用户名: 密码: 验证码:
基于光纤干涉的双参量同事测量传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤通信具有频带范围宽,传输损耗低和失真小等优点,在当今通信领域的发展过程中,正呈现一派欣欣向荣的发展景象。而光纤光栅的出现,则为这一发展注入了新的生机和活力。光纤光栅具有插入损耗低、成本低、稳定性好、耐腐蚀、不易受电磁干扰、便于复用、能在较恶劣环境中工作等优点,大大扩展了其应用范围,使光纤通信朝着集成化、全光纤化、智能化的方向加速发展,受到了人们的重视和青睐。
     干涉型光纤传感器与其他传感器相比,具有极高的灵敏度和分辨率,以及很大的动态响应范围,长期处于特定工作环境下的光学稳定性较好,在温度、液位、折射率、应变、湿度传感和水听器等领域中有广泛的应用。
     光纤光栅的双参量同时测量能够提供更多的信息和便利,有效推进了光纤光栅的实用化进程。本文采用将干涉型光纤传感器与光纤光栅相级联的方式,并利用干涉谱和光栅透射峰的不同响应灵敏度,实现了对双参量的同时测量,主要内容包括:
     1)简要介绍了光纤光栅近年来的发展以及特点和应用,分析了光纤传感器的传感原理及干涉型光纤传感器的研究现状,并对光纤光栅的双参量同时测量问题进行了现状分析和解决方法的研究。介绍了干涉型光纤传感器的基本理论,并列举了几种典型的干涉型光纤传感器,分析了各自的特点。
     2)介绍了光纤Bragg光栅(FBG)的温度和应变传感原理,然后对single-mode-multimode-single-mode(SMS)结构的干涉模式进行了详细分析,并利用光束传播法(beam propagation method,BPM)对干涉光场分布进行了数值模拟。提出了一种基于SMS结构与FBG级联的温度和折射率同时测量传感器。在SMS结构中,众多高阶导模在MMF中发生干涉,通过干涉条纹的漂移来感知外界参量的变化。实验测得SMS的干涉谱和FBG的透射峰对温度和折射率有不同的响应灵敏度,温度和折射率的测量精度分别为±0.22℃和±0.0015。
     3)分析了长周期光纤光栅(LPG)的温度和轴向应变传感特性,然后对保偏光纤(PMF)的双折射特性进行了研究,并设计了一种基于Lyot滤波器(Lyot fiber filter, LFF)和LPG的温度和应变同时测量传感器,其中LFF由在起偏器(PL1)和检偏器(PL2)中嵌入一段PMF构成,具有线性结构,干涉谱的稳定性较高,实验测得其干涉谱和LPG的透射峰对温度和应变有不同的响应灵敏度,温度和应变的测量精度分别为±1℃和±25με。
     4)分析了MMF-SMF-MMF(MSM)结构的干涉原理,并用BPM法对干涉光场分布进行了数值模拟,设计了一种基于MSM结构和FBG的温度和折射率同时测量传感器,利用敏感矩阵实现了双参量的同时测量,温度和折射率的测量精度分别为±0.32℃和±0.0023。由于MSM结构中SMF的包层模容易受到外界环境的影响,故具有较高的灵敏度,实验测得MSM结构的温度灵敏度是FBG的5倍。
Optical communication is appearing a booming prospect due to the advantages of broadfrequency band, low transmission loss and small distortion. The optical gratings inject newvitality and vigor to the optical communication development with many instinctiveadvantages, such as low cost, high stability, corrosion resisting, immune to electromagneticinterference, multiplexing capability, adapt to work under hostile environment, and so on.Optical communication is developing toward the aim of integration, all-fiber devices, andintelligence, which is valued and favored by people.
     Compared with the conventional sensors, the fiber-interference-based sensor has broadresponse range, much higher sensitivity and resolution, and is also stable under specialworking environment, which has been applied in many sensing areas, such as temperature,strain, liquid level, refractive index, humidity and hydrophone.
     Simultaneous measurement of dual parameters can offer more information and greateravailability, which promote the practical process of fiber gratings. This thesis mainly focuseson the simultaneous measurement of dual parameters by using the combination of a fibergrating and a fiber-interference-based sensor. The main content includes:
     1) Depict generally on the development and applications of fiber gratings in recent years, andintroduce the simultaneous measurement of dual parameters of the fiber gratings. Analyzethe sensing principle and research status of fiber-interference-based sensors, and list sometypical fiber-interference-based sensors.
