用户名: 密码: 验证码:
统计过程监控中灵活而稳健的控制图
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在统计质量控制中,有两种类型的质量特性。可以数值测量的质量特性被称为变量。很多不能数值测量的质量特性却可以被分成很多类。这种类型的质量特性称为属性。本文对于有效的统计过程控制提出了灵活而稳健的控制图。计数数据可被用于记录在工业应用中不合格品的数量或者在卫生场所的某种疾病的发病率。泊松分布是用来刻画计数信息的常见分布,而关于计数数据的控制图也由此被建立起来。泊松分布是建立在隐含的等分散(均值和方差相等)假设上的。而在实际中,这个假设几乎不被满足,基于泊松分布的控制图对于过度分散(均值比方差小)或者不足分散(均值比方差大)的数据非常敏感。因此,我们需要能同时应用于不足分散和过度分散计数数据的灵活的控制图。本文提出了可以添加在统计过程控制(SPC)的工具包的单变量和多变量灵活的控制图结构。变量控制图一般是基于底层过程服从正态分布的假设。但是,这个假设条件在实际中也是很少被满足的。所以,我们需要可以用来同时有效的监控正态过程和非正态过程参数的控制图。本文提出了关于各种非正态分布的基尼图(一种过程变异图)的稳健性评估和设计。被提出的图结构设计旨在有效地监控分散计数数据集属性和提供监控变量的稳健过程。
     Sellers (2012)提出了一种有效的和推广了的COM-泊松图来监控计数数据。她只是给出了3-σ区间。在本文中,我们推广了她的工作,得到了COM-泊松图的精确k-σ和真正的概率极限,用不同的度量方法对结果进行了分析。本文提出了基于COM-泊松分布的推广的灵活的几何指数加权移动平均(EWMA)控制图。三种累积总和(CUSUM)控制图也已被提出以更有效地监控分散计数数据小的变化。本文也对用来有效监控分散计数数据的灵活的多元常规型控制图进行了设计和研究学习。对于多种非正态过程的基尼图在本文中也做了研究。最后,本文做了沿X图的非正态分布的基尼图设计及提供了必要的系数和四分位点。所提出方法的表现情况会用一些有用的度量来评估,包括势函数(1-β),误报率,平均运行长度(ARL),中值运行长度(MDRL),运行长度分布的标准偏差(SDRL),信号平均数(ANOS).我们通过广泛的蒙特卡罗模拟和马尔可夫链方法研究和比较了所提出的不同控制图的表现情况。同时,我们在本文中也添加了一些实际的和模拟的数据集来突出所提出的方法在实际中的应用。另外,本文对于监控分散计数数据的控制图有一个全面的回顾和展望。
     灵活的设计结构结果表明所有提出的图结构对于过度或不足分散计数数据是灵活的而且现有的属性图可作为推广后图结构的特殊情况。提出的灵活图结构比Sellers (2012)中的图在检测位移中的缺陷的平均数量方面更有效。而且,这些结构很容易实现,并提供了有关的过程控制状态的真实图像。稳健设计图结构显示了基尼图比其他已有的变量图对于非正态过程更稳健。基尼图在检测过程变异性转变方面比R和S图更强大有力。本文的结果对于理论工作者和实际工作者在设计属性图来监控分散计数数据和稳健变量控制图来监控变量数据方面都非常有帮助。
In statistical quality control, there are two types of quality characteristics. The quality characteristics that can be measured numerically are known as vari-ables. Many quality characteristics cannot be measured numerically but can be classified into various categories. Quality characteristics of this type are called attributes. This thesis proposed flexible and robust control charts for efficient statistical process monitoring. Count data may be used to measure the number of defective items in industrial applications or the incidence of a certain disease at a health facility. The Poisson distribution is a popular distribution used to describe count information, from which control charts involving count data have been es-tablished. The Poisson distribution is based on the underlying equi-dispersion (mean and variance are equal) assumption. In the reality, this assumption is seldom fulfill and the control charts based on the Poisson distribution are very sensitive to over-dispersed (mean is less than variance) or under-dispersed (mean is greater than variance) data. Therefore, flexible control charts are needed that can be used for under-dispersed or over-dispersed count data. This thesis con-tributes some univariate and a multivariate flexible control charting structures to be used as add-in for Statistical Process Control (SPC) toolkit. Control charts for variables are generally based on the assumption that the underlying process follow normal parent distribution. However, this assumption is also seldom ful-fill in the reality. Therefore, a robust control chart is needed that can be used to monitor the process parameter more efficiently for normal as well as non-normal processes. The robustness study and designing of Gini-Chart (a process variability chart) for various non-normal distributions is proposed in this thesis. The proposed charting structures are designed to monitor dispersed count data sets more efficiently in attributes and to provide a robust process monitoring in variables.
     Sellers (2012) proposed a flexible and generalized COM-Poisson chart for monitoring count data. She developed the3-sigma limits only. In this thesis, we extended her work and developed the exact κ-sigma and the true probabil-ity limits of the COM-Poisson charts, and analyzed using different performance measures. A generalized and flexible Exponentially Weighted Moving Average (EWMA) control chart based on the COM-Poisson distribution has been pro-posed. Three kinds of cumulative sum (CUSUM) control charts have been also proposed to monitor small shifts in dispersed count data more efficiently. A flexible multivariate shewhart type control chart, for efficient monitoring of dis-persed count data is also designed and studied in this work. The robustness of the Gini-chart, a newly proposed variability chart, has been studied for various non-normal processes. Finally, the designing of the Gini-chart for non-normal distribution along the X chart is made and the necessary coefficients and quar-tile points are provided. The performance ability of the proposals is evaluated in terms of some useful measures including power function (1-β), False alarm rate, average run length (ARL), median run length (MDRL), standard deviation of run length (SDRL) distribution, average number of signals (ANOS). We have investigated and compared the performance of different proposed control charts using extensive Monte Carlo simulations and Markov chain approach. We have also included some real and simulated data sets in order to highlight, the practi-cal application of the proposals cover in this thesis. A comprehensive review and perspective of the control charts to monitor dispersed count data is also provided in this thesis.
     The results of flexible design structures indicate that all the proposed chart-ing structures are flexible to under-or over-dispersed count data and generalize to the existing attributes charts as special cases. The proposed flexible charting structures are more efficient than the Sellers (2012) chart in detecting shifts in the average number of defects. Also, these structures are easy to implement and provide the real pictures about the state of process control. The results of the robust designed chart show that the Gini chart is very robust to non-normal processes than other existing variability charts. The Gini chart is more powerful than R and S charts in detecting the shift in the process variability. The results of this thesis are very helpful to the researchers and practioners in designing the attributes control chart to monitor dispersed count data and a robust variability control chart to monitor variable data.
