用户名: 密码: 验证码:
新型特种光纤和相关制作工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特种光纤已广泛应用于光纤通信、光纤传感、医学、材料加工和军事科技等领域。本论文结合国家高技术研究发展计划(863)项目“通信用特种光纤—稀土掺杂光纤(2001AA312230)”和“光纤制造新技术及新型光纤—新型特种光纤(2002AA312190)”的实施,对掺铒保偏光纤、边孔光纤、孔辅助导光光纤和保偏光子晶体光纤等进行了深入研究,获得以下创新性成果:
     1.首次将二阶透明边界条件(2nd TBC)应用于光纤模式分析的伽辽金平面有限元模型,可用于分析任意非均匀和各向异性折射率分布的光纤的传输模特性。与一阶透明边界条件(1st TBC)相比,二阶透明边界条件提高了求解光纤模式限制损耗的精度,与多极法(MM)计算结果的相对误差在10%以内。
     2.采用基于2nd TBC的伽辽金平面有限元模型对单模光子晶体光纤(PCF)的温度特性进行了数值模拟,得出PCF有效折射率n_(eff)、模式场有效半径R_(eff)及限制损耗CL随温度变化的近似解析式。研究表明当折射率温度系数ζ在所研究的温度范围内变化缓慢时,随着温度的增加,n_(ef)线性增加,R_(eff)和CL线性减小,色散大小不受温度变化影响,n_(eff),R(eff)和CL在数值上改变很小,表明PCF具有较好的温度稳定性。
     3.采用基于2nd TBC的伽辽金平面有限元模型结合有限元平面应变模型研究了圆芯边孔光纤和K型椭圆芯边孔光纤的应力区和固有双折射。分析了两种边孔光纤横截面上应力分量σ_x、σ_y的拉、压应力区以及应力双折射B_s的分布形态并给出了清晰的物理解释,指出了几何双折射、应力双折射与模式双折射之间的关系,并给出了它们随波长和光纤结构参数的变化特点。
     4.扩展了现有光纤应力分析的有限元平面应变模型,可用来计算任意横向外力作用下光纤截面各点的应力状态。分析了含孔光纤(包括边孔光纤、光子晶体光纤、保偏光子晶体光纤和孔辅助导光光纤)的压力感应双折射分布形态,给出了压力感应双折射灵敏度随光纤结构参数的变化关系。研究表明含孔光纤横截面上各空气孔应力集中的扩散和相互干涉造成了光纤中心区域压力感应双折射复杂的分布形态,压力感应双折射与横向压力大小成线性关系,对压力作用方向敏感。根据独立空气孔应力集中的线性叠加定性解释了各种含孔光纤压力感应双折射的横截面分布形态。
     5.提出了一种制作保偏光纤的新方法—光纤预制棒侧向开槽法,并建成了一套完善的制作工艺。相比于护套打孔法,开槽法可制作更长的保偏光纤预制棒,更易保证两应力施加区中心和纤芯中心三心共线,凹槽的对称性、直线度、内表面粗糙度要求更易实现。开槽法简化了保偏光纤预制棒制作工艺,降低了制作成本。另外开槽法还可用于制作边孔光纤、双芯光纤以及孔辅助导光光纤,丰富了特种光纤制作方法。
     6.采用基于2nd TBC的伽辽金平面有限元模型和有限元平面应变模型,根据模场直径、截止波长、双折射等性能指标对熊猫型掺铒保偏光纤进行了结构优化,给出了双折射达到3×10~(-4)时结构参量的取值范围。改进了MCVD法溶液掺杂技术的部分工艺和设备,在石墨电炉高温区下游安装气体冷却装置来提高沉积效率和纤芯疏松层的均匀性,设计了在MCVD车床上实现在线掺杂装置以保证溶液掺杂过程的洁净度。改进了特种光纤拉丝塔牵引系统,开发了六轮拉丝辅助牵引设备限制拉丝过程中光纤的扭转。在上述工艺改进的基础上,用开槽法结合MCVD法溶液在线掺杂工艺,试制出了高性能低成本的掺铒保偏光纤。所研制的掺Al~(3+)、Er~(3+)的保偏光纤在1530nm处的吸收系数为9.5dB/m,平均模式双折射和群双折射都为4.76×10~(-4),1550nm处拍长为3.26mm;共掺Bi~(3+)、Ga~(3+)和Al~(3+)的掺铒保偏光纤在1530nm处的吸收系数为19.5dB/m,1530-1560nm范围内模式双折射和群双折射平均值都为1.93×10~(-4),1550nm处的拍长为8.05mm,且数值波动很小;两种光纤在波长1200nm附近的背景损耗都在30dB/km左右。
Special Optical Fibers are widely used in such fields as optical fiber communications, sensing, physic, material process and military technoloty. Research on erbium-doped polarization-maintaining fibers, side-hole fibers, hole-assisted lightguide fiber and polarization-maintaining photonic crystal fibers are deeply discussed in this dissertation. The work is supported by the National High Technology Research and Development Programs of China, "Rare-earth doped fibers" and "Novel special fibers".The main achievements of the dissertation are listed as follows:
     1) The 2nd transparent boundary conditions (2nd TBC) are first used in 2D Galerkin vectorial finite-element method (FEM), by which the modes of fibers with arbitrary nonhomogeneous and anisotropic refractive indices distribution can be analyzed. Compared to 1st TBC, the confinement loss (CL) of modes of fibers can be solved more accurately using 2nd TBC. The relative error between results of FEM with 2nd TBC and multipode method (MM) is no more than 10%.
