用户名: 密码: 验证码:
内皮细胞EA.hy926氧化损伤及药物保护的脂质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化胁迫环境诱发内皮功能失调,并导致一系列心脑血管疾病的发生,内皮细胞氧化损伤过程中磷脂代谢的变化规律研究,对解释该过程机制具有重要意义。本文以外源性过氧化氢损伤的人脐静脉内皮细胞系EA.hy926为模型,运用高通量的脂质组学研究策略,结合信号转导,研究这一过程中川芎嗪(TMP)和丁烯苯酞(BP)的作用机制。
     在本研究中,基于LC/ESI/MSn的脂质组学手段,建立了EA.hy926细胞的磷脂图谱,获得了8类(PG、PE、PC、PI、PS、PA、LPC和LPE)共200多种磷脂分子的准确定性定量信息。结合多元统计分析,发现氧化损伤进程中,具有长链、多不饱和烃链的磷脂及醚基磷脂被氧化降解最多,同时伴有PLA2酶的激活和溶血性磷脂LPC、LPE的产生。细胞磷脂随时间延长大量降解及溶血性磷脂生成,造成细胞膜性质改变是细胞损伤的根本原因。
     研究表明,加入TMP预处理,可显著增加氧化损伤细胞PC含量,具有抗氧化和抑制PLA2酶,减少溶血磷脂产生的作用,且对增加具长链、多不饱和的磷脂和醚基磷脂有偏好;BP预处理除此之外,还可一定程度增加PI含量,表明其对PI-PLC酶的抑制作用。TMP和BP的抗磷脂氧化特性和改变相关磷脂酶活性的功能,使其具有卓越的细胞保护特性
     由于PLA2酶在以上研究中显示出其重要的研究价值,因此加入其相关信号转导MAPK途径和COX、LOX途径的抑制剂PD98059和ETYA。通过多元统计分析发现ETYA和TMP预处理细胞在磷脂代谢模式上有一定相似之处,而ETYA对醚基磷脂有更强的偏好,但对其他易氧化磷脂无明显选择性,意味着其抗氧化作用弱于TMP;PD98059和BP预处理细胞预处理细胞具有类似代谢模式,均可抑制PI-PLC酶活力,但PD98059促进长链PS合成,可导致细胞凋亡性死亡,对细胞无保护作用。
     进一步通过加入分子荧光探针证实了氧化胁迫过程中PLA2酶的作用和溶血性磷脂的产生,通过蛋白免疫印迹实验证明急性氧化损伤过程中cPLA2活性增强是通过磷酸化途径,且与ERK磷酸化之间的互为调控,并据此初步构建了ERK途径和脂质信号途径之间的转导模型。
The study of phospholipids metabolism changes in oxidative stress induced endothelial cells (ECs) is important to elicit the link between endothelium dysfunction and cerebral/cardio vascular diseases. In this research, we set exogenous H2O2 induced human unbilic vein endothelial cell line EA.hy926 as the model, and applied lipidomics with signal transduction strategy together to explore the underlying mechanisms of tetramethylpyrazine (TMP) and butylidenephthalide (BP) protection of endothelial cells against oxidative stress.
     In this research, we establish the phospholipids profile of EA.hy926 cell using high-throughput LC/ESI/MSn techniques. Eight main classes (PG, PE, PC, PI, PS, PA, LPC and LPE) including more than 200 species of phospholipids was detected and analyzed qualitatively and quantitatively. By multi-statistic analysis, we found the phospholipids with long carbon chain, polyunsaturated fatty acids (PUFAs) or ether link in sn-1 position (ether phospholipids) take priorities in oxidative degradation; meanwhile, phospholipase A2 was activated to generated a great amount of lysophospholipids including LPC and LPE. These above two main findings were responsible to the injury of ECs.
     Our results showed that with TMP pretreatment, content of PCs, especially the PCs with long carbon chain, PUFAs or ether PCs in injured cells was largely increased and, contents of LPC and LPE were decreased. These results indicated the antioxidation activity and inhibition of PLA2 effect of TMP. Beside of these properties, BP also had inhibitory effect over PI-PLC and consequentially increased PI contents. TMP and BP showed extraordinary abilities in protection of ECs for its antioxidation of phospholipids and alteration of phospholipase activation properties.
     Since PLA2 was one of the key factors in our results, we add PD98059 and ETYA, inhibitors of MAPK pathway and of COX, LOX pathway which were supposed to be the upstream and downstream signal of PLA2, to the injury model. With multi-statistic analysis, we find similarity in phospholipids metabolism pattern between ETYA and TMP pretreated ECs. However, ETYA showed stronger preference over ether PC than PCs with long carbon chain or polyunsaturated fatty acids, which indicated that the antioxidation activity of ETYA was not as good as TMP. Similarity in phospholipids metabolism pattern between BP and PD98059 pretreated ECs was also found on the basis of inhibitory effect on PI-PLC activation; however, the long carbon chain PSs were synthesized with PD98059 pretreatment to induce apoptotic death in ECs.
     Fluorescent substrate was utilized to prove the activation of PLA2 and generation of LPC; western blot method was employed to show the phosphorylation of cPLA2 in acute oxidative injury of ECs in which existed cross-talk between phosphorylated cPLA2 and ERK1/2. Based on these above findings, a phospholipids and phospholipase based signal transduction model was established to summarize our basic findings in this research.
引文
[1] Hou YZ, Zhao GR, Yuan YJ, et al. Inhibition of rat vascular smooth muscle cell proliferation by extract of Ligusticum chuanxiong and Angelica sinensis. J Ethnopharmacol. 2005, 100(1-2): 140-144.
    [2] Hou YZ, Yang J, Zhao GR, et al. Ferulic acid inhibits vascular smooth muscle cell proliferation induced by angiotensin II. Eur J Pharmacol. 2004, 499(1-2): 85-90.
    [3] Hou YZ, Zhao GR, Yang J, et al. Protective effect of Ligusticum chuanxiong and Angelica sinensis on endothelial cell damage induced by hydrogen peroxide. Life Sci. 2004, 75(14): 1775-1786.
    [4] Han X,Gross RW. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res. 2003, 44(6): 1071-1079.
    [5] Han X. Neurolipidomics: challenges and developments. Front Biosci. 2007, 12: 2601-2615.
    [6] van Meer G. Cellular lipidomics. EMBO J. 2005, 24(18): 3159-3165.
    [7] Weigel D,Dangl JL. 10 years of Current Opinion in Plant Biology 1997-2007. Curr Opin Plant Biol. 2007, 10(6): 543-545.
    [8] [8] Fernandis AZ,Wenk MR. Membrane lipids as signaling molecules. Curr Opin Lipidol. 2007, 18(2): 121-128.
    [9] Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov. 2005, 4(7): 594-610.
    [10] Capper EA,Marshall LA. Mammalian phospholipases A(2): mediators of inflammation, proliferation and apoptosis. Prog Lipid Res. 2001, 40(3): 167-197.
    [11] Lupo G, Anfuso CD, Ragusa N, et al. t-Butyl hydroperoxide and oxidized low density lipoprotein enhance phospholipid hydrolysis in lipopolysaccharide-stimulated retinal pericytes. Biochim Biophys Acta. 2001, 1531(1-2): 143-155.