引文
[1]Abbasi, S. A., and Miller, A. (2012). On proper choice of variability control chart for normal and non-normal processes. Quality and Reliability Engi-neering International,28:279-296.
    [2]Abbasi, S. A., Riaz, M., and Miller, A. (2012). Enhancing the performance of CUSUM scale chart. Computer and Industrial Engineering,63:400-409.
    [3]Abbasi, S. A. (2010). On the performance of EWMA chart in presence of two components of measurement error. Quality Engineering,22(3):199-213.
    [4]Abujiya, M. R., Farouk, A. U., Lee, M. H., and Mohamad, I. (2013). On the sensitivity of Poisson EWMA Control Chart. International Journal of Humanities and Management Sciences,1(1):18-22.
    [5]Abujiya, M. R., Riaz, M., and Lee, M. H.(2013). Improving the Performance of Combined Shewhart-Cumulative Sum Control Charts. Quality and Reli-ability Engineering International,29:1193-1206.
    [6]Abujiya, M. R., Riaz, M., and Lee, M.H.(2013). Enhancing the Performance of Combined Shewhart-EWMA Charts. Quality and Reliability Engineering International,29:1093-1106.
    [7]Acosta-Mejia, C. A. (1999). Improved p charts to monitor process quality. HE Transactions,31(6):509-516.
    [8]Aebtarm, S., and Bouguila, N. (2011). An empirical evaluation of attribute control charts for monitoring defects. Expert System with Applications, 38:7869-7880.
    [9]Albers, W. (2009). Control charts for health care monitoring under over-dispersion. Metrika,74 (1):67-83.
    [10]Albers, W. (2010). The optimal choice of negative binomial charts for moni-toring high-quality processes. Journal of Statistical Planning and Inference, 140:214-225.
    [11]Alwan, L. C.,and Roberts, H. V. (1995). The problem of misplaced control limits. Applied Statistics,44:269-278.
    [12]Alwan, L. C. (2000). Statistical Process Analysis. McGraw-Hill, London, International edition.
    [13]Aparisi, F., Bustos, S. G., and Epprecht, E. K. (2013).Optimum multiple and multivariate Poisson statistical control charts. Quality and Reliability Engineering International, doi:10.1002/qre.1490.
    [14]Banks, J.(1989).Principles of Quality Control John Wiley and Sons, New York,4th edition.
    [15]Benneyan, J. C. (2001). Number-between g-type statistical quality control charts for monitoring adverse events. Health Care Management Science, 4(4):305-318.
    [16]Bersimis, S., Psarakis, S., and Panaretos, J. (2007). Multivariate Statistical Process Control Charts:An Overview. Quality and Reliability Engineering International,23:517-543.
    [17]Bohm, W., and Hackl, P. (1996). The effect of serial correction on the in-control average run Length of cumulative score charts. Journal of Statistical Planning and Inference,54:15-30.
    [18]Bohning, D. (1998). Zero-inflated Poisson models and C.A.MAN:a tutorial collection of evidence. Biometrical Journal,40:833-843.
    [19]Borror, C.M., Champ, C.W., and Rigdon, S. E. (1998). Poisson EWMA Control Charts. Journal of Quality Technology,30(4):352-361.
    [20]Bourke, P. D. (1991). Detecting a shift in fraction nonconforming using run-length control charts with 100 percent inspection. Journal of Quality Technology,23:225-238.
    [21]Bourke, P. D. (2001). The geometric CUSUM chart with sampling inspection for monitoring fraction defective. Journal of Applied Statistics,28 (8):951-972.
    [22]Braun, W. J. (1999). Run length distribution for estimated attributes charts. Metrika,50:121-129.
    [23]Brook, D., and Evans, D. A. (1972). An Approach to the Probability Dis-tribution of CUSUM Run Length. Biometrika,59:539-549.
    [24]Burr, I. W. (1967). The effect of non-normality on constant for X and R charts. Industrial Quality Control 23:563-568.
    [25]Calvin, T. W. (1983). Quality control techniques for zero-defects. IEEE Transactions on Components hybrids and Manufacturing Technology, CHMT-6:323-328.
    [26]Capizzi, G. and Masarotto,G.(2010). Combined Shewhart-EWMA con-trol charts with estimated parameters. Jornal of Statistical Simulation and Computation,80(7):793-807.
    [27]Castagliola, P., Wu, S., Koo, M. B. C., and Chakraborti, S.(2013). Synthetic Phase Ⅱ Shewhart-type Attributes control charts when parameters are esti-mated. Quality and Reliabilty Engineering International,30(3):315-335.
    [28]Chakraborti, S., and Human, S. W. (2008). Properties and performance of the c chart for attributes data. Journal of Applied Statistics,35(1):89-100.
    [29]Chakraborti, S., Human, S. W., and Graham, M. A.(2009). Phase-I statisti-cal process control charts:An overview and some results. Quality Engineer-ing,21:52-62.
    [30]Chan, L.K. and Zhang, J. (2000). Some issues in the design of EWMA charts. Communications in Statistics-Simulation and Computation,29(1):207-217.
    [31]Chan, L. Y., Xie, M., and Goh, T. N. (1997). Two-stage control charts for high yield processes. International Journal of Reliability, Quality and Safety Engineering,4(2):149-165.
    [32]Chan, L. Y., Lai, C. D., Xie, M., and Goh, T. N. (2003). A two-stage de-cision procedure for monitoring processes with low fraction nonconforming. European Journal of Operational Research,150(2):420-436.
    [33]Chang, Y. M., and Wu, T. L. (2011). On average run lengths of control charts for autocorrelated processes. Methodology and Computing in Applied Probability,13(2):419-431.
    [34]Chang, T. C., and Gan, F. F. (2001). Cumulative Sum Charts for High Yield Processes. Statistica Sinica,11:791-805.
    [35]Chang, T. C., and Gan, F. F.(2007). Modified Shewhart charts for high yield processes. Journal of Applied Statistics,34(7):857-877.
    [36]Chen, G. (1998). An improved p chart through simple adjustments. Journal of Quality Technology,30(2):142-151.
    [37]Chen.C-W. (2012). Using geometric Poisson EWMA control schemes in a compound Poisson production environment. Computers and Industrial Engineering,63:374-381.
    [38]Chen, N., Zhou, S., Chang, T. S., and Huang, H.(2008). Attribute con-trol charts using generalized zero-inflated Poisson distribution. Quality and Reliability Engineering International,24 (7):793-806.