     2) On the basis of FEM with 2nd TBC, the temperature properties of a single mode PCF are numerically simulated. Then the approximate formulas for the change of effective refractive index n_(eff), effective radius R_(eff) and CL of the PCF with temperature are constructed. The results show when the temperature coefficient of refactive indexξvaries slowly within the concerned temperature range, with the increasing of the temperature, n_(eff) increases linearly, R_(eff) and CL decrease linearly. But n_(eff), R_(eff), and CL change little as temperature increases. The dispersive properties of PCF are not affected by the change of temperature. That means the PCF shows good temperature stability.
     3) By FEM with 2nd TBC, together with FEM for plane strain model, the stress zones and inherent birefringence of circular-core side-hole fibers (CSHF) and K-type elliptical-core side-hole fibers (KESHF) are analyzed. The distributions ofσ_x,σ_y and Bs in the cross-sections are calculated and explained clearly. The relations among geometric birefringence B_g, stress-induced birefringence B_s and mode birefringence B_m is discussed, and the change of B_g, B_s and B_m change with wavelength and fiber structure parameters is illustrated.
     4) The current method based on FEM of the plane strain model is improved to calculate the stress at any point in the cross-section of the fiber when arbitrary transverse force is applied. By the improved FEM for plan strain model, the cross-section distribution of pressure-induced birefringence B_(of) in hole-contain fibers (HCF), including SHF, PCF, PM-PCF and HALF, are calculated. The relationship between sensitivity of B_(of) and fiber structure parameters are discussed. It is shown that because of diffusion and interference of concentration stress near the boundary of holes in cross-section, the distributions of B_(of) near the center of HCF are extremely complex. These complex distributions of B_(of) can be qualitatively explained by the linearly superposed field of concentration stress of separated holes. It's also shown that B_(of) is proportion to the pressure on fiber boundary and is sensitive to the pressure direction.
     5) A novel method, the fiber preform goniometric-groove method is first reported, and a set of perfect fabrication technics are developed. By goniometric-groove method, longer PMF perform can be fabricated and more easily the collineation of the centers of two stress-applied parts and the fiber core can be realized than by Pit-in-jacket method. The expected specification for symmetrical characteristic, linearity and surface roughness of the groove are easy to meet. Besides, SHF, twin-core fiber and HALF are fabricated by goniometric-groove method.
     6) By FEM with 2nd TBC and FEM for plain strain model, according to the property requirements for mode field diameter, cut-off wavelength and mode birefringence, the structure parameters of Panda type Erbium-doped polarization-maintaining fiber (EDPMF) are optimized and the value range of structure parameters for a birefringence no less than 3×10~(-4) is given. Partial technology and related equipments of modified chemical vapor deposition (MCVD) and the solution-doped technique are improved. A gas-cooling attachment is installed at the down stream in the high-temperature region of the graphite oven to increase the deposition efficiency and soot layer uniformity in fiber core. The equipment for on-line doping is installed on the MCVD lathe to guarantee the purity in solution-doped process. A six-wheel fiber drawing equipment is developed to restrain twist rotation of the fiber in fiber drawing process. Under the improvement in technics mentioned above, by goniometric-groove method, MCVD and solution-doped technique, two PMEDFs with high quality and low cost are fabricated. The absorption coefficient of Al~(3+)-codoped PMEDF at 1530 nm is 9.5 dB/m, both average mode birefringence and group birefringence are 4.76×10~(-4), the bit-length at 1550 nm is 3.26 mm. The absorption coefficient of Bi~(3+)-Ga~(3+)-Al~(3+) codoped PMEDF at 1530 nm is 19.5 dB/m, in the range from 1530 nm to 1560 nm both average mode birefringence and average group birefringence are 1.93×10~(-4), the bit-length at 1550 nm is 8.05 mm. The background loss of two PMEDFs at 1200nm is near 30 dB/km.