    [12] Gudmundsdottir IJ, Halldorsson H, Magnusdottir K, et al. Involvement of MAP kinases in the control of cPLA(2) and arachidonic acid release in endothelial cells. Atherosclerosis. 2001, 156(1): 81-90.
    [13] Akiba S, Hatazawa R, Ono K, et al. Secretory phospholipase A2 mediates cooperative prostaglandin generation by growth factor and cytokine independently of preceding cytosolic phospholipase A2 expression in rat gastric epithelial cells. J Biol Chem. 2001, 276(24): 21854-21862.
    [14] Touyz RM,Schiffrin EL. Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: role of phospholipase D-dependent NAD(P)H oxidase-sensitive pathways. J Hypertens. 2001, 19(7): 1245-1254.
    [15] Cheng Y, Zhao Q, Liu X, et al. Phosphatidylcholine-specific phospholipase C, p53 and ROS in the association of apoptosis and senescence in vascular endothelial cells. FEBS Lett. 2006, 580(20): 4911-4915.
    [16] Bombeli T, Mueller M,Haeberli A. Anticoagulant properties of the vascular endothelium. Thromb Haemost. 1997, 77(3): 408-423.
    [17] McGorisk GM,Treasure CB. Endothelial dysfunction in coronary heart disease. Curr Opin Cardiol. 1996, 11(4): 341-350.
    [18] Nitenberg A, Cosson E,Pham I. Postprandial endothelial dysfunction: role of glucose, lipids and insulin. Diabetes Metab. 2006, 32 Spec No2: 2S28-33.
    [19] Sena CM, Nunes E, Louro T, et al. Endothelial dysfunction in type 2 diabetes: effect of antioxidants. Rev Port Cardiol. 2007, 26(6): 609-619.
    [20] Tsukahara H. Biomarkers for oxidative stress: clinical application in pediatric medicine. Curr Med Chem. 2007, 14(3): 339-351.
    [21] Verma S,Anderson TJ. Fundamentals of endothelial function for the clinical cardiologist. Circulation. 2002, 105(5): 546-549.
    [22] Shimokawa H. Primary endothelial dysfunction: atherosclerosis. J Mol Cell Cardiol. 1999, 31(1): 23-37.
    [23] Libby P, Ridker PM,Maseri A. Inflammation and atherosclerosis. Circulation. 2002, 105(9): 1135-1143.
    [24] Cines DB, Pollak ES, Buck CA, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998, 91(10): 3527-3561.
    [25] Libby P. Inflammation in atherosclerosis. Nature. 2002, 420(6917): 868-874.
    [26] Rosenberg RD,Rosenberg JS. Natural anticoagulant mechanisms. J Clin Invest. 1984, 74(1): 1-6.
    [27] Ross R,Glomset JA. The pathogenesis of atherosclerosis (second of two parts). N Engl J Med. 1976, 295(8): 420-425.
    [28] Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993, 362(6423): 801-809.
    [29] Henry PD. Hyperlipidemic endothelial injury and angiogenesis. Basic Res Cardiol. 1994, 89 Suppl 1: 107-114.
    [30] Tropea BI, Huie P, Cooke JP, et al. Hypertension-enhanced monocyte adhesion in experimental atherosclerosis. J Vasc Surg. 1996, 23(4): 596-605.
    [31] Marui N, Offermann MK, Swerlick R, et al. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J Clin Invest. 1993, 92(4): 1866-1874.
    [32] Gimbrone MA, Jr. Vascular endothelium: an integrator of pathophysiologic stimuli in atherosclerosis. Am J Cardiol. 1995, 75(6): 67B-70B.
    [33] Collins T,Cybulsky MI. NF-kappaB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest. 2001, 107(3): 255-264.
    [34] Chen M, Masaki T,Sawamura T. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther. 2002, 95(1): 89-100.
    [35] Verma S, Li SH, Badiwala MV, et al. Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein. Circulation. 2002, 105(16): 1890-1896.
    [36] Kaplanski G, Marin V, Fabrigoule M, et al. Thrombin-activated human endothelial cells support monocyte adhesion in vitro following expression of intercellular adhesion molecule-1 (ICAM-1; CD54) and vascular cell adhesion molecule-1 (VCAM-1; CD106). Blood. 1998, 92(4): 1259-1267.
    [37] Schonbeck U,Libby P. CD40 signaling and plaque instability. Circ Res. 2001, 89(12): 1092-1103.
    [38] Giasson E, Servant MJ,Meloche S. Cyclic AMP-mediated inhibition of angiotensin II-induced protein synthesis is associated with suppression of tyrosine phosphorylation signaling in vascular smooth muscle cells. J Biol Chem. 1997, 272(43): 26879-26886.
    [39] Kranzhofer R, Schmidt J, Pfeiffer CA, et al. Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1999, 19(7): 1623-1629.
    [40] Tummala PE, Chen XL, Sundell CL, et al. Angiotensin II induces vascular cell adhesion molecule-1 expression in rat vasculature: A potential link between the renin-angiotensin system and atherosclerosis. Circulation. 1999, 100(11): 1223-1229.
    [41] Watson AD. Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006, 47(10): 2101-2111.
    [42] Sud M, Fahy E, Cotter D, et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 2007, 35(Database issue): D527-532.
    [43] Fahy E, Subramaniam S, Brown HA, et al. A comprehensive classification system for lipids. J Lipid Res. 2005, 46(5): 839-861.
    [44] Bligh EG,Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959, 37(8): 911-917.
    [45] Krank J, Murphy RC, Barkley RM, et al. Qualitative analysis and quantitative assessment of changes in neutral glycerol lipid molecular species within cells. Methods Enzymol. 2007, 432: 1-20.
    [46] Ivanova PT, Milne SB, Byrne MO, et al. Glycerophospholipid identification and quantitation by electrospray ionization mass spectrometry. Methods Enzymol. 2007, 432: 21-57.
    [47] Deems R, Buczynski MW, Bowers-Gentry R, et al. Detection and quantitation of eicosanoids via high performance liquid chromatography-electrospray ionization-mass spectrometry. Methods Enzymol. 2007, 432: 59-82.
    [48] McDonald JG, Thompson BM, McCrum EC, et al. Extraction and analysis of sterols in biological matrices by high performance liquid chromatography electrospray ionization mass spectrometry. Methods Enzymol. 2007, 432: 145-170.
    [49] Garrett TA, Guan Z,Raetz CR. Analysis of ubiquinones, dolichols, and dolichol diphosphate-oligosaccharides by liquid chromatography-electrospray ionization-mass spectrometry. Methods Enzymol. 2007, 432: 117-143.
    [50] Sullards MC, Allegood JC, Kelly S, et al. Structure-specific, quantitative methods for analysis of sphingolipids by liquid chromatography-tandem mass spectrometry: "inside-out" sphingolipidomics. Methods Enzymol. 2007, 432: 83-115.
    [51] Kaluzny MA, Duncan LA, Merritt MV, et al. Rapid separation of lipid classes in high yield and purity using bonded phase columns. J Lipid Res. 1985, 26(1): 135-140.
