用户名: 密码: 验证码:
SOA中的交叉增益压缩效应及其在DPSK信号全光2R再生中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体光放大器(SOA)有非线性系数高、增益谱宽、体积小和易于集成的优点,因此在全光信号处理领域受到了广泛的关注。差分相移键控(Differential Phase-Shift Keying, DPSK)调制方式与传统的OOK(On-Off Keying)调制方式相比,具有更高的非线性容限,结合干涉仪解调和平衡探测可以明显提高接收机的灵敏度,成为高速、长距离光纤传输系统研究的热点。本文对深饱和SOA中的交叉增益压缩(Cross-Gain Compression,XGC)效应进行了理论研究,在此基础上对基于该效应的DPSK信号2R再生(Reamplifying, Reshaping)进行了再生性能的分析。
     本论文首先建立了包含两个偏振态的SOA理论模型,其中考虑了纵向载流子浓度的非均匀分布以及增益谱随载流子浓度的漂移,载流子加热、光谱烧孔等高阶非线性效应造成的增益压缩用增益压缩因子描述。在分析SOA静态和动态特性的基础上,分析了SOA的物理参数和外部工作条件对XGC效应整形作用的影响,如有源区长度、载流子寿命、增益压缩因子、模场限制因子、入射光功率、光波长等,结果表明XGC效应可以明显抑制振幅噪声,且通过SOA的物理参数和外部工作条件的优化设计可以实现XGC效应的增强。为了全面分析基于XGC效应的DPSK信号2R再生方案的再生性能,对SOA可能引入的相位噪声进行了详细的研究,结果表明XGC效应在抑制振幅噪声的同时,SOA引入的非线性相位噪声会使得相位出现一定程度的劣化,但是相位劣化不足以抵消XGC效应对振幅噪声的抑制作用,通过选择适当的SOA物理参数和外部工作条件,可以尽可能地抑制非线性相位噪声的产生,从而提高再生器的再生能力。总体而言,XGC效应对信号的振幅噪声有良好的抑制作用,基于该效应的DPSK信号2R再生应用达到了良好的效果。
Semiconductor optical amplifier (SOA) has been widely applied in all-optical signal processing, because it has benefits of high nonlinear coefficient, wide gain spectrum, small size and can be easily integrated. Compared to conventional on-off keying(OOK) modulation, Differential phase shift keying (DPSK) behaves higher non-linear tolerance. Combined with interferometer demodulation and balanced detection, this format can significantly improve the receiver sensitivity,and therefore has attracted a great of attention especially for high-speed, long-haul transmission.In this thesis, we theoretically study the cross-gain compression (XGC) efftcet in a deeply saturated SOA,and the regeneration performance analysis of DPSK 2R regeneration program based on the XGC effect is made .
     In this thesis, firstly,the SOA model including the two polarization states is established, which takes into account the non-uniform distribution of the carrier density and gain spectrum shift. The gain compression caused by high-order nonlinear effects is described by gain compression factor ,such as carrier heating and spectral hole burning.Based on the analysis of static and dynamic characteristics of SOA, we have analyzed the effects of SOA’s physical parameters and the working conditions on shaping ability of the XGC effect,such as,the source region of length, carrier life, gain compression factor, field confining factor, the input light power, wavelength.It has been proved that the XGC effect can significantly restrain noises of the amplitude . The XGC effect can be enhanced through the optimum design of SOA’s physical parameters and working conditions. In order to effect a comprehensive analysis of regeneration program performance for XGC-based 2R regeneration for DPSK signals,we study the phase noise that may be introduced by the SOA during the XGC effect’s working time. The conclusion is the nonlinear phase noise introduced by the SOA makes the phase more deteriorated, but the phase deterioration can not counteract the suppression of amplitude noise contribution from the XGC effect. The nonlinear phase noise can be restrained as much as possible by choosing appropriate physical parameters of the SOA and working conditions and the regeneration ability of the regenerator can be improved. Overall, the XGC effect behaves evident performance on noise restrain ,and the application on the DPSK signal 2R regeneration achieves a good result.