引文
[1] 陈伟,李诗愈,成煜等,保偏光纤技术进展及其发展趋势.光通信研究,2003,6:54-57
    [2] 愈华,保偏光纤及其在传感器中的应用.光通信,2005,10:38-40
    [3] I.P. Kaminow, V. Ramaswamy, Single-polarization Optical Fibers: Slab Model. Appl. Phy. Lett., 1979, 34(4): 268-271
    [4] T. Hosaka, K. Okamoto, Y. Sasaki, et al., Single-mode Fibers with Asymmetrical Refractive-index Pits on Both Sides of the Core. Electron. Lett., 1981,17(5): 191 - 193
    [5] T. Okoshi, K. Oyamada, M. Nishimura, et al., Side Tunnel Fiber: An Approach to Polarization-maintaining Optical Waveguiding Scheme. Electron. Lett., 1982,18(19): 824-826
    [6] R. B. Dyott, J. R. Cozens, D. G. Morris, Preservation of Polarization in Optical-fiber Waveguidies with elliptical cores. Electron. Lett., 1979,15(13): 380-382
    [7] J. Noda, K. Okamoto, Y. Sasaki, Polarization-maintaining Fibers and their Applications. J. Lightwave Technol., 1986, LT-4(8): 1071-1089
    [8] M. P. Vamham, D. N. Payne, R. D. Birch, et al., Single-polarization Operation of Highly Birefringence Bow-tie Optical Fibers. Electron. Lett., 1983, 19(7): 246-247
    [9] T. Katsuyama, H. Matsumura, T. Suganuma, Propagation Characteristics of Single-polarization Fibers. Appl. Opt., 1983, 22(11): 1749-1753
    [10] 娄淑琴,保偏光子晶体光纤的研究.[博士学位论文].北京:北京交通大学电子学院,2005
    [11] S. Kunimasa, K. Masanori, Single-polarization Single-modes Photonic Crystal Fiber. IEEE photonics technol. Lett. 2003, 5:1384-1386
    [12] K. Hiirokazu, K. Satoki, K. Shigeki, et al., Absolutely Single Polarization Photonic Crystal Fiber. IEEE photonics technol. Lett. 2004, 16(1): 182-184
    [13] 张亚妮,任立勇,王丽莉等,高双折射光子晶体保偏光纤研究进展.量子电子学报,2006,23(5):577-582
    [14] R. D. birch, D. N. Payne, M. P. Vamham, Fabrication of Polarization Maintaining Fibers using Gas-phase Etching. Electron. Lett., 1982, 18(24): 1036-1038
    [15] 廖延彪,光纤光学.北京:清华大学出版社,2000
    [16] T. Katsuyama, H. Matsumura, T. Suganuma, Reduced-Pressure collapsing MCVD method for single polarization optical fibers [J]. J. Lightwave Technol., LT-2(9), 1984:634~639
    [17] Y. Sasaki, T. Hosaka, J. Noda, 8 km-iong Polarization Maintaining Fiber with Highly Stable Polarization State. Electron. Lett., 1983, 19(19): 792-794
    [18] 王京献,黄荣义,张舂,PANDA型保偏光纤预制棒的成孔技术.航空精密制造技术,1998,34(4):18-20
    [19] 梁毅,特种光纤的研究与试制.[博士学位论文]北京:北京交通大学,1988
    [20] S. B. Poole, D. N. Payne, R. J. Mears, et al., Fabrication and Characterization of Low-loss Optical Fibers Containing Rare-earth ions. J. Lightwave Technol., 1985, LT-4(7): 870-876
    [21] S. B. Poole, D. N. Payne, M. E. Fermann, Fabrication of Low-loss Optical Fibers Containing Rare-earth ions. Electron. Lett., 1985, 21(17): 737-738
    [22] J. E. Townsend, S. B. Poole, D. N. Payne, Solution-doping Technique for Fabrication of Rare-earth-doped Optical Fibers. Electron. Lett., 1987, 23(7): 329-331
    [23] S. Sudo, Optical Fiber Amplifiers: Materials, Devices, and Applications. Boston: Artechhous Inc., 1997
    [24] 郑凯,新型特种光纤及其相关器件的研究.[博士学位论文].北京:北京交通大学电子学院,2007