    [52] Nakamura T, Bratton DL,Murphy RC. Analysis of epoxyeicosatrienoic and monohydroxyeicosatetraenoic acids esterified to phospholipids in human red blood cells by electrospray tandem mass spectrometry. J Mass Spectrom. 1997, 32(8): 888-896.
    [53] Andrikopoulos NK. Chromatographic and spectroscopic methods in the analysis of triacylglycerol species and regiospecific isomers of oils and fats. Crit Rev Food Sci Nutr. 2002, 42(5): 473-505.
    [54] Perona JS,Ruiz-Gutierrez V. Simultaneous determination of molecular species of monoacylglycerols, diacylglycerols and triacylglycerols in human very-low-density lipoproteins by reversed-phase liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 2003, 785(1): 89-99.
    [55] Malavolta M, Bocci F, Boselli E, et al. Normal phase liquid chromatography-electrospray ionization tandem mass spectrometry analysis of phospholipid molecular species in blood mononuclear cells: application to cystic fibrosis. J Chromatogr B Analyt Technol Biomed Life Sci. 2004, 810(2): 173-186.
    [56] Fuchs B,Schiller J. MALDI-TOF MS analysis of lipids from cells, tissues and body fluids. Subcell Biochem. 2008, 49: 541-565.
    [57] Byrdwell WC. Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids. Lipids. 2001, 36(4): 327-346.
    [58] Fenn JB, Mann M, Meng CK, et al. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989, 246(4926): 64-71.
    [59] Murphy RC, Fiedler J,Hevko J. Analysis of nonvolatile lipids by mass spectrometry. Chem Rev. 2001, 101(2): 479-526.
    [60] Gross RW,Han X. Lipidomics in diabetes and the metabolic syndrome. Methods Enzymol. 2007, 433: 73-90.
    [61] Schiller J, Suss R, Fuchs B, et al. MALDI-TOF MS in lipidomics. Front Biosci. 2007, 12: 2568-2579.
    [62] Murphy RC, Hankin JA,Barkley RM. Imaging of lipid species by MALDI mass spectrometry. J Lipid Res. 2009, 50 Suppl: S317-322.
    [63] Byrdwell WC. Dual parallel liquid chromatography with dual mass spectrometry (LC2/MS2) for a total lipid analysis. Frontiers in Bioscience. 2008, 13: 100-120.
    [64] Jackson SN, Wang HY,Woods AS. Direct profiling of lipid distribution in brain tissue using MALDI-TOFMS. Anal Chem. 2005, 77(14): 4523-4527.
    [65] Serhan CN, Jain A, Marleau S, et al. Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators. J Immunol. 2003, 171(12): 6856-6865.
    [66] Devaiah SP, Roth MR, Baughman E, et al. Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a phospholipase Dalpha1 knockout mutant. Phytochemistry. 2006, 67(17): 1907-1924.
    [67] Ejsing CS, Moehring T, Bahr U, et al. Collision-induced dissociation pathways of yeast sphingolipids and their molecular profiling in total lipid extracts: a study by quadrupole TOF and linear ion trap-orbitrap mass spectrometry. J Mass Spectrom. 2006, 41(3): 372-389.
    [68] Yetukuri L, Katajamaa M, Medina-Gomez G, et al. Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Syst Biol. 2007, 1: 12.
    [69] Rainville PD, Stumpf CL, Shockcor JP, et al. Novel application of reversed-phase UPLC-oaTOF-MS for lipid analysis in complex biological mixtures: a new tool for lipidomics. J Proteome Res. 2007, 6(2): 552-558.
    [70] Allwood JW, Ellis DI, Heald JK, et al. Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol phospholipids are major discriminatory non-polar metabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea. Plant J. 2006, 46(3): 351-368.
    [71] Wang C, Kong H, Guan Y, et al. Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal Chem. 2005, 77(13): 4108-4116.
    [72] Katajamaa M, Miettinen J,Oresic M. MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics. 2006, 22(5): 634-636.
    [73] Lutz U, Lutz RW,Lutz WK. Metabolic profiling of glucuronides in human urine by LC-MS/MS and partial least-squares discriminant analysis for classification and prediction of gender. Anal Chem. 2006, 78(13): 4564-4571.
    [74] Holmback U, Forslund A, Forslund J, et al. Metabolic responses to nocturnal eating in men are affected by sources of dietary energy. J Nutr. 2002, 132(7): 1892-1899.
    [75] Ivanova PT, Milne SB, Forrester JS, et al. LIPID arrays: new tools in the understanding of membrane dynamics and lipid signaling. Mol Interv. 2004, 4(2): 86-96.
    [76] Okuda S, Yamada T, Hamajima M, et al. KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res. 2008, 36(Web Server issue): W423-426.
    [77] Yetukuri L, Ekroos K, Vidal-Puig A, et al. Informatics and computational strategies for the study of lipids. Mol Biosyst. 2008, 4(2): 121-127.
    [78] Ginsberg BH, Brown TJ, Simon I, et al. Effect of the membrane lipid environment on the properties of insulin receptors. Diabetes. 1981, 30(9): 773-780.
    [79] Ginsberg BH, Jabour J,Spector AA. Effect of alterations in membrane lipid unsaturation on the properties of the insulin receptor of Ehrlich ascites cells. Biochim Biophys Acta. 1982, 690(2): 157-164.
    [80] Bar RS, Dolash S, Spector AA, et al. Effects of membrane lipid unsaturation on the interactions of insulin and multiplication stimulating activity with endothelial cells. Biochim Biophys Acta. 1984, 804(4): 466-473.
    [81] Lokesh BR,Wrann M. Incorporation of palmitic acid or oleic acid into macrophage membrane lipids exerts differential effects on the function of normal mouse peritoneal macrophages. Biochim Biophys Acta. 1984, 792(2): 141-148.
    [82] Mahoney EM, Scott WA, Landsberger FR, et al. Influence of fatty acyl substitution on the composition and function of macrophage membranes. J Biol Chem. 1980, 255(10): 4910-4917.
    [83] Mahoney EM, Hamill AL, Scott WA, et al. Response of endocytosis to altered fatty acyl composition of macrophage phospholipids. Proc Natl Acad Sci U S A. 1977, 74(11): 4895-4899.
    [84] Williams TP,McGee R, Jr. The effects of membrane fatty acid modification of clonal pheochromocytoma cells on depolarization-dependent exocytosis. J Biol Chem. 1982, 257(7): 3491-3500.
    [85] Yoo TJ, Chiu HC, Spector AA, et al. Effect of fatty acid modifications of cultured hepatoma cells on susceptibility to complement-mediated cytolysis. Cancer Res. 1980, 40(4): 1084-1090.
    [86] Yoo TJ, Kuo CY, Spector AA, et al. Effect of fatty acid modification of cultured hepatoma cells on susceptibility to natural killer cells. Cancer Res. 1982, 42(9): 3596-3600.
    [87] Guffy MM, North JA,Burns CP. Effect of cellular fatty acid alteration on adriamycin sensitivity in cultured L1210 murine leukemia cells. Cancer Res. 1984, 44(5): 1863-1866.