    [39]Cheng, C. S., and Cheng, S. S. (2001).A CUSUM control scheme for clus-tered defects. Journal of Chinese Institute of Industrial Engineers,18(6):1-8.
    [40]Cheng, S. S., and Yu, F. J. (2013). A CUSUM Control Chart to moni-tor wafer quality. World Academy of Science, Engineering and Technology, 78:1318-1323.
    [41]Chiu, J. E., and Kuo, T. I. (2007). Attribute control chart for multivari-ate Poisson distribution. Communication in Statistics-Theory and Methods, 37(1):146-158.
    [42]Chiu, J. E., and Kuo, T. I. (2010). Control charts for fraction nonconforming in a bivariate binomial process. Journal of Applied Statistics,37(10):1717-1728.
    [43]Christensen, A., Melgaard, M., Iwersen, J., and Thyregod, P. (2003). Envi-ronmental monitoring based on a Hierarchical Poisson-Gamma Model. Jour-nal of Quality Technology,35:275-285.
    [44]Consul, P. and Jain, G. C. (1973). A generalizing of the Poisson distribution. Technometrics,15:791-799.
    [45]Conway, R.W. and Maxwell, W. L. (1962). A queuing model with state dependent service rates. Journal of Industrial Engineering,12:132-136.
    [46]Corain, L. and Salmaso, L. (2013). Nonparametric permutation and combination-based multivariate control charts with applications in micro-electronics. Applied Stochastic Models in Business and Industry,29(4):334-349.
    [47]Cozzucoli, P. C. (2009). Process monitoring with multivariate p-control chart. International Journal of Quality, Statistics and Reliability, doi:10.1155/2009/707583. Art. ID 707583.
    [48]Crowder, S. V., and Hamilton, M. D.(1992). An EWMA for monitoring a process standard deviation. Journal of Quality Technology,24(1):225-238.
    [49]David, H. A. (1968). Gini's Mean difference rediscovered. Biometrika, 55:573-575.
    [50]Dong, Y., Hedayat, A. S., and Sinha, B. K. (2009). Surveillance strategies for detecting change point in incidence rate based on exponentially weighted moving average methods. Journal of the American Statistical Association, 103:843-853.
    [51]Duncan, A. P. (1986). Quality Control and Industrial Statistics, Irwin, Homewood,5th edition.
    [52]Duran, R. I., and Albin, S. L.(2009). Monitoring a fraction with easy and reliable settings of the false alarm rate. Quality and Reliability Engineering International,25 (8):1029-1043.
    [53]Epprecht, E. K., Simoes, B. F., and Mendes, F. C. T. (2010). A variable sam-pling interval EWMA chart for attributes. International Journal of Manu-facturing Technology,49:281-292.
    [54]Ewan, W. D., and Kemp, K. W. (1960). Sampling inspection of continu-ous process with no autocorrelation between successive results. Biometrika, 47:363-380.
    [55]Famoye, F. (2007). Statistical control charts for shifted generalized Poisson distribution. Statistical Methods and Applications,3(3):339-354.
    [56]Fang, Y. (2003). C-chart, X-chart and the Katz family of Distributions. Journal of Quality Technology,35(1):104-114.
    [57]Farouk, A. U., Mohamad, I. B., and Abdulhameed, G. M. (2013). The effec-tiveness of MEWMA Control Chart with mild correlation. Australian Jour-nal of Basic and Apploed Sciences,7(11):232-237.
    [58]From, S. G. (2004). Approximating the distribution of a renewal process using generalized Poison distributions. Journal of Statistical Computation and Simulation,74:667-681.
    [59]Gan, F. F. (1990). Monitoring Poisson Observations Using Modified Ex-ponentially Weighted Moving Average Control Charts. Communications in Statistics-Simulation and Computation,19:103-124.
    [60]Gan, F. F.(1993). An optimal design of CUSUM control charts for binomial counts. Journal of Applied Statistics,20(4):445-460.
    [61]Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003). Bayesian Data Analysis, Chapman and Hall,2nd edition.
    [62]Gibbons, R. D. (1999). use of combined Shewhart-CUSUM control charts for ground water monitoring applications. Ground Water,37(5):682-691.
    [63]Glushkovsky, E. A. (1994). On line G-control chart for attribute data. Qual-ity and Reliability Engineering International,10:217-227.
    [64]Goh, T. N. (1987). A control chart for very high processes. Quality Assur-ance,13:18-22.
    [65]Goh, T. N. (1987). A charting technique for control of low-defective produc-tion. International Journal of Quality and Reliability Management,4(1):53-62.
    [66]Goh, T. N., and Xie, M. (2003). Statistical control of a six sigma process. Quality Engineering,15(4):587-592.
    [67]Graham, M. A., Human, S., and Chakraborti, S. (2010). A Phase I nonparamet-ric Shewhart-type control chart based on the median. Jour-nal of Applied Statistics,37(11):1795-1813.
    [68]Grant, E. L., and Leavenworth, R. S.(1996). Statistical Quality Control.New York, McGraw-Hill.
    [69]Grigg, O. A., Spiegelhalter, D. J., and Jones, H. E. (2009). Local and marginal control charts applied to methicillin resistant Staphylococcus au-reus bacteraemia reports in UK acute Nat. Health Service trusts. Journal of Royal Statistical Society-A,172:49-66.
    [70]Guikema, S. D., and Coffelt, J. P. (2008). A flexible count data regression model for risk analysis. Risk Analysis,28(1):213-223.
    [71]Han, S. W., Tsui, K. L., Ariyajunya, B., and Kim, S. B. (2010). A Com-parison of CUSUM, EWMA, and Temporal Scan Statistics for Detection of Increases in Poisson Rates. Quality and Reliability Engineering Interna-tional,26:279-289.
    [72]Hawkins, D. M. (1981). A CUSUM for scale parameter. Journal of Quality Technology,13(4):226-231.
    [73]Hawkins, D. M., and Olwell, D. H.(1998). Cumulative Sum Charts and Charting for Quality Improvement, Springer-Verlag, New York, NY.
    [74]Hoffman, D. (2003). Negative binomial control limits for count data with extra-Poisson variation. Pharmaceutical Statistics,2:127-32.
    [75]Ho, L. L., and Costa, A. F. B. (2009). Control charts for individual obser-vations of a bivariate Poisson process. International Journal of Advanced Manufacturing Technology,43:744-755.
    [76]Holgate, P. (1964). Estimation for the bivariate Poisson distribution. Biometrika,51:241-245.