    [25] G. G. Vienne, J. E. Caplen, D. Liang, et al., Fabrication and Characterization of Yb~(3+): Er~(3+) Phosphosilicate Fibers for Lasers. J. Lightwave Technol., 1998, 16(11): 1990-2001
    [26] Eli. Yabnolovitch, Inhibited Spontaneous Emission in Solid-state Physics and Electronics. Phys. Rev. Lett., 1987, 58(20): 2059-2062
    [27] S. John, Strong Localization of Photons in Certain Disordered Dielectric Superlattiees. Phys. Rev. Lett., 1987, 58(23): 2486-2489
    [28] J. C. Knight, T. A. Birks, P. St. J. Russell, et ai., All-silica Single-mode Optical Fiber with Photonic Crystal Cladding. Opt. Lett., 1996, 21(19): 1547-1549
    [29] J. C. Knight, T. A. Birks, P. St. J. Russell, et al., Pure Silica Single-mode Fiber with Hexagonal Photonic Crystal Cladding. Proc. OFC'96, 1996, Postdeadline paper
    [30] J. C. Knight, J.Brong, T. A. Birks, et al., Photonic Band Gap Guidance in Optical Fiber. Sicense, 1998, 282:399-402
    [31] 唐灿,刘永智,光子晶体光纤的研究与应用.光电子技术,2005,25(3):181-186
    [32] P.St. J. Russell, Photonic Crystal Fibers. 2003, 299(5605): 358-362
    [33] 任国斌,光子晶体光纤的理论与制造工艺的研究.[博士学位论文]北京:北京交通大学电子学院,2005
    [34] X. Feng, T. M. Monro, P. Petropoulos, et al., Solid Microstructured Optical Fiber. Opt. Express, 2003, 11:2225-2230
    [35] 刘兆伦,刘晓东,倪正华等,光子晶体光纤的研究新进展及其应用.激光杂志,2005,26(3):7-9
    [36] 李启成,光子晶体光纤的原理、结构、制作及其潜在应用.应用光学,2005,26(6):49-52
    [37] A.Bjarklev, Photonic Crystal Structures in Sensing Technologh. 2004, proc. SPIE, 5502:9-17
    [38] Y. L. Hoo, W. Jin, H. L. Ho, et ai., Measurement of Gas Diffusion Coefficient Using Photonic Crystal Fiber. IEEE Pho. Technol. Lett., 2003, 15(10): 1434-1436
    [39] M. Szutakowski, N. Palka, Comparative Study of Phase Sensitivity of Conventional and Index-Guiding Photonic Crystal Fibers. ICTON2005, Tu. P.6:319-321
    [40] R. P. Espindola, R. S. Windeler, A. A. Abranmov, et al., External Refractive Index Insensitive Air-Clad Long Period Fiber Grating. Electron. Lett., 1999, 35(4): 327-328
    [41] B. J. Eggleton, P. S. Westbrook, R. S. Windeler, et al., Grating Resonances in Air-Silica Miscrostructured Optical Fibers. Opt. Lett., 1999, 24(21): 1460-1462
    [42] B. J. Eggleton, P. S. Westbrook, R. S. Windeler, et all, Grating Spectra in Air-Silica Microstructure Fibers. OFC2000, ThI2, 2000
    [43] B. J. Eggleton, P. S. Westbrook, C. A. White, et al., Cladding-Mode-Resonances in Air-Silica Microstructure Optical Fibers. J. Lightwave Technol., 2000, 18(8): 1084-1100
    [44] B. J. Eggleton, C. Kerbage, P. S. Westbrook, et al., Microstructured Optical Fiber Devices. Opt. Express, 2001, 9(13): 698-713
    [45] A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, et al., Temperature Independence of Birefringence and Group Velocity Dispersion in Photonic Crystal Fibers. Electron. Lett., 2004, 40(21): 1327-1329
    [46] B. J. Eggleton, P. S. Westbrook, R. S. Windeler, et al., Grating Resonances in Air-Silica Miscrostructured Optical Fibers. Opt. Lett., 1999, 24(21): 1460-1462