引文
[1] Chris Xu, Xiang Liu, Xing Wei. Differential Phase-Shift Keying for High Spectral Efficiency Optical Transmissions. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(2): 281-293
    [2] Arne G. Striegler, M. Meissner, K. Cvěcek, et al. NOLM-Based RZ-DPSK Signal Regeneration. IEEE Photonics Technology Letters, 2005, 17(3): 639-641
    [3] S. Boscolo, R.Bhamber, S. K. Turitsyn. Design of Raman-based NOLM for optical 2R regeneration of RZ-DPSK transmission. Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference, OWJ5, 2006. 2-3
    [4] M. Matsumoto. Performance improvement of phase-shift-keying signal transmission by means of optical limiters using four-wave mixing in fibers. Journal of Lightwave Technology, 2005, 23(9): 2696-2701
    [5] Masayuki Matsumoto. Simultaneous reshaping of OOK and DPSK signals by a fiber-based all-optical regenerator. Optics Express, 2006, 14(4): 1430-1438
    [6] Kevin Croussore, Inwoong Kim, Cheolhwan Kim, et al. Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier. Optics Express, 2006, 14(6 ): 2094
    [7] V. S. Grigoryan, M. Shin, P. Devgan, et al. SOA-based regenerative amplification of phase-noise-degraded DPSK signals: dynamic analysis and demonstration. Lightwave Technology, 2006, 24(1): 135 -142
    [8] Johannisson, Pontus, Adolfsson. Suppression of phase error in differential phase-shift keying data by amplitude regeneration. Optics Letters, 2006, 31(10): 1385-1387
    [9] E. Ciaramella, G. Contestabile, A. D’Errico. A Novel Scheme to Detect Optical DPSK Signals. IEEE Photonics Technology Letters, 2004, 16(9): 2138-2140
    [10] G. P. Agrawal, N. A. Olsson. Self phase modulationand spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE Journal Quantum Electron, 1989, 25: 2297-2306
    [11] G. Contestabile, R. Proietti, N. Calabretta. Reshaping Capability of Cross-Gain Compression in Semiconductor Amplifiers. IEEE Photonics Technology Letters, 2005, 17(12): 2523-2525
    [12] Giampiero Contestabile, Roberto Proietti, Nicola Calabretta. Cross-Gain Compression in Semiconductor Optical Amplifiers. Journal of Lightwave Technology, 2007, 25(3):915-920
    [13] Giampiero Contestabile, Roberto Proietti, Marco Presi. 40 Gb/s Wavelength Preserving 2R Regeneration for both RZ and NRZ Signals. OFC/NFOEC 2008
    [14] A. D’Errico, G. Contestabile, R. Proietti. 2R Optical Regeneration combining XGC in a SOA and a Saturable Absorber. OFC/NFOEC 2008
    [15] J. L. Pluemeekers, POSEIDON. A simulator for Optoelectronic Semiconductor Devices. Ph. D. thesis, Delf University of Technology, 1997
    [16] Terji Durhuus, B Mikkelsen, Kristian E.subkjaer. Detailed Dynamic Model for Semiconductor Optical Amplifers and Their Crosstalk and Intermodulation Distortion. IEEE, 1992, 10(8): 1056-1065
    [17] M. Caraccia, Gross. Modeling of Semiconductor Optical Amplier Waveguide Devices for All-Optical Signal Processing. Ph. D. thesis, ETHZ, 2001, No. 13897
    [18] G. Toptchiyski, S. Kindt, K. Petermann. Time-domain modeling of semiconductor optical amplifiers for OTDM applications. J. Lightwave Technol, 1999, 17(12): 2577-2583
    [19] M. Asghari, I. H. White, R. V. Penty. Wavelength conversion using semiconductor optical ampliers. J. Lightwave Technol, 1997, 15(7): 1181-1190
    [20] H. Lee, Y. Kim, J. Jeong. Theoretical study of frequency chirping and extinction ratio of wavelength-converted optical signals by XGM and XPM using SOAs. IEEE J. Quantum Electron, 1999, 35(8) :1213-1219