    [77]Human, S. W. (2009). Univariate parametric and nonparametric statistical quality control techniques with estimated process parameters, Unpublished Ph.D. dissertation, Department of Statistics, University of Pretoria, South-Africa.
    [78]Human, S. W., Chakraborti, S., and Smit, C. F. (2010). Shewhart-type control charts for variation in Phase I data analysis. Computational Statistics and Data Analysis,54(4):863-874.
    [79]Jahromi, S. M. Z., Saghaei, A., and Ariffin, M. K. A. (2012). A review on Fuzzy Control Charts for Monitoring Attribute data. Applied Mechanics and Materials,159:23-28.
    [80]Jin, R., Liu, K. (2013). Multimode variation modeling and process monitor-ing for serial-parallel Multistage manufacturing processes. HE Transactions, 45:617-629.
    [81]Jolayemi, J. K. (1999). A statistical model for the design of multivariate control charts. Indian Journal of Statistics,61(2):351-365.
    [82]Joner-Jr, M. D., Woodall, W. H., and Reynolds-Jr, M. R. (2008). Detect-ing a rate increase using a Bernoulli scan statistic. Statistics in Medicine, 27(14):2555-2575.
    [83]Jones, L. A., Woodall, W.H., and Conerly, M. D. (1999). Exact properties of demerit control chart. Journal of Quality Technology,31:207-215.
    [84]Kaminsky, F. C., Benneyan, J. C., Davis, R. D., and Burke, R. J. (1992). Statistical control charts based on a geometric distribution. Journal of Qual-ity Technology,24(2):63-69.
    [85]Kao, S. C., Ho, C.(2007). Robustness of R-Chart to Non Normality. Com-munications in statistics-Simmulation and Computaion,36:1089-1098.
    [86]Khilare, S. K., Shirke, D. T. (2012). Nonparametric Synthetic Control Charts for Process Variation. Quality and Reliability Engineering Inter-national,28:193-202.
    [87]Khoo, M. B. C.(2004). Design of runs rules schemes. Quality Engineering, 16:27-43.
    [88]Khoo, M. B.C. (2004). A moving average control chart for monitoring the fraction non-conforming. Quality and Reliability Engineering International, 20:617-635.
    [89]Kim, M. J. (2005). Number of replications required in control chart Monte Carlo simulation studies. Ph.D. dissertation, University of Northern Col-orado.
    [90]Klein, M. (1996). Composite Shewhart-EWMA statistical control schemes. HE Transactions,28(6):475-481.
    [91]Koshti, V. V. (2011). CUMULATIVE SUM control charts. International Journal of Physics and Mathematical Sciences, 1(1):28-32.
    [92]Kotani, T., Kusukawa, E., and Ohta, H. (2005). Exponentially weighted moving average chart for high-yield processes. Industrial Engineering and Management Systems,4(1):75-81.
    [93]Kumar, N. and Chakraborti, S. (2014). Improved Phase I Control Charts for Monitoring Times Between Events. Qulaity and Reliability Engineering International,DOI:10.1002/qre.1623.
    [94]Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing. Technornetrics,34:1-14.
    [95]Laungrungrong, B., Borror, C. M.,and Montgomery, D.C. (2011). EWMA control charts for multivariate Poisson-distributed data. International Jour-nal of Quality Engineering and Technology,2(3):185-211.
    [96]Lee, J., Wang, N., Xu, L., Schuh, A., and Woodall, H. W. (2012). The effect, of parameter Estimation on upper-sided Bernoulli Cumulative Sum Charts. Quality and Reliability Engineering International,29(5):639-651.
    [97]Li, Z.,and Wang, Z.(2010). Adaptive CUSUM of the Q chart. International Journal of Production Research,48(5):1287-1301.
    [98]Li, Y. T., and Xi, L. F.(2010). Statistical process control of over-dispersed multivariate count data. Industrial Engineering and Engineer-ing Management (IEEM), IEEE 17th International Conference,888-892. DOI:10.1109/ICIEEM.2010.5646482.
    [99]Li, Y.,and Tsung. F. (2012). Multiple attribute control charts with false discovery rate control. Quality and Reliability Engineering International, 28:857-871.
    [100]Li. Z., Dai, Y., and Wang, Z. (2014). Multivariate Change Point Con-trol Chart Based on Data Depth for Phase I Analysis. Communications in Statistics-Simulation and Computation,43(6):1490-1507.
    [101]Lomnicki, Z. A. (1952). The standard error of Gini's mean difference. The Annals of Mathematical Statistic,23:635-637.
    [102]Lu, X.S., Xie. M., Goh, T. H., and Lai, C. D. (1998). Control chart for mul-tivariate attribute processes. International Journal of Production Research, 36:3347-3489.
    [103]Lucas, J. M. (1982). Combined Shewhart-CUSUM Quality Control Schemes. Journal of Quality Technology,14(2):51-59.
    [104]Lucas, J. M., and Crosier, R. B. (1982). Fast initial response for CUSUM quality control schemes:give your CUSUM a head start. Technometrics, 24:199-205.
    [105]Lucas, J. M. (1985). Counted Data CUSUM's. Technometrics,27:129-144.
    [106]Lucas, J. M. and Saccucci, M. S. (1990). The exponentially weighted mov-ing average control schemes:Properties and Enhancements (with discus-sion). Technometrics,32:1-12.
    [107]Lucas, J. M., Davis, D. J., and Saniga, E. M. (2006). Detecting improve-ment using Shewhart attribute control charts when the lower control limit is zero. HE Transactions,38(8):699-709.
    [108]Luceno, A. (2005). Recursive characterization of a large family of discrete probability distributions showing extra-Poisson variation. Statistics,39:261-267.
    [109]Mahmoud, M. A. and Woodall, W. H. (2004). Phase I analysis of linear profiles with calibration application. Technometrics,46:277-391.
    [110]Mahoney, J. F. (1998). The influence of parent population distribution on d2 values. HE Transactions,30:563-569.
    [111]Marshall, C., Best, N., Bottle, A., and Aylin, P. (2004). Statistical issues in the prospective monitoring of health outcomes across multiple units. Journal of Royal Statistical Society-A,167:541-559.
    [112]Mason, R. L., and Young, J. C. (202). Multivariate Statistical Process Con-trol with Industrial Applications. The American Statistical Association and the Society for Industrial and Applied Mathematics.
    [113]McCool, J. I., and Joyner-Motley, T. (1998). Control charts applicable when the fraction nonconforming is small. Journal of Quality Technology, 30(3):240-247.