     2) Introduce briefly the temperature and strain sensing principle of fiber Bragg grating(FBG),and analyze the interference modes of single-mode-multimode-single-mode(SMS)structure in detail, then the numerical simulation of optical field distribution is carried outby use of beam propagation method(BPM). A sensor for simultaneous measurement oftemperature and refractive index(RI) is presented. The excited high order guided modesinterfere in the MMF. Due to the different response sensitivity coefficients of SMS andFBG, the simultaneous measurement is achieved with the resolution of±0.22℃和±0.0015, respectively.
     3) The temperature and axial strain sensing principle of long period grating(LPG) and thebirefrigent effect of polarization maintaining fiber(PMF) are studied. A sensor forsimultaneous measurement of temperature and strain is designed by cascading an LPGand a Lyot fiber filter(LFF), which has a linear configuration with stable interferencespectrum. By measuring the different wavelength shifts of LFF and LPG, thesimultaneous measurement is achieved by use of a well-conditioned sensitivity matrixequation, and a resolution of±1℃和±25με is obtained.
     4) A sensor for simultaneous measurement of temperature and RI is proposed by using a combination of an MMF-SMF-MMF(MSM) structure and an FBG. Firstly the interferenceprinciple of MSM structure is investigated. Considering the cladding mode nature of theSMF is more vulnerable to other parameters, the temperature sensitivity coefficient ofMSM structure is five times higher than that of FBG. Meanwhile, the numericalsimulation of optical field distribution is carried out by means of BPM, and thesimultaneous measurement is demonstrated due to the different responses of MSM andFBG. The resolution of±0.32℃and±0.0023is achieved.
引文
[1]张桂菊,于清旭,宋世德.基于F-P腔的干涉/强度调制型光纤温度传感器[J].中国激光,2005,32(2):228~231
    [2]Denis Donlagic, Edvard Cibula. All-fiber high-sensitivity pressure sensor with SiO2diaphragm[J].Optics Letters,2005,30(16):2071~2073
    [3]李坤,文泓桥,李慧.光纤法布里-珀罗结构的微型应变传感器的研制[J].光学学报,2009,29(12):3282~3285
    [4]魏仁选,姜德生.基于F-P干涉波长的折射率测量[J].中国激光,2003,30(6):551~554
    [5]徐敏,朱涛,饶云江等.基于空芯光子晶体光纤的F-P干涉式折射率计[J].光电子激光,2010,21(1):26~29
    [6]姜德生,魏仁选.基于光纤F-P干涉波长的溶液浓度测量系统研究[J].中国激光,2004,31(9):1127~1131
    [7]张乐,吴波,叶雯等.基于光纤光栅法布里-珀罗腔锁频原理的高灵敏度光纤振动传感器[J].光学学报,2011,31(4):0406006-1~5
    [8]饶云江,黎宏,朱涛等.基于空芯光子晶体光纤的法-珀干涉式高温应变传感器[J].中国激光,2009,36(6):1484~1488
    [9]段德稳,朱涛,饶云江等.基于空芯光子晶体光纤的微小型非本征光纤法布里-珀罗干涉应变传感器[J].光学学报,2008,28(1):17~20
    [10]朱涛,徐敏,饶云江等.基于空芯光纤的集成式全光纤法-珀干涉式湿度传感器[J].光学学报,2010,30(6):1592~1596
    [11]柯涛,朱涛,饶云江等.基于空芯光子晶体光纤的全光纤法布里-珀罗干涉式加速度传感器[J].中国激光,2010,37(1):171~175
    [12]林巧,陈柳华,李书等.基于光纤-镜面干涉腔的光纤加速度计[J].光学精密工程,2011,19(6):1179~1184
    [13]王玮,李恩邦,张晨亮等.基于多模干涉的光纤温度传感器的BPM模拟与实验研究[J].光电子激光,2008,19(12):1571~1575