    [88] Spector AA, Hoak JC, Fry GL, et al. Effect of fatty acid modification on prostacyclin production by cultured human endothelial cells. J Clin Invest. 1980, 65(5): 1003-1012.
    [89] Kaduce TL, Spector AA,Bar RS. Linoleic acid metabolism and prostaglandin production by cultured bovine pulmonary artery endothelial cells. Arteriosclerosis. 1982, 2(5): 380-389.
    [90] Needleman SW, Spector AA,Hoak JC. Enrichment of human platelet phospholipids with linoleic acid diminishes thromboxane release. Prostaglandins. 1982, 24(5): 607-622.
    [91] Egan RW, Paxton J,Kuehl FA, Jr. Mechanism for irreversible self-deactivation of prostaglandin synthetase. J Biol Chem. 1976, 251(23): 7329-7335.
    [92] Spector AA, Kaduce TL, Hoak JC, et al. Arachidonic acid availability and prostacyclin production by cultured human endothelial cells. Arteriosclerosis. 1983, 3(4): 323-331.
    [93] Cabot MC,Snyder F. The manipulation of fatty acid composition in L-M cell monolayers supplemented with cyclopentenyl fatty acids. Arch Biochem Biophys. 1978, 190(2): 838-846.
    [94] Spector AA, Kaduce TL, Hoak JC, et al. Utilization of arachidonic and linoleic acids by cultured human endothelial cells. J Clin Invest. 1981, 68(4): 1003-1011.
    [95] Spector AA, Kiser RE, Denning GM, et al. Modification of the fatty acid composition of cultured human fibroblasts. J Lipid Res. 1979, 20(4): 536-547.
    [96] Cornwell DG, Huttner JJ, Milo GE, et al. Polyunsaturated fatty acids, vitamin E, and the proliferation of aortic smooth muscle cells. Lipids. 1979, 14(2): 194-207.
    [97] Morisaki N, Sprecher H, Milo GE, et al. Fatty acid specificity in the inhibition of cell proliferation and its relationship to lipid peroxidation and prostaglandin biosynthesis. Lipids. 1982, 17(12): 893-899.
    [98] Kennedy EP. The biosynthesis of phospholipids. Am J Clin Nutr. 1958, 6(3): 216-220.
    [99] Kennedy EP. Biosynthesis of complex lipids. Fed Proc. 1961, 20: 934-940.
    [100] Six DA,Dennis EA. The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochim Biophys Acta. 2000, 1488(1-2): 1-19.
    [101] Mukherjee AB, Miele L,Pattabiraman N. Phospholipase A2 enzymes: regulation and physiological role. Biochem Pharmacol. 1994, 48(1): 1-10.
    [102] Balsinde J, Balboa MA, Insel PA, et al. Regulation and inhibition of phospholipase A2. Annu Rev Pharmacol Toxicol. 1999, 39: 175-189.
    [103] Newton R, Kuitert LM, Slater DM, et al. Cytokine induction of cytosolic phospholipase A2 and cyclooxygenase-2 mRNA is suppressed by glucocorticoids in human epithelial cells. Life Sci. 1997, 60(1): 67-78.
    [104] Lin LL, Wartmann M, Lin AY, et al. cPLA2 is phosphorylated and activated by MAP kinase. Cell. 1993, 72(2): 269-278.
    [105] de Carvalho MG, McCormack AL, Olson E, et al. Identification of phosphorylation sites of human 85-kDa cytosolic phospholipase A2 expressed in insect cells and present in human monocytes. J Biol Chem. 1996, 271(12): 6987-6997.
    [106] Hefner Y, Borsch-Haubold AG, Murakami M, et al. Serine 727 phosphorylation and activation of cytosolic phospholipase A2 by MNK1-related protein kinases. J Biol Chem. 2000, 275(48): 37542-37551.
    [107] Muthalif MM, Hefner Y, Canaan S, et al. Functional interaction of calcium-/calmodulin-dependent protein kinase II and cytosolic phospholipase A(2). J Biol Chem. 2001, 276(43): 39653-39660.
    [108] Schalkwijk CG, Spaargaren M, Defize LH, et al. Epidermal growth factor (EGF) induces serine phosphorylation-dependent activation and calcium-dependent translocation of the cytosolic phospholipase A2. Eur J Biochem. 1995, 231(3): 593-601.
    [109] Clark JD, Schievella AR, Nalefski EA, et al. Cytosolic phospholipase A2. J Lipid Mediat Cell Signal. 1995, 12(2-3): 83-117.
    [110] Winitz S, Gupta SK, Qian NX, et al. Expression of a mutant Gi2 alpha subunit inhibits ATP and thrombin stimulation of cytoplasmic phospholipase A2-mediated arachidonic acid release independent of Ca2+ and mitogen-activated protein kinase regulation. J Biol Chem. 1994, 269(3): 1889-1895.
    [111] Schievella AR, Regier MK, Smith WL, et al. Calcium-mediated translocation of cytosolic phospholipase A2 to the nuclear envelope and endoplasmic reticulum. J Biol Chem. 1995, 270(51): 30749-30754.
    [112] Ousman SS,David S. Lysophosphatidylcholine induces rapid recruitment and activation of macrophages in the adult mouse spinal cord. Glia. 2000, 30(1): 92-104.
    [113] Liu SY, Lu X, Choy S, et al. Alteration of lysophosphatidylcholine content in low density lipoprotein after oxidative modification: relationship to endothelium dependent relaxation. Cardiovasc Res. 1994, 28(10): 1476-1481.
    [114] Eizawa H, Yui Y, Inoue R, et al. Lysophosphatidylcholine inhibits endothelium-dependent hyperpolarization and N omega-nitro-L-arginine/indomethacin-resistant endothelium-dependent relaxation in the porcine coronary artery. Circulation. 1995, 92(12): 3520-3526.
    [115] Froese DE, McMaster J, Man RY, et al. Inhibition of endothelium-dependent vascular relaxation by lysophosphatidylcholine: impact of lysophosphatidylcholine on mechanisms involving endothelium-derived nitric oxide and endothelium derived hyperpolarizing factor. Mol Cell Biochem. 1999, 197(1-2): 1-6.
    [116] Chen L, Liang B, Froese DE, et al. Oxidative modification of low density lipoprotein in normal and hyperlipidemic patients: effect of lysophosphatidylcholine composition on vascular relaxation. J Lipid Res. 1997, 38(3): 546-553.
    [117] Murugesan G,Fox PL. Role of lysophosphatidylcholine in the inhibition of endothelial cell motility by oxidized low density lipoprotein. J Clin Invest. 1996, 97(12): 2736-2744.
    [118] Flavahan NA. Lysophosphatidylcholine modifies G protein-dependent signaling in porcine endothelial cells. Am J Physiol. 1993, 264(3 Pt 2): H722-727.
    [119] Lundbaek JA,Andersen OS. Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J Gen Physiol. 1994, 104(4): 645-673.
    [120] Inoue N, Hirata K, Yamada M, et al. Lysophosphatidylcholine inhibits bradykinin-induced phosphoinositide hydrolysis and calcium transients in cultured bovine aortic endothelial cells. Circ Res. 1992, 71(6): 1410-1421.