    [114]McCraken, A. K. and Chakraborti, S.(2013). Control charts for joint Mon-itoring of Mean and Variance:An Overview. Quality Technology and Quan-titative Management,10(1):17-23.
    [115]Megahed, F. M., Kensler, J. L. K., Bedair, K., and Woodall, W. H. (2011). A note on the ARL of two-sided Bernoulli-based CUSUM control charts. Journal of Quality Technology,43(1):43-49.
    [116]Mehmood R., Riaz, M., and Does, R. J. M.M.(2013). Control charts for location based on different sampling schemes. Jornal of Applied Statistics, 40(3):483-494.
    [117]Mei, Y., Han, S. W., and Tsui, K-L.(2011). Early detecting of a change in Poisson rate after accounting for population size effects. Statistica Sinica, 21:597-624.
    [118]Mercado, G. R., Conerly, M. D., and Perry, M. B. (2011). Phase I con-trol chart based on a kernel estimator of the quantile function. Quality and Reliability Engineering International,27(8):1131-1144.
    [119]Minka, T. P., Shmueli, G., Kadane, J. B., Borle, S., and Boatwright, P. (2003). Computing with the COM-Poisson distribution. Technical Report Se-ries, Carnegie Mellon University Department of Statistics, Pennsylvania.
    [120]Mittag, H., Rinne, J., and Rinne, H.(1984). Statistical methods of quality assurance. Chapman and Hall.
    [121]Mohammed, M. A., Panesar, J. S., Laney, D. B., and Wilson, R. (2013). Statistical Process Control Charts for attribute data involving very large sample sizes:a review of problems and solutions. BMJ Quality and Safety, 12:362-368.
    [122]Montgomery, D. C. (2009). Introduction to Statistical Quality Control Wi-ley, New York, 6th edition.
    [123]Montgomery, D. C. (2012). Introduction to Statistical Quality Control. Wiley, New York,7th edition.
    [124]Moustakides, G. V.(1986). Optimal Stopping Times for Detecting Changes in Distributions. Annals of Statistics,14:1379-1387.
    [125]Mousavi, S., and Reynolds, Jr-M. R. (2009). A CUSUM chart for monitor-ing a proportion with autocorrelated binary observations. Journal of Quality Technology,41(4):401-414.
    [126]Munoz, J. and Nielsen C. (1991). What data should I collect? What charts should I use. Quality Progress,24:50-52.
    [127]Nair, U. S. (1932). The standard error of Gini's means difference. Biometrika,28:428-436.
    [128]Nam, H. S., and Kang, J. C. (2001). An X control chart based on the gini's mean difference. Journal of the Korean Society for Quality Management, 29(3):79-85.
    [129]Nelson, P. R. (1985). Power curves for the analysis of means. Technometrics, 27:65-73.
    [130]Nelson, L. S. (1997). Supplementary runs tests for np control charts. Jour-nal of Quality Technology,29(2):225-227.
    [131]Niaki, S. T. A., and Abbasi, B. (2007). Bootstrap method approach in designing multi-attribute control charts. International Journal of Advanced Manufacturing Technology,35:434-442.
    [132]Niaki, S. A., and Abbasi, B. (2007). On the monitoring of multi-attributes high-quality production processes. Metrika,66(3):373-388.
    [133]Oakland, J. S.(2003). Statistical process control. Butterworth Heinemann, 5th edition.
    [134]Ohta, H. and Kusukawa, E. (2004). An application of confirmation sample control chart to the high-yield processes and its economic design. Frontiers in Statistical Quality Control 7, HJ Lenz, PT Wilrich (eds). Physiea-Verlag: Heidelberg, Germany,101-118.
    [135]Ou, Y. J., Wu, Z., and Goh, T. N. (2011). A new Sprt chart for monitoring process mean and variance. International Journal of Production Economics, 132(2):303-314.
    [136]Ou, Y., Wen. D., Wu, Z., Khoo, M. B. C. (2012). A comparison study on effectiveness and robustness of control charts for monitoring process mean and variance. Quality and Reliability Engineering International,28:3-17.
    [137]Padgett, C. S., Thombs, L. A., Padgett, W. J. (1992). On the a-risks for Shewhart control charts. Communications in Statistics-Simulations and Computations,21:1125-1147.
    [138]Page, E. S. (1954). Continuous inspection schemes. Biometrika,41:100-115.
    [139]Page, E. S. (1962). Cumulative Sum Schemes using Gauging. Technomet-rics,4:97-109.
    [140]Psarakis, S., Vyniou, K. A., and Castagliola, P. (2013). Some Recent Devel-opments on the Effects of Parameter Estimation on Control Charts. Quality and Reliability Engineering International, DOI:10.1002/qre.1556.
    [141]Patel, H. I. (1973). Quality control methods for multivariate binomial and Poisson distributions. Technometrics,15:103-112.
    [142]Perry, M. B., and Pignatiello, J. J.(2011). Estimating the time of step change with Poisson CUSUM and EWMA control charts. International Jour-nal of Production Research,,49(10):2857-2871.
    [143]Poortema, K. (1999). On modeling over dispersion of counts. Statistica Neerlandica,53(1):5-20.
    [144]Rahim, M. A., Costa, A. F. B. (2000). Joint economic design of X and R charts under Weibull shock models. International Journal of Production Research,28:2871-2889.
    [145]Ramirez, J. G., and Cantell, B. (1997). An analysis of a semiconductor experiment using yield and spatial information. Quality and Reliability En-gineering International,13:35-46.
    [146]Reynolds-JR, M. R., and Stoumbos, Z. J. (1998). The SPRT Chart for Mon-itoring a Proportion. HE Transactions on Quality and Reliability,30:545-561.
    [147]Reynolds-JR, M. R., and Stoumbos, Z. J.(1999). A CUSUM Chart for Monitoring a Proportion when Inspecting Continuously. Journal of Quality Technology,31(1):87-108.
    [148]Reynolds-Jr, M. R., and Stoumbos, Z. G. (2000). A general approach to modeling CUSUM charts for a proportion. HE Transactions,32(6):515-535.
    [149]Reynolds, M. R., Stoumbos, Z. G. (2001). Monitoring the process mean and variance using Individual observations and variable sampling intervals. Journal of Quality Technology,33(2):181-205.
    [150]Reynolds-Jr, M. R. (2013). The Bernoulli CUSUM chart for detecting de-creases in a proportion. Quality and Reliability Engineering International, 29:529-534.
    [151]Riaz, M., Saghirr, A. (2007). Monitoring Process Variability using Gini's mean difference. Quality Technology and Quantitative Management,4:439-454.