    [47] B. J. Eggleton, P. S. Westbrook, R. S. Windeler, et all, Grating Spectra in Air-Silica Microstructure Fibers. OFC2000, ThI2, 2000
    [48] B. J. Eggleton, P. S. Westbrook, C. A. White, et al., Cladding-Mode-Resonances in Air-Silica Microstructure Optical Fibers, J. Lightwave Technol., 2000, 18(8): 1084-1100
    [49] T. Hasegawa, E. Sasaoka, M. Onishi, et al., Novel Hole-Assisted Lightguide Fiber Exhibiting Large Anomalous Dispersion and Low Loss below 1 dB/km. OFC2001, PD5, 2001
    [50] T. Hasegawa, E. Sasaoka, M. Onishi, et al., Modeling and Design Optimization of Hole-Assisted Lightguide Fiber by Full-Vector Finite Element Method. ECOC2001, We.L.2.5, 2001
    [51] T. Hasegawa, E. Sasaoka, M. Onishi, et al., Hole-Assisted Lightguide Fiber for Large Anomalous Dispersion and Low Optical Loss. Opt. Express, 2001, 9(13): 681-686
    [52] Z. Zhu., T. G. Brown, Multipole Analysis of Hole-Assisted Optical Fibers. Opt. Communications, 2002, 206(4-6): 333-339
    [53] 栗岩锋,王清月,刘博文等,孔助光纤色散和双折射特性的研究.光子学报,2004,33(11):1313-1316
    [54] M. Yah, P. Shum, C. Lu, Hole-Assisted Multiring Fiber with Low Dispersion around 1550nm. IEEE Photonics Technoi. Lett., 2004, 16(1): 123-125
    [55] K. Nakajima, K. Hogari, Z. Jian, et al., Hole-Assisted Fiber Design for Small Bending and Splice Losses. IEEE Photonics Technol. Lett., 2003, 15(12): 1737-1739
    [56] K. Saitoh, Y. Tsuchida, M. Koshiba, Bending-Insensitive Single-Mode Hole-Assisted Fibers with reduced Splice Loss. Opt. Lett., 2005, 30(14): 1779-1781
    [57] Y. Tsuchida, K. Saitoh, M. Koshiba, Design and Characterization of Single-Mode holey Fibers with Low Bending Losses, Opt. Express, 2005, 13(12): 4770-4779
    [58] G. H. Kim, H. S. Cho, Y. G. Han, et al., Investigation on the Reliability of Holey Fiber in Telecommunication Field Application. Proc. SPIE, 2006, 6351:148
    [59] G. H. Kim, Y. G. Han, H. S. Cho, et al., A Novel Fabrication Method of Versatile Holey Fibers with Low Bending Loss and their Optical Characteristics. OFC2006
    [60] 陈伟,李进延,李诗愈等,FTTH用微结构光纤.光通信研究,2006,2:52-54
    [61] F. Prudenzano, Erbium-Doped Hole-Assisted Optical Fiber Amplifier: Design and Optimization. J. Lightwave Technol., 2005, 23(1):330-340
    [62] A. D'Orazio, M. De. Sario, L. Mescia, et al., Refinement of Er~(3+)-Doped Hole-Assisted Optical Fiber Amplifier. Opt. Express, 2005, 13(25): 9970-9981
    [63] J. R. Clowes, S. Syngellakis, M. N. Zervas, Pressure Sensitivity of Side-Hole Optical Fiber Sensors. IEEE Photonics Technol. Lett., 1998, 10(6): 857-859
    [64] S. N. Magdalena, J. B. Wojtek, U. Waciaw, et al., Highly Sensitive Fiber-Optic Sensor for Dynamic Pressure Measurements. Proc. SPIE, 1999, 3745:293-297
    [65] J. Wojcik, P. Mergo, W. Urbanczyk, Possibilities of Application of the Side-Hole Circular Core Fiber in Monitoring of High Pressures. IEEE Instrumentation and Measurement Technol. Conference, 1997:975-978
    [66] J. A. Croucher, L. Gomez-Rojas, S. Kaneliopoulos, et al., Approach to Highly Sensitive Pressure Measurements Using Side-Hole Fiber. Electronics Lett., 1998, 34(2): 208-209