    [14]Enbang Li. Sensitivity-enhanced fiber-optic strain sensor based on interference of higher order modesin circular fibers[J]. IEEE Photonics Technology Letters,2007,19(16):1266~1268
    [15]Zhengyu Huang, Yizheng Zhu, Xiaopei Chen, et al. Intrinsic Fabry-Perot Fiber Sensor for Temperatureand Strain Measurements[J]. IEEE Photonics Technology Letters,2005,17(11):2403~2405
    [16]Alok Mehta, Waleed Mohammed, Eric G. Johnson. Multimode interference-based fiber-opticdisplacement sensor[J]. IEEE Photonics Technology Letters,2003,15(8):1129~1131
    [17]Yongxing Jin, Chi Chiu Chan, Xinyong Dong, et al. Bending sensor with tilted fiber Bragg gratinginteracting with multimode fiber[J]. Asia Communications and Photonics,2009,7630:76302E-1~6
    [18]Li-Yang Shao, A. Ping Zhang, Wei-Sheng Liu, et al. Optical refractive-index sensor based on dualfiber-Bragg gratings interposed with a multimode-fiber taper[J]. IEEE Photonics Technology Letters,2007,19(1):30~32
    [19]王凯军,张建中,彭石军等.基于大芯径多模光纤模式干涉的光纤折射率测量[J].中国激光,2009,36:125~128
    [20]赵宇,金永兴,董新永等.基于多模干涉的光纤折射率传感器的实验研究[J].中国激光,2010,37(6):1516~1519
    [21]Y Jung, Soan Kim, D Lee, et al. Compact three segmented multimode fibre modal interferometer forhigh sensitivity refractive-index measurement[J]. Measurement Science and Technology,2006,1129~1133
    [22]李恩邦,郑丹莹,张晨亮等.基于空心光纤多模干涉的折射率传感器研究[J].光电子激光,2010,21(10):1439~1444
    [23]唐春晓,李恩邦,王长乐等.基于多模干涉的反射式光纤生物传感器的研究[J].光电子激光,2011,22(8):1138~1142
    [24]O.Frazao, J. Viegas, P.Caldas, et al. All-fiber Mach-Zehnder curvature sensor based on multimodeinterference combined with a long-period grating[J]. Optics Letters,2007,32(21):3074~3076
    [25] O.Frazao, J.M.Baptista, J.L.Santos. Temperature-independent strain sensor based on a Hi-Bi photoniccrystal fiber loop mirror[J]. IEEE Sensors Journal,2007,7(10):1453~1455
    [26]王鑫,宋章启,张学亮等. Sagnac干涉式光纤水听器传感特性理论研究[J].红外与激光工程,2007,36:446~449
    [27]焦斌亮,王朝晖,郑绳楦.基于3×3耦合器的Sagnac型光纤电流传感器结构[J].激光与红外,2004,34(4):298~301
    [28]范林勇,江微微,赵瑞峰等.双芯光纤马赫-曾德尔干涉仪的温度特性[J].光学精密工程,2011,19(1):1~9
    [29]林巧,陈柳华,李书等.基于迈克尔逊干涉的光纤弯曲传感器[J].光子学报,2011,40(2):251~254
    [30]Agostino Iadicicco, Stefania Campopiano, Antonello Cutolo, et al. Nonuniform thinned fiber Bragggratings for simultaneous refractive index and temperature measurements[J]. IEEE PhotonicsTechnology Letters,2005,17(7):1495~1497
    [31]Jinhua Yan, A.Ping Zhang, Li-Yang Shao, et al. Simultaneous measurement of refractive index andtemperature by using dual long-period gratings with an etching process[J]. IEEE Sensors Journal,2007,7(9):1360~1361
    [32]C.R.Liao, Ying Wang, D.N Wang, et al. Fiber in-line Mach-Zehnder Interferometer Embedded in FBGfor Simultaneous Refractive Index and Temperature Measurement[J]. IEEE Photonics TechnologyLetters,2010,22(22):1686~1688