    [121] Tran PO, Hinman LE, Unger GM, et al. A wound-induced [Ca2+]i increase and its transcriptional activation of immediate early genes is important in the regulation of motility. Exp Cell Res. 1999, 246(2): 319-326.
    [122] Kimura C, Oike M, Koyama T, et al. Alterations of Ca2+ mobilizing properties in migrating endothelial cells. Am J Physiol Heart Circ Physiol. 2001, 281(2): H745-754.
    [123] Morris AJ, Engebrecht J,Frohman MA. Structure and regulation of phospholipase D. Trends Pharmacol Sci. 1996, 17(5): 182-185.
    [124] Exton JH. New developments in phospholipase D. J Biol Chem. 1997, 272(25): 15579-15582.
    [125] Iwasaki Y, Nakano H,Yamane T. Phospholipase D from Streptomyces antibioticus: cloning, sequencing, expression, and relationship to other phospholipases. Appl Microbiol Biotechnol. 1994, 42(2-3): 290-299.
    [126] Wang X, Xu L,Zheng L. Cloning and expression of phosphatidylcholine-hydrolyzing phospholipase D from Ricinus communis L. J Biol Chem. 1994, 269(32): 20312-20317.
    [127] Rose K, Rudge SA, Frohman MA, et al. Phospholipase D signaling is essential for meiosis. Proc Natl Acad Sci U S A. 1995, 92(26): 12151-12155.
    [128] Hammond SM, Altshuller YM, Sung TC, et al. Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J Biol Chem. 1995, 270(50): 29640-29643.
    [129] Touyz RM,Schiffrin EL. Ang II-stimulated superoxide production is mediated via phospholipase D in human vascular smooth muscle cells. Hypertension. 1999, 34(4 Pt 2): 976-982.
    [130] Natarajan V, Scribner WM, Hart CM, et al. Oxidized low density lipoprotein-mediated activation of phospholipase D in smooth muscle cells: a possible role in cell proliferation and atherogenesis. J Lipid Res. 1995, 36(9): 2005-2016.
    [131] Natarajan V, Taher MM, Roehm B, et al. Activation of endothelial cell phospholipase D by hydrogen peroxide and fatty acid hydroperoxide. J Biol Chem. 1993, 268(2): 930-937.
    [132] Natarajan V, Vepa S, Shamlal R, et al. Tyrosine kinases and calcium dependent activation of endothelial cell phospholipase D by diperoxovanadate. Mol Cell Biochem. 1998, 183(1-2): 113-124.
    [133] Walter M, Tepel M, Nofer JR, et al. Involvement of phospholipase D in store-operated calcium influx in vascular smooth muscle cells. FEBS Lett. 2000, 479(1-2): 51-56.
    [134] Chu CC, Loh SH, Chen A, et al. Biphasic effects of exogenous phospholipase D on vessel tone. Chin J Physiol. 2002, 45(1): 1-7.
    [135] Natarajan V, Scribner WM,Taher MM. 4-Hydroxynonenal, a metabolite of lipid peroxidation, activates phospholipase D in vascular endothelial cells. Free Radic Biol Med. 1993, 15(4): 365-375.
    [136] Roy S, Parinandi N, Zeigelstein R, et al. Hyperoxia alters phorbol ester-induced phospholipase D activation in bovine lung microvascular endothelial cells. Antioxid Redox Signal. 2003, 5(2): 217-228.
    [137] Corl CM, Cao YZ, Cohen ZS, et al. Oxidant stress enhances Lyso-PAF-AcT activity by modifying phospholipase D and phosphatidic acid in aortic endothelial cells. Biochem Biophys Res Commun. 2003, 302(3): 610-614.
    [138] Sciorra VA,Morris AJ. Sequential actions of phospholipase D and phosphatidic acid phosphohydrolase 2b generate diglyceride in mammalian cells. Mol Biol Cell. 1999, 10(11): 3863-3876.
    [139] Brindley DN,Waggoner DW. Phosphatidate phosphohydrolase and signal transduction. Chem Phys Lipids. 1996, 80(1-2): 45-57.
    [140] Jones D, Morgan C,Cockcroft S. Phospholipase D and membrane traffic. Potential roles in regulated exocytosis, membrane delivery and vesicle budding. Biochim Biophys Acta. 1999, 1439(2): 229-244.
    [141] Fang Y, Vilella-Bach M, Bachmann R, et al. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science. 2001, 294(5548): 1942-1945.
    [142] Chen J,Fang Y. A novel pathway regulating the mammalian target of rapamycin (mTOR) signaling. Biochem Pharmacol. 2002, 64(7): 1071-1077.
    [143] Ghosh S, Moore S, Bell RM, et al. Functional analysis of a phosphatidic acid binding domain in human Raf-1 kinase: mutations in the phosphatidate binding domain lead to tail and trunk abnormalities in developing zebrafish embryos. J Biol Chem. 2003, 278(46): 45690-45696.
    [144] Ghosh S, Strum JC, Sciorra VA, et al. Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid. Phosphatidic acid regulates the translocation of Raf-1 in 12-O-tetradecanoylphorbol-13-acetate-stimulated Madin-Darby canine kidney cells. J Biol Chem. 1996, 271(14): 8472-8480.
    [145] Rizzo MA, Shome K, Watkins SC, et al. The recruitment of Raf-1 to membranes is mediated by direct interaction with phosphatidic acid and is independent of association with Ras. J Biol Chem. 2000, 275(31): 23911-23918.
    [146] Rizzo MA, Shome K, Vasudevan C, et al. Phospholipase D and its product, phosphatidic acid, mediate agonist-dependent raf-1 translocation to the plasma membrane and the activation of the mitogen-activated protein kinase pathway. J Biol Chem. 1999, 274(2): 1131-1139.
    [147] Moritz A, De Graan PN, Gispen WH, et al. Phosphatidic acid is a specific activator of phosphatidylinositol-4-phosphate kinase. J Biol Chem. 1992, 267(11): 7207-7210.
    [148] Jenkins GH, Fisette PL,Anderson RA. Type I phosphatidylinositol 4-phosphate 5-kinase isoforms are specifically stimulated by phosphatidic acid. J Biol Chem. 1994, 269(15): 11547-11554.
    [149] Newton AC. Interaction of proteins with lipid headgroups: lessons from protein kinase C. Annu Rev Biophys Biomol Struct. 1993, 22: 1-25.
    [150] Newton AC. Regulation of protein kinase C. Curr Opin Cell Biol. 1997, 9(2): 161-167.
    [151] Moolenaar WH, van Meeteren LA,Giepmans BN. The ins and outs of lysophosphatidic acid signaling. Bioessays. 2004, 26(8): 870-881.
    [152] Rebecchi MJ,Pentyala SN. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev. 2000, 80(4): 1291-1335.
    [153] Taylor CW. Controlling calcium entry. Cell. 2002, 111(6): 767-769.
    [154] Rhee SG, Kim H, Suh PG, et al. Multiple forms of phosphoinositide-specific phospholipase C and different modes of activation. Biochem Soc Trans. 1991, 19(2): 337-341.