    [152]Riaz, M. (2008). A dispersion control charts. Communications in statistics-Simmulation and Computation,37:1239-1261.
    [153]Riaz, M., Does, R. J. M. M. (2008). An alternative to the bivariate Control Chart for Process Dispersion. Quality Engineering,21(1):63-71.
    [154]Riaz, M., Abbasi, S. A. (2009). Gini's mean difference based Time-Varying EWMA charts. Economic Quality Control,24(2):269-286.
    [155]Riaz, M. and Saghir, A. (2009). A mean deviation-based approach to mon-itor process variability. Journal of Statistical Computation and Simulation, 79:1173-1193.
    [156]Ridout, M. S., and Besbeas, P. (2004). An empirical model for under-dispersed count data. Statistical Modeling,4:77-89.
    [157]Roberts, S. W. (1959). Control chart tests based on geometric moving averages. Technometrics,42(1):239-250.
    [158]Roberts, S.W. (1966). A Comparison of Some Control Chart Procedures. Technometrics,8:411-430.
    [159]Rocke, D. M. (1992). XQ and RQ:Robust control charts. The Statistician, 41:97-104.
    [160]Ross, G. J., Adams, N. M., Tasoulis, D. K., and Hand, D. J. (2012). Ex-ponentially Weighted Moving Average Charts for detecting concept drift. Pattern Recognition Letters,33:191-198.
    [161]Runger, G. C., and Willemain, T. R. (1995). Model-based and Model free Control of Autocorrelated processes. Journal of Quality Technology,27:283-292.
    [162]Ryan, T. P., and Schwertman, N. C. (1997). Optimal limits for attributes control charts. Journal of Quality Technology,29:86-98.
    [163]Ryan, A. G., and Woodall, W. H. (2010). Control charts for Poisson count data with baring sample sizes. Journal of Quality Technology,42:260-274.
    [164]Ryan, T. P. (1989). Statistical methods for Quality improvement. John Wi-ley and Sons, New York, lat edition.
    [165]Saghir, A., Saleem, A., Anjum, M. S. (2012). Use of Gini's Mean Difference in Analysis of Means. Pakistan Journal of Science,64(4):363-369.
    [166]Santos, D. (2009). Beyond Six Sigma-A Control Chart for Tracking De-fects per Billion Opportunities (dpbo). International Journal of Industrial Engineering,16(3):227-233.
    [167]Schaffer, J. R. and Kim, M. J. (2007). Number of replications required in control chart Monte Carlo simulation studies. Communication in Statistics-Simulation and Computation,36(5):1075-1087.
    [168]Schilling, E. G., Nelson, P. R. (1976). The effect of non-normality on the control limits of X charts. Journal of Quality Technology,8:183-188.
    [169]Schoonhoven, M., Does, J. M. M. (2010). The X control chart under Non-Normality. Quality and Reliability Engineering International,26:167-176.
    [170]Schoonhoven, M., Riaz, M., Does, J. M. M. (2011). Design and Analysis of control charts for Standard Deviation with estimated Parameters. Journal of Quality Technology,43(4):307-333.
    [171]Schwertman, N. C., and Ryan, T. P.(1997). Implementing optimal at-tributes control charts. Journal of Quality Technology,29(1):99-104.
    [172]Schwertman, N. C., and Ryan, T. P.(1999). Using dual np-charts to detect changes. Quality and Reliability Engineering International,15(4):317-320.
    [173]Schwertman, N. C.. (2005). Designing accurate control charts based on the geometric and negative binomial distributions. Quality and Reliability En-gineering International,21:743-756.
    [174]Sego, L. H., Woodall, W. H., Reynolds. Jr-, M.R.(2008).A comparison of surveillance methods for small incidence rates. Statistics in Medicine, 27(8):1225-1247.
    [175]Sellers, K. F. (2012). A generalized statistical Control Chart for over-or under-dispersed data. Quality and Reliability Engineering International, 28:59-65.
    [176]Sellers, K. F., Borle, S., and Shmueli, G. (2012). The COM-Poisson Model for count data:a survey of methods and applications. Applied Stochastic models for Business and Industry,28(2):104-116.
    [177]Shah, S., Shridhar, P., and Gohil, D. (2010). Control chart:A statistical process control tool in pharmacy. Asian Journal of Phramecuetics,4(3):184-192.
    [178]Shang, Y., Tsung, F., and Zou, C. (2011). Phase II profile monitoring with binary data and random predictors. Journal of Quality Technology,43:196-208.
    [179]Shankar, V., Milton, J., and Mannering, F. (1997). Modeling accident fre-quencies as zero-altered probability processes:an empirical inquiry. Accident Analysis and Prevention,29:829-837.
    [180]Shapiro, S.S., Zahedi H. (1990). Bernoulli trials and discrete distributions. Journal Quality Technology,22:193-205.
    [181]Sheaffer, R., and Leavenworth, R. (1976). The negative binomial model for counts in units of varying size. Journal of Quality Technology,8(3):158-163.
    [182]Shen, X., Tsung, F., Zou, C., and Jiang, W. (2013). Monitoring Poisson Count Data With probability Control Limits when Sample Sizes are Time-Varying. Naval Research Logistics,60(8):625-636.
    [183]Sheu, S. Huei., Tai S. H., Hsieh. Y. T., Lin, T. C. (2009). Monitoring process mean and variability with generally weighted moving average control charts. Computers and Industrial Engineering,57:401-407.
    [184]Sheu, S. Huei., Huang, C. J., Hsu, T. S. (2012). Extended maximum gen-erally weighted moving average control chart for monitoring process mean and variability. Computers and Industrial Engineering,62:216-225.
    [185]Shewhart, W.A. (1926). Quality control charts. Bell Systems Technical Journal,5(4):593-603.
    [186]Shewhart, W.A. (1927). Quality control. Bell Systems Technical Journal, 6(4):722-735.
    [187]Shewhart, W. A. (1931). Economic Control of Quality of Manufactured Product. Van Nostrand, New York.
    [188]Shmueli, G., Minka, T. P., Kadane, J. B., Borle, S., and Boatwright, P. (2005). A useful distribution for fitting discrete data:Revival of the Conway-Maxwell-Poisson distribution. Applied Statistics,54:127-142.
    [189]Shu, L., Jiang, W., and WU, Z. (2012). Exponentially Weighted Moving Average Control Charts for Monitoring Increases in Poisson rate. HE Trans-actions,44:711-723.
