16:173-182
    Tonks NK. Protein phosphatases: key players in the regulation of cell function. Curr Opinion Cell Biol, 1990, 2:1114-1124
    Toroser D, Huber SC. Protein phosphorylation as a mechanism for osmotic-stress activation of sucrose-phosphate synthase in spinach leaves. Plant Physiol, 1997, 114:947-955
    Towbin H, Staehexin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA, 1979, 76:4350-4359
    Trewavas AJ, Gilroy S. Signal transduction in plant cells. Trends Genet, 1991, 7:356-361
    Trewavas AJ, Malho R. Ca~(2+) signalling in plant cells: the big network! Curr Opin Plant Biol, 1998, 1:428-433
    Trewavas AJ, Malho R. Signal transduction: the origin of the phenotype. Plant Cell, 1997, 9: 1181-1195
    Troutt AB, McHeyzer-Williams MG, Pulendran B, Nossal GJV. Ligation-anchored PCR: a simple amplification technique with single-sided specificity. Proc Natl Acad Sci USA, 1992, 89: 9823-9825
    Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, Shinozaki K. An
    
    Arabidopsis thaliana cDNA encoding Ca~(2+)-dependent protein kinase. Plant Physiol, 1994a, 105:1461-1462
    Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, Shinozaki K. Two genes that encode Ca~(2+)-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Mol Gen Genet, 1994b, 244:331-340
    Usami S, Banno H, Ito Y, Nishihama R, Machida Y. Cutting activates a 46-kilodalton protein kinase in plants. Proc Natl Acad Sci USA, 1995, 92:8660-8664
    Walker JC, Zhang R. Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica. Nature, 1990, 345:743-746
    Weaver CD, Roberts DM. Determination of the site of phosphorylation of nodulin-26 by the calcium-dependent protein kinase from soybean nodules. Biochemistry, 1992, 31:8954-8959
    Webb AAR, McAinsh MR, Taylor JE, Hetherington AM. Calcium ions as intracellular messengers in higher plants. Adv Bot Res, 1996, 22:45-96
    Weljie AM, Clarke TE, Juffer AH, Harmon AC, Vogel HJ. Comparative modeling studies of the calmodulin-like domain of calcium-dependent protein kinase from soybean. Proteins, 2000, 39:343-357
    Wilson C, Pfosser M, Jonak C, Hirt H, Heberle-Bors E. Evidence for the activation of a MAP kinase upon phosphate-induced cell cycle re-entry in tobacco cells. Physiol Plant, 1998, 102:532-538
    Yamaguchi-Shinozaki K, Koizumi M, Urao S, Shinozaki K. Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol, 1992, 33:217-224
    Yang G, Komatsu S. Involvement of calcium-dependent protein kinase in rice(Oryza sativa L.) lamina inclination caused by brassinolide. Plant Cell Physiol, 2001, 41:1243-1250
    Yang G, Shen S, Yang S, Komatsu S. OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced in response to cold and gibberellin. Plant Physiol Biochem, 2003, 41:369-374
    Yang T, Segal G, Abbo S, Feldman M, Fromm H. Characterization of the gene family in wheat: structure, chromosomal location, and evolutionary aspects, Mol Gene Genet, 1996, 252:684-694
    Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon S J, Cantley LC. The structural basis for 14-3-3: phosphopeptide binding specificity. Cell, 1997, 91:961-971
    Yoo BC, Harmon AC. Intramolecular binding contributes to the activation of CDPK, a protein kinase with a calmodulin-like domain. Biochemistry, 1996, 35:12029-12037
    Yoo BC, Lee JY, Lucas WJ. Analysis of the complexity of protein kinases within the phloem sieve tube system. J Bio Chem, 2002, 277:15325-15332
    Yoon GM, Cho HS, Ha H J, Liu JR, Lee HE Characterization of NtCDPK1, a calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of its encoded protein. Plant Mol Biol, 1999, 39:991-1001
    
    
    Yu HF(余和芬), Chen J(陈珈), Wang XC(王学臣). Effects of salt stress on the activity and the amount of tonoplast H~+-ATPase from pea roots. Acta Bot Sin(植物学报), 2001, 43:586-591
    Zhang CC. A gene encoding a protein related to eukaryotic protein kinases from the filamentous heterocystous cyanobacterium Anabaena PCC 7120. Proc Natl Acad Sci USA, 1993, 90: 11840-11844
    Zhang WH(章文华), Liu YL(刘友良). Relationship between tonoplast H~+-ATPase activity, ion uptake and calcium in barley roots under NaC1 stress. Acta Bot Sin(植物学报), 2002, 44:667-672
    Zhang XRS, Choi JJH. Molecular evolution of calmodulin-like domain protein kinase(CDPKs) in plants and protists. J Mol Evol, 2001, 53:214-224
    Zhao Y, Kappes B, Franklin RM. Gene structure and expression of an unusual protein kinase from Plasmodium falciparum homologous at its carboxyl terminus with the EF hand calcium-binding proteins. J Biol Chem, 1993, 268:4347-4354
    Zhao Y, Pokutta S, Maurer P, Lindt M, Franklin RM, Kappes B. Calcium-binding properties of a calcium-dependent protein kinase from Plasmodium falciparum and the significance of individual calcium-binding sites for kinase activation. Biochemistry, 1994, 33:3714-3721
    Zolnierowicz S, Hemmings BA. Tethering, targeting and triggering of protein phosphatases. Trends Cell Biol, 1994, 4:61-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700