    [155] Jezyk MR, Snyder JT, Gershberg S, et al. Crystal structure of Rac1 bound to its effector phospholipase C-beta2. Nat Struct Mol Biol. 2006, 13(12): 1135-1140.
    [156] Snyder JT, Singer AU, Wing MR, et al. The pleckstrin homology domain of phospholipase C-beta2 as an effector site for Rac. J Biol Chem. 2003, 278(23): 21099-21104.
    [157] Nomoto K, Tomita N, Miyake M, et al. Expression of phospholipases gamma 1, beta 1, and delta 1 in primary human colon carcinomas and colon carcinoma cell lines. Mol Carcinog. 1995, 12(3): 146-152.
    [158] Mariappan MM, Senthil D, Natarajan KS, et al. Phospholipase Cgamma-Erk Axis in vascular endothelial growth factor-induced eukaryotic initiation factor 4E phosphorylation and protein synthesis in renal epithelial cells. J Biol Chem. 2005, 280(31): 28402-28411.
    [159] Schutze S, Potthoff K, Machleidt T, et al. TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced "acidic" sphingomyelin breakdown. Cell. 1992, 71(5): 765-776.
    [160] Fiorio Pla A,Munaron L. Calcium influx, arachidonic acid,and control of endothelial cell proliferation. Cell Calcium. 2001, 30(4): 235-244.
    [161] Artwohl M, Roden M, Waldhausl W, et al. Free fatty acids trigger apoptosis and inhibit cell cycle progression in human vascular endothelial cells. FASEB J. 2004, 18(1): 146-148.
    [162] Morita I. Distinct functions of COX-1 and COX-2. Prostaglandins Other Lipid Mediat. 2002, 68-69: 165-175.
    [163] Parfenova H, Balabanova L,Leffler CW. Posttranslational regulation of cyclooxygenase by tyrosine phosphorylation in cerebral endothelial cells. Am J Physiol. 1998, 274(1 Pt 1): C72-81.
    [164] Tsuboi K, Sugimoto Y,Ichikawa A. Prostanoid receptor subtypes. Prostaglandins Other Lipid Mediat. 2002, 68-69: 535-556.
    [165] Breyer RM, Bagdassarian CK, Myers SA, et al. Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol. 2001, 41: 661-690.
    [166] Gao Y, Yokota R, Tang S, et al. Reversal of angiogenesis in vitro, induction of apoptosis, and inhibition of AKT phosphorylation in endothelial cells by thromboxane A(2). Circ Res. 2000, 87(9): 739-745.
    [167] Pai R, Szabo IL, Soreghan BA, et al. PGE(2) stimulates VEGF expression in endothelial cells via ERK2/JNK1 signaling pathways. Biochem Biophys Res Commun. 2001, 286(5): 923-928.
    [168] Ruegg C, Dormond O,Mariotti A. Endothelial cell integrins and COX-2: mediators and therapeutic targets of tumor angiogenesis. Biochim Biophys Acta. 2004, 1654(1): 51-67.
    [169] Voelkel NF, Tuder RM, Wade K, et al. Inhibition of 5-lipoxygenase-activating protein (FLAP) reduces pulmonary vascular reactivity and pulmonary hypertension in hypoxic rats. J Clin Invest. 1996, 97(11): 2491-2498.
    [170] Kuhn H, Walther M,Kuban RJ. Mammalian arachidonate 15-lipoxygenases structure, function, and biological implications. Prostaglandins Other Lipid Mediat. 2002, 68-69: 263-290.
    [171] Radmark O. Arachidonate 5-lipoxygenase. Prostaglandins Other Lipid Mediat. 2002, 68-69: 211-234.
    [172] Yoshimoto T,Takahashi Y. Arachidonate 12-lipoxygenases. Prostaglandins Other Lipid Mediat. 2002, 68-69: 245-262.
    [173] Chong Z,Feng Y. Protective effects of dl-3-n-butylphthalide on changes of regional cerebral blood flow and blood-brain barrier damage following experimental subarachnoid hemorrhage. Chin Med J (Engl). 1998, 111(9): 858-860.
    [174] Matsumoto K, Kohno S, Ojima K, et al. Effects of methylenechloride-soluble fraction of Japanese angelica root extract, ligustilide and butylidenephthalide, on pentobarbital sleep in group-housed and socially isolated mice. Life Sci. 1998, 62(23): 2073-2082.
    [175] Li M, Handa S, Ikeda Y, et al. Specific inhibiting characteristics of tetramethylpyrazine, one of the active ingredients of the Chinese herbal medicine 'Chuanxiong,' on platelet thrombus formation under high shear rates. Thromb Res. 2001, 104(1): 15-28.
    [176] Chen HP, He M, Huang QR, et al. Delayed protection of tetramethylpyrazine on neonatal rat cardiomyocytes subjected to anoxia-reoxygenation injury. Basic Clin Pharmacol Toxicol. 2007, 100(6): 366-371.
    [177] Chen SY, Hsiao G, Hwang HR, et al. Tetramethylpyrazine induces heme oxygenase-1 expression and attenuates myocardial ischemia/reperfusion injury in rats. J Biomed Sci. 2006, 13(5): 731-740.
    [178]黄瑞健,廖崇先,陈道中.川芎嗪对先天性心脏病肺动脉高压体外循环下血栓素A2及前列环素的影响.中国中西医结合杂志. 1998, 18 (6): 333-335.
    [179] Ren XY, Ruan QR, Zhu DH, et al. Tetramethylpyrazine inhibits agiontensin II-induced nuclear factor-kappaB activation and bone morphogenetic protein-2 downregulation in rat vascular smooth muscle cells. Sheng Li Xue Bao. 2007, 59(3): 339-344.
    [180] Li YJ, Wu JX, Yu XJ, et al. Protective effect of tetramethylpyrazine against damages of aortic endothelial cells elicited by low-density lipoproteins. Zhongguo Yao Li Xue Bao. 1994, 15(5): 407-410.
    [181]万敬员,叶笃筠,吴萍,等.川芎嗪对脂多糖诱导巨噬细胞环氧化酶-2表达和心肌细胞凋亡的影响.中国中西医结合杂志. 2004, 24(10): 906-911.
    [182] Zhu JX, Zhang GH, Yang N, et al. Activation of apical CFTR and basolateral Ca(2+)-activated K+ channels by tetramethylpyrazine in Caco-2 cell line. Eur J Pharmacol. 2005, 510(3): 187-195.
    [183] Sheu JR, Kan YC, Hung WC, et al. The antiplatelet activity of tetramethylpyrazine is mediated through activation of NO synthase. Life Sci. 2000, 67(8): 937-947.
    [184] Li M, Zhao C, Wong RN, et al. Inhibition of shear-induced platelet aggregation in rat by tetramethylpyrazine and salvianolic acid B. Clin Hemorheol Microcirc. 2004, 31(2): 97-103.
    [185] Sheu JR, Hsiao G, Lee YM, et al. Antithrombotic effects of tetramethylpyrazine in in vivo experiments. Int J Hematol. 2001, 73(3): 393-398.