    [190]Sim, C. H. (2000). S-chart for non-Gaussian variables. Journal of Statistical Computation and Simulation,65:147-156.
    [191]Sim, C. H., Wong, W. K. (2003). R-Charts for the exponential, Laplace and logistic processes. Statistical Papers,44:535-554.
    [192]Simoes, B. F. T., Bebbington, M. S., and Costa, A. F. B. (2010). Perfor-mance Comparisons of EWMA Control Chart Schemes. Quality Technology and Quantitative Management,7(3):249-261.
    [193]Singh, S. and. Prajapati, D. R. (2013). Performance of CUSUM and EWMA charts for serial correlation. The Total Quality Management Jour-nal,25(3):309-324.
    [194]Skinner, K. R., Montgomery, D. C., and Runger, G. C. (2003). Process monitoring for multiple counts data using generalized linear model-based control charts. International Journal of Production Research,41:1167-1180.
    [195]Somerville, S.E., Montgomery, D. C., and Runger, G.C. (2002). Filtering and smoothing methods for mixed particle count distributions. International Journal of Production Research,40(13):2991-3013.
    [196]Sparks, R. S., Keighley, T., and Muscatello, D. (2010). Exponentially weighted moving average plans for detecting unusual negative binomial counts. HE Transactions,42:721-733.
    [197]Sparks, R. S., Keighley, T., and Muscatello, D. (2011). Optimal exponen-tially weighted moving average (EWMA) plans for detecting seasonal epi-demics when faced with non-homogenous negative binomial counts. Journal of Applied Statistics,38:2165-2181.
    [198]Spliid, H. (2007). Monitoring medical procedures by exponential smooth-ing. Statistics in Medicine,26:124-138.
    [199]Spliid, H. (2010). An Exponentially Weighted Moving Average Control Chart for Bernoulli Data. Quality and Reliability Engineering International, 26:97-113.
    [200]Steiner, S. H., and Jones, M. (2010). Risk-adjusted survival time monitoring with an updating exponentially weighted moving average (EWMA) control chart. Statistics in Medicine,28:444-454.
    [201]Stewart, B. A., James, R. E., Knowlton, K. F., McGilliard, M. L., and Hanigan, M. D. (2011). CASE STUdY:An example of application of process control charts to feed management on dairy farms. The Professional Animal Scientist,27:571-573.
    [202]Sun, J. and Zhang, G. (2000). Control charts based on the number of consecutive conforming items between two successive nonconforming items for the near zero non-conformity processes. Total Quality Management, 11(2):235-250.
    [203]Szarka-Ⅲ, J. L. and Woodall, W. H. (2011). A Review and Perspective on the Surveillance of Bernoulli Processes. Quality and Reliability Engineering International,27:735-752.
    [204]Tang, L. C., and Cheong, W. T. (2006). A control scheme for high-yield cor-related production under group inspection. Journal of Quality Technology, 38(1):45-55.
    [205]Tang, L. C., and Cheong, W. T. (2004). Cumulative Conformance Count Chart with Sequentially Updated Parameters. HE Transactions,36:841-853.
    [206]Tasdemir, A. (2012). Effect of autocorrelation on the process control Charts in monitoring of a coal washing plant. Physicochemical Problems of Mineral Processing,48(2):495-512.
    [207]Tasdemir, A. and Kowalczuk, P. B. (2014). Application of statistical pro-cess control for proper processing of the fore-sudetic Monocline copper ore. Physicochemical Problems of Mineral Processing,50(1):249-264.
    [208]Tasias, K, A., Nenes, G. (2012). A variable parameter Shewhart control scheme for joint monitoring of process mean and variance. Computers and Industrial Engineering,63:1154-1170.
    [209]Teh, S. Y., Khoo, M. B. C., Wu, Z. (2012). Monitoring Process Mean and Variance with a Single Generally Weighted Moving Average Chart. Com-munications in Statistics-Theory and Methods,12:2221-2241.
    [210]Testik, M. C., McCullough, B. D., and Borror, C. M. (2006). The effect of estimated parameters on Poisson EWMA control charts. Quality Technology and Quantitative Management,3(4):513-527.
    [211]Testik, M. C. (2007). Conditional and marginal performance of the Poisson CUSUM control chart with parameter estimation. International Journal of Production Research,45 (23):5621-5638.
    [212]Thor, J., Lundberg, J., Ask, J., Olsson, J., Carli, C., Harenstam, K. P., and Brommels, M. (2007). Application of statistical process control in healthcare and improvement:A systematic review. Quality and Safety in Health Care, 16:387-399.
    [213]Topalidou, E., and Psarakis, S. (2009). Review of Multinomial and Mul-tiattribute Quality Control Charts. Quality and Reliability Engineering In-ternational 25:773-804.
    [214]Toscas, P. J., and Faddy, M. J. (2003). Likelihood-based analysis of longi-tudinal count data using a generalized Poisson model. Statistical Modeling, 3:99-108.
    [215]Van Dobben de Bruyn, C. S. (1968). Cumulative Sum tests:theory and Practice, London, Griffin.
    [216]Vining, G. (2009). Technical advice:Phase Ⅰ and Phase Ⅱ control charts. Quality Engineering.21:478-479.
    [217]Vries, A. D. and Reneau, J. K. (2010). Application of statistical process control charts to monitor changes in animal production systems. Journal of Animal Sciences,88:2009-2622.
    [218]Wang, H. (2009). Comparison of p control charts for low defective rate. Computational Statistics and Data, Analysis.53(12):4210-4220.
    [219]Wang, Z. and Liang, R. (2008). Discuss on applying SPC to quality man-agement in university education. In In proceeding of the 9th International Conference for Young Computer Scientists, ICYCS 2008, page 2372-2375.
    [220]Weiss, C. H., and Atzmuller, M. (2010). EWMA control charts for moni-toring binary processes with applications to medical diagnosis data. Quality and Reliability Engineering International,26(8):795-805.
    [221]White, C. H., Keats, J. B., and Stanley, J. (1997). Poisson CUSUM versus C chart for defect data. Quality Engineering,9(4):673-679.
    [222]Woodall, W. H. and Maragah, H. D. (1990). Exponentially Weighted Moving Average Control Schemes-Properties and Enhancement-Discussion. Technometrics,32(1):17-52.
    [223]Woodall, W. H., and Adams, B. M. (1993). The statistical design of CUSUM charts. Quality Engineering,5(4):559-570.
    [224]Woodall, W.H. (1997). Control Charts Based on Attribute Data:Bibliog-raphy and Review. Journal of Quality Technology,29:172-183.