    [33]A.Ping Zhang, Li-Yang Shao, Jin-Fei Ding, et al. Sandwiched long-period gratings for simultaneousmeasurement of refractive index and temperature[J]. IEEE Photonics Technology Letters,2005,17(11):2397~2399
    [34]Sang-Mae Lee, Simarjeet S.Saini, Myung-Yung Jeong. Simultaneous measurement of refractive index,temperature, and strain using etched-core fiber Bragg grating sensors[J]. IEEE Photonics TechnologyLetters,2010,22(19):1431~1433
    [35]Chun-Liu Zhao, Xiufeng Yang, M.S.Demokan, et al. Simultaneous temperature and refractive indexmeasurements using a3°slanted multimode fiber Bragg grating[J]. Journal of Lightwave Technology,2006,24(2):879~883
    [36]II Woong Jung, Bryan Park, J.Provine, et al. Highly sensitive monolithic silicon photonic crystal fibertip sensor for simultaneous measurement of refractive index and temperature[J]. Journal of LightwaveTechnology,2011,29(9):1367~1374
    [37]C.Gouveia, P.A.S.Jorge, J.M.Baptista, et al. Fabry-Perot cavity based on a high-birefringent fiberBragg grating for refractive index and temperature measurement[J]. IEEE Sensors Journal,2012,12(1):17~21
    [38]O.Frazao, L.M.Marques, S.Santos, et al. Simultaneous measurement for strain and temperature basedon a long-period grating combined with a high-birefringence fiber loop mirror[J]. IEEE PhotonicsTechnology Letters,2006,18(22):2407~2409
    [39]L V Nguyen, D Hwang, D S Moon, et al. Simultaneous measurement of temperature and strain using alyot fiber filter incorporated with a fiber Bragg grating in a linear configuration[J]. MeasurementScience and Technology,2009,1~5
    [40]Da-Peng Zhou, Li Wei, Wing-Ki Liu, et al. Simultaneous measurement of strain and temperature basedon a fiber Bragg grating combined with a high-birefringence fiber loop mirror[J]. OpticsCommunications,2008,4640~4643
    [41]乔学光,韩鹏,贾振安等.光纤光栅温度压力同时区分测量技术研究[J].光电子激光,2009,20(9):1186~1188
    [42]乔学光,陈懿,贾振安.基于双光纤光栅温度压力同时区分测量的研究[J].光电子激光,2010,21(1):12~14
    [43]宋韵,朱涛,饶云江等.旋转折变型长周期光纤光栅实现应变和温度的同时测量[J].中国激光,2009,36(5):1129~1133
    [44]苗飞,陈霄,张玲等.基于LPFG和HBF环镜的温度和应变同时测量[J].光电子激光,2011,22(7):1042~1045
    [45]Weilin Liu, Wangzhe Li, Jianping Yao. Real-time interrogation of a linearly chirped fiber Bragggrating sensor for simultaneous measurement of strain and temperature[J]. IEEE Photonics TechnologyLetters,2011,23(18):1340~1342
    [46]禹大宽,贾振安,乔学光等.基于靶式和悬臂梁的FBG流量/温度同时测量研究[J].光电子激光,2010,21(5):710~713
    [47]吕全超,赵建林,周网民等.一种同时测量电流和温度的光纤光栅传感器[J].光子学报,2009,38(11):2810~2815
    [48]苗银萍,刘波,赵启大等.用单一倾斜光纤光栅实现曲率和温度的同时测量[J].中国激光,2009,36(9):2388~2392
    [49]D.Viegas, M.Hernaez, J.Goicoechea, et al. Simultaneous measurement of humidity and temperaturebased on an SiO2-nanospheres film deposited on a long-period grating in-line with a fiber Bragggrating[J]. IEEE Sensors Journal,2011,11(1):162~166