    [21] A. Mecozzi, J. M?rk. Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers. IEEE J. Select. Topics Quantum Electron, 1997, 3(5): 1190-1207
    [22] G. P. Agrawal, N. K. Dutta. Semiconductor. Lasers. Kluwer Academic Publishers, 2nd edition, 1993, Ch.3
    [23] P. J. Annetts, M. Asghari, I. H. White. The effect of carrier transport on the dynamic performance of gain-saturation wavelength conversion in MQW semiconductor optical amplifiers. IEEE J. Select. Topics Quantum Electron, 1997, 3(2): 320-329
    [24] R. Gutiérrez-Castrejón, L. Schares, L. Occhi. Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length. IEEE J. Quantum Electron, 2000, 36(12): 1476-1484
    [25] F. Girardin, G. Guekos. Gain Recovery of Bulk Semiconductor Optical Amplifiers. IEEE Photonics Technology Letters, 1998, 10(6): 784-786
    [26] G. Talli, M. J. Adams. Gain Dynamics of Semiconductor Optical Amplifiers andThree-Wavelength Devices. Journal of Quantum Electronics, 2003, 39(10): 1305-1313
    [27] J. L. Pleumeekers, M. A. Dupertuis, T. Hessler. Longitudinal spatial hole burning and associated nonlinear gain in gain-clamped semiconductor optical amplifiers. IEEE J. Quantum Electron, 1998, 34: 879-886
    [28] K. Obermann. All-Optical Wavelength Conversion based on Cross-Gain Modulation and Four-Wave Mixing in Semiconductor-Optical Amplifiers. Wissenschaft& Technik Verlag, Jan 1999, 1 edition
    [29] Michael J. Connelly. Wideband Semiconductor Optical Amplifier Steady-State Numerical Model. IEEE Journal of Quantum Electronics, 2001, 37(3): 439-447
    [30] Michael J. Connelly. Wideband dynamic numerical model of tapered buried ridge stripe semiconductor optical amplifier gate. IEEE Proceedings-Circuits, Devices and Systems, 2002, 149(3): 173-178
    [31] G. Bosco, P. Poggiolini. On the Q Factor Inaccuracy in the Performance Analysis of Optical Direct-Detection DPSK Systems. IEEE Photonics Technology Letters, 2004, 16(2): 665-667
    [32] Xing Wei, Xiang Liu, Chris Xu. Q factor in numerical simulations of DPSK with optical delay demodulation. IEEE Photonics Technology Letters, 2002
    [33]黄黎蓉,黄德修,缪庆元.基于半导体光放大器交叉偏振调制的波长转换分析.半导体学报,2003,24(8): 882-886
    [34] Ehab S. Awad, Pak S. Cho, Julius Goldhar. All-optical phase and amplitude regeneration of return-to-zero differential phase shift keying data. Optics Letters, 2007, 32(4): 352-354
    [35] Xing Wei, Liming Zhang. Analysis of the Phase Noise in Saturated SOAs for DPSK Applications. IEEE Journal of Quantum Electronics, 2005, 41(4): 554-561
    [36] K. Kikuchi, Zah, Lee. Measurement and analysis of phase noise generated from semiconductor optical amplifiers. IEEE J. Quantum Electron, 1991, 27(3): 416-422
    [37] D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan. Kramers-Kr?nig relations in nonlinear optics. Opt. Quantum Electron, 1992, 24(1): 1-30
    [38] C. H. Henry.Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron, 1982, 18(2): 259-264
    [39] Laurent Schares, Colja Schubert, Carsten Schmidt. Phase Dynamics of Semiconductor Optical Amplifiers at 10–40 GHz. IEEE Journal of Quantum Electronics, 2003, 39(11): 1394-1408
    [40] K. L. Hall, G. Lenz. Subpicosecond gain and index nonlinearities in InGaAsP diodelasers. Optics Communications, 1994, 111: 589-612
    [41] Yoshiyasu Ueno, Shigeru Nakamura, Kazuhito Tajima. Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40–160-GHz range for use in ultrahigh-speed all-optical signal processing. Journal of the Optical Society of America B, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700