    [225]Woodall, W. H., Tsui, K. L., and Tucker, G. R. (1997). A Review of Statis-tical and Fuzzy Quality Control Charts Based on Categorical Data. Frontiers in Statistical Quality Control,5:83-89.
    [226]Woodall, W. H.,and Montgomery, D. C. (1999). Research issues and ideas in statistical process control. Journal of Quality Technology,31:376-386.
    [227]Woodall, W. H. (2000). Controversies and contradictions in statistical pro-cess control. Journal of Quality Technology,32:341-350.
    [228]Woodall, W. H., and Mahmoud, M. A. (2005). The inertial properties of quality control charts. Technometrics,47(4):425-436.
    [229]Woodall, W.H. (2006). The use of control charts in health-care and public-health surveillance. Journal of Quality Technology,38(2):89-104.
    [230]Wu, Z, Yeo, S. H., and Spedding, T. A. (2001). A synthetic control chart for detecting fraction nonconforming increases. Journal of Quality Technology, 33(1):104-111.
    [231]Wu, Z., Yang, M., Jiang, W., and Khoo, M. B. C. (2008). Optimization designs of the combined Shewhart-CUSUM control charts. Computational Statistics and Data Analysis,53(2):496-506.
    [232]Wu, Z., Jiao, J., and Liu, Y. (2008). A binomial CUSUM chart for de-tecting large shifts in fraction non-conforming. Journal of Applied Statistics, 35(11):1267-1276.
    [233]Xie, M., and Goh, T. N. (1992). Some procedures for decision making in controlling high yield processes. Quality and Reliability Engineering Inter-national,8(4):355-360.
    [234]Xie, M., and Goh, T. N. (1993). SPC of a near zero-defect process subject to random shock. Quality and Reliability Engineering International,9:89-93.
    [235]Xie, M. and Goh, T. N. (1993). Improvement detection by control charts for high yield processes. International Journal of Quality and Reliability Management,10:24-31.
    [236]Xie, W., Xie, M., and Goh, T. N.(1995). A Shewart-like charting technique for high yield processes. Quality and Reliability Engineering International, 11(3):189-196.
    [237]Xie, M., and Goh, T. N. (1997). The use of probability limits for process control based on geometric distribution. International Journal of Quality and Reliability Management,14(1):64-73.
    [238]Xie, M., Goh, T. N., and Lu, X. S. (1998). A comparative study of CCC and CUSUM charts. Quality and Reliability Engineering International,14:339-345.
    [239]Xie, M., Lu, X. S., Goh, T. N., and Chan, L. Y. (1999). A quality moni-toring and decision-making scheme for automated production processes. In-ternational Journal of Quality and Reliability Management,16(2):148-157.
    [240]Xie, M., Goh, T. N., and Kuralmani, V. (2000). On Optimal setting of con-trol limits for geometric Chart. International Journal of Reliability, Quality and Safety Engineering,7:17-25.
    [241]Yang, Z., Xie, M., Kuralmani, V., and Tusi, K. L. (2002). On the perfor-mance of geometric charts with estimated control limits. Journal of Quality Technology,34:448-458.
    [242]Yang, M., Wu, Z., Lee, K. M., and Khoo, M. B. C. (2012). The X con-trol chart for monitoring process shifts in mean and variance. International Journal of Production Research,50(3):893-907.
    [243]Yang, S. F. (2013). Using a Single Average Loss Control Chart to Monitor Process Mean and Variability. Communications in Statistics-Simulations and Computations,42:1549-1562.
    [244]Yeh, A. B., Mcgrath, R. N., Sembower, M. A., and Shen, Q.(2008). EWMA control charts for monitoring high-yield processes based on non-transformed observations. International Journal of Production Research,46(20):5679-5699.
    [245]Yen, F. Y., Chong, K. M. B., and Ha, L. M. (2013). Synthetic-Type Control Charts for Time-Between Events Monitoring. PLOS One-e65440,8(6):1-13.
    [246]Yitzhaki, S. (2003). Gini's mean difference:A superior measure of vari-ability for non-normal distributions. International Journal of Statistics, 61(2):285-316.
    [247]Yontay, P., Weiss, C. H., Testik, M. C., and Bayindir, Z. P. (2013). A two-sided cumulative sum chart for first order integer-valued autoregressive pro-cesses of Poisson counts. Quality and Reliability Engineering International, 29:33-42.
    [248]Yu, F. J., Yang, Y. Y., Wang, M. J., and Wu, Z. (2011). Using EWMA control scheme for monitoring wafer quality in negative binomial process. Microelectron Reliability,51:400-405.
    [249]Yun, M., and Youlin, Z. (1996). Q control charts for negative binomial distribution. Computers and Industrial Engineering,31(3-4):813-816.
    [250]Zenga, M., Polisicchio,M.,Greselin, F. (2004).The variance of Gini's mean difference and its estimators. Statistica,64(3):455-475.
    [251]Zhang, L. Y., Bebbington, M. S., Govindaraju, K., and Lai, S. D. (2004). Composite EWMA control charts. Communications in Statistics-Simulation and Computation,33(4):1133-1158.
    [252]Zhang, L., Govindaraju, K., Bebbington, M., and Lai, C. D. (2004). On the Statistical Design of Geometric Control Charts. Quality Technology and Qualitative Management, 1(2):233-243.
    [253]Zhang, J., Zou, C, and Wang, Z. (2009). A control chart based on likelihood ratio test for monitoring process mean and variability. Quality and Reliability Engineering International,26:63-73.
    [254]Zhang, J., Li, Z., and Wang, Z. (2010). A multivariate control chart for simultaneously monitoring process mean and variability. Computational Statistics and Data Analysis,54(10):2244-2252.
    [255]Zhang, M., Peng, Y., Schuh, A., Megahed, F. M., and Woodall, W. H. (2013). Geometric charts with estimated control limits. Quality and Relia-bility Engineering International,29:209-223.
    [256]Zhang, C. W., Xie, M., and Tongdan, J. (2013). An improved self-starting cumulative count of conforming chart for monitoring high-quality pro-cesses under group inspection. International Journal of Production Research, 50:7026-7043.
    [257]Zhang, X., Zhang, J. (2013). CUSUM procedures for monitoring process mean and variability. Communications in Statistics-Simulations and Com-putations,42:1455-1471.
    [258]Zhou, Q., Zou, C., Wang, Z., and Jiang, W. (2012). Likelihood Based EWMA Charts for Monitoring Poisson Count Data with Time-Varying Sam-ple Sizes. Journal of American Statistical Association,107:1049-1062.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700