    [186]陈少贤,王良兴,邢玲玲,等.川芎嗪对晚期肺癌患者血小板功能的影响.中国中西医结合杂志. 1997, 17(9): 531-533.
    [187] Lin PC, Chen YL, Chiu SC, et al. Orphan nuclear receptor, Nurr-77 was a possible target gene of butylidenephthalide chemotherapy on glioblastoma multiform brain tumor. J Neurochem. 2008, 106(3): 1017-1026.
    [188] Tsai NM, Chen YL, Lee CC, et al. The natural compound n-butylidenephthalide derived from Angelica sinensis inhibits malignant brain tumor growth in vitro and in vivo. J Neurochem. 2006, 99(4): 1251-1262.
    [189] Liang MJ,He LC. Inhibitory effects of ligustilide and butylidenephthalide on bFGF-stimulated proliferation of rat smooth muscle cells. Yao Xue Xue Bao. 2006, 41(2): 161-165.
    [190] Mimura Y, Kobayashi S, Naitoh T, et al. The structure-activity relationship between synthetic butylidenephthalide derivatives regarding the competence and progression of inhibition in primary cultures proliferation of mouse aorta smooth muscle cells. Biol Pharm Bull. 1995, 18(9): 1203-1206.
    [191] Ko WC, Charng CY, Sheu JR, et al. Effect of butylidenephthalide on calcium mobilization in isolated rat aorta. J Pharm Pharmacol. 1998, 50(12): 1365-1369.
    [192] Ko WC, Sheu JR, Leu YR, et al. Stereoselectivity of butylidenephthalide on voltage-dependent calcium channels in guinea-pig isolated ileum. J Pharm Pharmacol. 1997, 49(11): 1121-1125.
    [193] Ko WC. A newly isolated antispasmodic--butylidenephthalide. Jpn J Pharmacol. 1980, 30(1): 85-91.
    [194] Ko WC, Sheu JR, Tzeng SH, et al. The selective antianginal effect without changing blood pressure of butylidenephthalide in conscious rats. Planta Med. 1998, 64(3): 229-232.
    [195] He JY, Zhang W, He LC, et al. Imperatorin induces vasodilatation possibly via inhibiting voltage dependent calcium channel and receptor-mediated Ca2+ influx and release. Eur J Pharmacol. 2007, 573(1-3): 170-175.
    [196] Chan SS, Choi AO, Jones RL, et al. Mechanisms underlying the vasorelaxing effects of butylidenephthalide, an active constituent of Ligusticum chuanxiong, in rat isolated aorta. Eur J Pharmacol. 2006, 537(1-3): 111-117.
    [197] Teng CM, Chen WY, Ko WC, et al. Antiplatelet effect of butylidenephthalide. Biochim Biophys Acta. 1987, 924(3): 375-382.
    [198] Lagarde M, Geloen A, Record M, et al. Lipidomics is emerging. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids. 2003, 1634(3): 61-61.
    [199] Schneiter R, Brugger B, Sandhoff R, et al. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J Cell Biol. 1999, 146(4): 741-754.
    [200] Han X,Gross RW. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev. 2005, 24(3): 367-412.
    [201] DeLong CJ, Baker PR, Samuel M, et al. Molecular species composition of rat liver phospholipids by ESI-MS/MS: the effect of chromatography. J Lipid Res. 2001, 42(12): 1959-1968.
    [202] Edgell CJ, McDonald CC,Graham JB. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci U S A. 1983, 80(12): 3734-3737.
    [203] Ahn K, Pan S, Beningo K, et al. A permanent human cell line (EA.hy926) preserves the characteristics of endothelin converting enzyme from primary human umbilical vein endothelial cells. Life Sci. 1995, 56(26): 2331-2341.
    [204] Suggs JE, Madden MC, Friedman M, et al. Prostacyclin expression by a continuous human cell line derived from vascular endothelium. Blood. 1986, 68(4): 825-829.
    [205] Emeis JJ,Edgell CJ. Fibrinolytic properties of a human endothelial hybrid cell line (Ea.hy 926). Blood. 1988, 71(6): 1669-1675.
    [206] Beretz A, Freyssinet JM, Gauchy J, et al. Stability of the thrombin-thrombomodulin complex on the surface of endothelial cells from human saphenous vein or from the cell line EA.hy 926. Biochem J. 1989, 259(1): 35-40.
    [207] Kilsdonk EP, Dorsman AN,van Tol A. Net transport of cholesterol from cells of the human EA.hy 926 endothelial cell line to high density lipoproteins. Experientia. 1993, 49(6-7): 561-566.
    [208] Bernini F, Bellosta S, Corsini A, et al. Cholesterol stimulation of HDL binding to human endothelial cells EAhy 926 and skin fibroblasts: evidence for a mechanism independent of cellular metabolism. Biochim Biophys Acta. 1991, 1083(1): 94-100.
    [209] Folch J, Lees M,Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957, 226(1): 497-509.
    [210] Pulfer M,Murphy RC. Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev. 2003, 22(5): 332-364.
    [211] Milne S, Ivanova P, Forrester J, et al. Lipidomics: an analysis of cellular lipids by ESI-MS. Methods. 2006, 39(2): 92-103.
    [212] Han X,Gross RW. Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci U S A. 1994, 91(22): 10635-10639.
    [213]陆姝欢.脂质组学研究两种红豆杉细胞磷脂代谢的差异: [硕士学位论文],天津;天津大学, 2007.
    [214] Cansell M, Gouygou JP, Jozefonvicz J, et al. Lipid composition of cultured endothelial cells in relation to their growth. Lipids. 1997, 32(1): 39-44.
    [215] Dumas ME, Barton RH, Toye A, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A. 2006, 103(33): 12511-12516.
    [216] Clayton TA, Lindon JC, Cloarec O, et al. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature. 2006, 440(7087): 1073-1077.
    [217] Nicholson JK. Reviewers peering from under a pile of 'omics' data. Nature. 2006, 440(7087): 992.
    [218] Tian Y, Pate C, Andreolotti A, et al. Cytokine secretion requires phosphatidylcholine synthesis. J Cell Biol. 2008, 181(6): 945-957.
    [219] Ishiguro N, Oyabu M, Sato T, et al. Decreased biosynthesis of lung surfactant constituent phosphatidylcholine due to inhibition of choline transporter by gefitinib in lung alveolar cells. Pharm Res. 2008, 25(2): 417-427.
    [220] Vance JE. Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. J Lipid Res. 2008, 49(7): 1377-1387.
    [221] Cui Z, Houweling M, Chen MH, et al. A genetic defect in phosphatidylcholine biosynthesis triggers apoptosis in Chinese hamster ovary cells. J Biol Chem. 1996, 271(25): 14668-14671.
    [222] Esko JD, Nishijima M,Raetz CR. Animal cells dependent on exogenous phosphatidylcholine for membrane biogenesis. Proc Natl Acad Sci U S A. 1982, 79(6): 1698-1702.
    [223] Di Paolo G,De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature. 2006, 443(7112): 651-657.
    [224] Szado T, Vanderheyden V, Parys JB, et al. Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. Proc Natl Acad Sci U S A. 2008, 105(7): 2427-2432.