    [50]Qiang Wu, Agus Muhamad Hatta, Pengfei Wang, et al. Use of a bent single SMS fiber structure forsimultaneous measurement of displacement and temperature sensing[J]. IEEE Photonics TechnologyLetters,2011,23(2):130~132
    [51]T.Chen, R.Chen, P.Lu, et al. Tapered fibre Mach-Zehnder interferometer for simultaneousmeasurement of liquid lever and temperature[J]. Electronics Letters,2011,47(19):1093~1095
    [52]Philip Orr, Pawel Niewczas. A robust, multiplexable fiber sensor for simultaneous measurement ofbend and strain [J]. IEEE Sensors Journal,2011,11(2):341~342
    [53]饶春芳,张华,冯艳等.镍金属保护光纤布拉格光栅的热处理及高温传感[J].光学精密工程,2011,19(9):2006~2013
    [54]陈建军,张伟刚,涂勤昌等.基于光纤光栅的高灵敏度流速传感器[J].光学学报,2006,26(8):1136~1139
    [55]周文俊,董新永,龚华平等.光纤布拉格光栅温度不敏感振动传感器[J].红外与激光工程,2010,39(5):939~942
    [56]倪凯,徐海松,董新永等.基于光纤布拉格光栅的温度不敏感的倾斜传感器[J].光学学报,2010,30(7):2104~2107
    [57]何俊,周智,董惠娟等.灵敏度系数可调布拉格干涉应变传感器的设计[J].光学精密工程,2010,18(11):2339~2346
    [58]杨秀峰,于汇,王鹏等.基于杠杆原理的新型光纤光栅微位移传感器[J].光电子激光,2010,21(8):1156~1158
    [59]Hui Yu, Xiufeng Yang, Zhengrong Tong, et al. Temperature-independent rotational angle sensor basedon fiber Bragg grating[J]. IEEE Sensors Journal,2011,11(5):1233~1235
    [60]尉婷,乔学光,贾振安等.平面圆形膜片式光纤布拉格光栅温度补偿压强传感[J].光学学报,2007,27(1):80~84
    [61]刘钦朋,乔学光,贾振安等.一种新颖的高压光纤布拉格光栅传感器[J].光电子激光,2007,18(11):1293~1295
    [62]刘钦朋,乔学光,赵建林等.双悬臂梁光纤布拉格光栅低频加速度传感器[J].光电子激光,2011,22(8):1119~1123
    [63]陈钦生,杨淑连.双光纤布拉格光栅电流传感器[J].应用激光,2007,27(4):338~341
    [64]杨淑连,申晋,李田泽.双光纤布拉格光栅磁场传感器[J].光电子激光,2007,18(10):1166~1168
    [65]恽斌峰,陈娜,崔一平.基于包层模的光纤布拉格光栅折射率传感特性[J].光学学报,2006,26(7):1013~1015
    [66]王玉宝,兰海军.基于光纤布拉格光栅波/时分复用传感网络研究[J].光学学报,2010,30(8):2196~2201
    [67]李彬,魏淮,简水生.基于长周期光纤光栅的动态增益平坦滤波器[J].光电子激光,2006,17(3):274~279
    [68]朱涛,饶云江,莫秋菊等.温度/应变/扭曲三参量同时测量低成本传感系统[J].光子学报,2006,35(5):655~658
    [69]廖弦,饶云江,冉曾令等.激光脉冲制作的长周期光纤光栅/法布里-珀罗高温-应变组合传感器[J].中国激光,2008,35(6):884~888
    [70]赵洪霞,鲍吉龙,陈莹.长周期光纤光栅弯曲传感特性[J].光学学报,2008,28(9):1681~1685
    [71]陈成金,周晓军,兰岚等.基于微弯效应的长周期光纤光栅的研究[J].光学学报,2010,30(7):1955~1959
    [72]梁辉,曾庆科,秦子雄等.长周期光纤光栅的折射率敏感特性[J].应用光学,2011,32(1):111~114
    [73]侯尚林,韩佳巍,张睿睿等.可调谐长周期光子晶体光纤光栅压力传感的实验研究[J].光电子激光,2010,21(1):5~8
    [74]侯尚林,黄海宇,黄永清等.可调谐长周期光纤光栅压力传感的实验研究[J].光电子激光,2009,20(4):443~446
    [75]饶云江,王久玲,朱涛等.基于扭曲长周期光纤光栅的高灵敏度压力传感器[J].光子学报,2007,36(3):487~491
    [76]赵金婷,童峥嵘,杨秀峰.基于长周期光纤光栅液位传感器的实验研究[J].光电子激光,2010,21(12):1777~1779
    [77]赵洪霞,丁志群,王金霞等.一种基于LPFG高灵敏度浓度传感器[J].光电子激光,2009,20(6):742~744
    [78]毕卫红,陈泽贵,王海宝.长周期光纤光栅电压传感器系统[J].压电与声光,2009,31(5):649~651
    [79]Jin-Fei Ding, A. Ping Zhang, Li-Yang Shao, et al. Fiber-taper seeded long-period grating pair as ahighly sensitive refractive-index sensor[J]. IEEE Photonics Technology Letters,2005,17(6):1247~12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700