    [225] Fischer S, Wiesnet M, Renz D, et al. H2O2 induces paracellular permeability of porcine brain-derived microvascular endothelial cells by activation of the p44/42 MAP kinase pathway. Eur J Cell Biol. 2005, 84(7): 687-697.
    [226] Weigel G, Griesmacher A, Toma CD, et al. Endothelial eicosanoid metabolism and signal transduction during exposure to oxygen radicals injury. Thromb Res. 1997, 87(4): 363-375.
    [227] Nishina A, Kimura H, Sekiguchi A, et al. Lysophosphatidylethanolamine in Grifola frondosa as a neurotrophic activator via activation of MAPK. J Lipid Res. 2006, 47(7): 1434-1443.
    [228] Park KS, Lee HY, Lee SY, et al. Lysophosphatidylethanolamine stimulates chemotactic migration and cellular invasion in SK-OV3 human ovarian cancer cells: involvement of pertussis toxin-sensitive G-protein coupled receptor. FEBS Lett. 2007, 581(23): 4411-4416.
    [229] Matsubara M,Hasegawa K. Benidipine, a dihydropyridine-calcium channel blocker, prevents lysophosphatidylcholine-induced injury and reactive oxygen species production in human aortic endothelial cells. Atherosclerosis. 2005, 178(1): 57-66.
    [230] Taylor AL, Bonventre JV, Uliasz TF, et al. Cytosolic phospholipase A2 alpha inhibition prevents neuronal NMDA receptor-stimulated arachidonic acid mobilization and prostaglandin production but not subsequent cell death. J Neurochem. 2008, 106(4): 1828-1840.
    [231] Caro AA,Cederbaum AI. Role of cytochrome P450 in phospholipase A2- and arachidonic acid-mediated cytotoxicity. Free Radic Biol Med. 2006, 40(3): 364-375.
    [232] Katz-Brull R, Seger D, Rivenson-Segal D, et al. Metabolic markers of breast cancer: enhanced choline metabolism and reduced choline-ether-phospholipid synthesis. Cancer Res. 2002, 62(7): 1966-1970.
    [233] Brosche T,Platt D. The biological significance of plasmalogens in defense against oxidative damage. Exp Gerontol. 1998, 33(5): 363-369.
    [234]林蓉,刘俊田,甘伟杰,等.川芎嗪对缺氧缺糖状态下培养的血管内皮细胞ECV-304的影响].中国中药杂志. 2004, 29(5): 462-465.
    [235]林蓉,刘俊田,甘伟杰.川芎嗪对缺氧缺糖损伤的血管内皮细胞周期和前列环素的影响.中药材. 2003, 26(10): 728-730.
    [236] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983, 65(1-2): 55-63.
    [237] Taher MM, Garcia JG,Natarajan V. Hydroperoxide-induced diacylglycerol formation and protein kinase C activation in vascular endothelial cells. Arch Biochem Biophys. 1993, 303(2): 260-266.
    [238] Fasanaro P, Magenta A, Zaccagnini G, et al. Cyclin D1 degradation enhances endothelial cell survival upon oxidative stress. FASEB J. 2006, 20(8): 1242-1244.
    [239] Zheng Y,Shen X. H2O2 directly activates inositol 1,4,5-trisphosphate receptors in endothelial cells. Redox Rep. 2005, 10(1): 29-36.
    [240] Deguchi A, Segawa K, Hosaka K, et al. Overexpression of phosphatidylinositol synthase enhances growth and G1 progression in NIH3T3 cells. Jpn J Cancer Res. 2002, 93(2): 157-166.
    [241] Akhtar RA,Islam M. Epidermal growth factor (EGF)-induced phospholipase D (PLD) activation stimulates migration and proliferation in rabbit corneal epithelial cells (RCEC). Investigative Ophthalmology & Visual Science. 2003, 44: U325-U325.
    [242] Fujita Y, Hiroyama M, Sanbe A, et al. ETOH inhibits embryonic neural stem/precursor cell proliferation via PLD signaling. Biochemical and Biophysical Research Communications. 2008, 370(1): 169-173.
    [243] Cheng SE, Luo SF, Jou MJ, et al. Cigarette smoke extract induces cytosolic phospholipase A(2) expression via NADPH oxidase, MAPKs, AP-1, and NF-kappa B in human tracheal smooth muscle cells. Free Radical Biology and Medicine. 2009, 46(7): 948-960.
    [244] Hazan-Halevy I, Levy T, Wolak T, et al. Stimulation of NADPH oxidase by angiotensin II in human neutrophils is mediated by ERK, p38 MAP-kinase and cytosolic phospholipase A(2). Journal of Hypertension. 2005, 23(6): 1183-1190.
    [245] Lupo G, Nicotra A, Giurdanella G, et al. Activation of phospholipase A(2) and MAP kinases by oxidized low-density lipoproteins in immortalized GP8.39 endothelial cells. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids. 2005, 1735(2): 135-150.
    [246] Thomas W, Coen N, Faherty S, et al. Estrogen induces phospholipase A2 activation through ERK1/2 to mobilize intracellular calcium in MCF-7 cells. Steroids. 2006, 71(3): 256-265.
    [247] Yazlovitskaya EM, Linkous AG, Thotala DK, et al. Cytosolic phospholipase A(2) regulates viability of irradiated vascular endothelium. Cell Death and Differentiation. 2008, 15(10): 1641-1653.
    [248] Cai H. Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc Res. 2005, 68(1): 26-36.
    [249] Aussel C, Pelassy C,Breittmayer JP. CD95 (Fas/APO-1) induces an increased phosphatidylserine synthesis that precedes its externalization during programmed cell death. FEBS Lett. 1998, 431(2): 195-199.
    [250] Yu A, Byers DM, Ridgway ND, et al. Preferential externalization of newly synthesized phosphatidylserine in apoptotic U937 cells is dependent on caspase-mediated pathways. Biochim Biophys Acta. 2000, 1487(2-3): 296-308.
    [251] Yu A, McMaster CR, Byers DM, et al. Stimulation of phosphatidylserine biosynthesis and facilitation of UV-induced apoptosis in Chinese hamster ovary cells overexpressing phospholipid scramblase 1. J Biol Chem. 2003, 278(11): 9706-9714.
    [252] Yu A, McMaster CR, Byers DM, et al. Resistance to UV-induced apoptosis in Chinese-hamster ovary cells overexpressing phosphatidylserine synthases. Biochem J. 2004, 381(Pt 3): 609-618.
    [253] Kim HY, Akbar M, Lau A, et al. Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3). Role of phosphatidylserine in antiapoptotic effect. J Biol Chem. 2000, 275(45): 35215-35223.
    [254] Farber SA, Olson ES, Clark JD, et al. Characterization of Ca2+-dependent phospholipase A2 activity during zebrafish embryogenesis. J Biol Chem. 1999, 274(27): 19338-19346.
    [255] Scherer GF, Paul RU, Holk A, et al. Down-regulation by elicitors of phosphatidylcholine-hydrolyzing phospholipase C and up-regulation of phospholipase A in plant cells. Biochem Biophys Res Commun. 2002, 293(2): 766-770.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700