    [67] W. J. Bock, M. S. Nawrocka, W. Urbanczyk, Highly Sensitive Fiber-Optic Sensor for Dynamic Pressure Measurements. IEEE Trans. on Instrumentation and Measurement, 2001, 5(5): 1085-1088
    [68] M. S. Nawrocka, W. J. Bock, W. Urbanczyk, Dynamic High-Pressure Calibration of the Fiber-Optical Sensor Based on Birefringent Side-Hole Fibers. IEEE Sensors Journal, 2005, 5(5): 1011-1018
    [69] J. S. Robert, Y. Tsutomu, U. Eric, High Pressure and Temperature Sensing for the Oil Industry using Fiber Bragg Gratings Written onto Side Hole Single Mode Fiber. SPIE[C], 1999, 3475: 42-44
    [70] 李智忠,杨华勇,刘刚等,光纤光栅交叉敏感解决方案研究.光通信技术,2004,28(6):20-22
    [71] 胡永明,杨华勇,李智忠等,边孔光纤光栅特性研究.光电子.激光,2005,16(11): 1278-1281
    [72] 孙崇峰,李智忠,胡永明等,边孔光纤光栅温度降敏特性研究.光电子.激光,2005,16(9):1032-1035
    [73] 李智忠,胡永明,杨华勇等,圆芯型边孔光纤双折射的有限元分析.光学学报,2005,25(8):1013-1018
    [74] 孙崇峰,李智忠,胡永明等,边孔光纤双折射的分析及其测量.传感器与微系统,2006,25(2):73-75
    [75] 孙崇峰,蒋玉娥,李智忠等,椭圆芯边孔光纤光栅压力及温度敏感特性研究.半导体光电,2006,27(5):539-542
    [76] 孙崇峰,李智忠,胡永明等,基于偏振检测的边孔光纤光栅双峰间距的测量.光电子.激光.2006,17(2):139-142
    [1] 池灏,“双折射光子晶体光纤传输特性分析”,光学学报,2004,24(11):1552-1556
    [2] 王勖成编著,“有限单元法”,北京:清华大学出版社,2003
    [3] 萧天鹏,何耀基,黄剑平等,“一种全新结构的保偏光纤及其器件”,光纤与电缆及其应用技术,1997,1:33-44
    [4] 关荣锋,李占涛,侯斌等,“类矩形保偏光纤应力双折射分析”,红外与毫米波学报,2005,24(1):45-48
    [5] 文建湘,徐晓军,康晓健等,“偏振保持光纤的结构设计与双折射特性研究”,光通信,2005,10:30-33
    [6] Kun-Hsieh Tsai, Kyung-Suk Kim, T.EMorse, "General Solutions for Stress-Induced Polarization in Optical Fibers", J. Lightwave Technol., 1991, 9(1): 7~17
    [7] Moustafa H. Aly, M. Sami A. Abouelwafa, Mohamed M. Keshk, "Thermal-Stress-Induced Birefringence in Panda and Bow-Tie Optical Fibers".Fifteenth National Radio Science Conference, D14:1~11
    [8] Rogen H. Stolen, "Calculation of Stress Birefringence in Fibers by an Infinitesimal Element Method", J. Lightwave Technol., 1983, LT-1(2): 297-301
    [9] 李秀娟,陈哲,胡永明等,“计算保偏光纤中应力双折射的微元算法”,光纤与电缆及其应用技术,2000,1:22-33
    [10] T. OKOSHI,"Optical Waveguide Theory by the Finite Element Method", KTK Scientific Publishers, Tokyo, 1992, pp: 140-159
    [11] Rongfeng Guan, Xueli Wang, Xuefang Wang, et al., "Finite element analysis on stress-induced birefringence of polarization-maintaining optical fiber", Chinese Optics Letters, 2005, 3(1): 42~45
    [12] 胡明列,王清月,栗岩锋,“微结构光纤的有限元分析计算法”,中国激光,2004,31(11):1337-1342
    [13] 金健铭著,“电磁场有限元方法”,西安:西安电子科技大学出版社,1998
    [14] H.P.Uranus, H.J.W.M.Hoekstra, "Modelling of microstructured waveguides using a finite-element-based vectorial mode solver with transparent boundary conditions", Optics Express, 2004, 12(12): 2795-2809
    [15] McCowen A, Macnab J.A.R., Towers M.S., "FEM modeling of electromagnetics scattering from 2-D RAM-coated objects", Antennas and Propagation Society International Symposium, 1992, 1: 520-523
    [16] Salazar-Palma, Magdalena, Hernandez-Gil, et al., "An infinite element for the finite element analysis of open transmission lines", European Microwave Conference, 1995, 2:747-750
    [17] B.M.A.RAHMAN, J.B.DAVIES, "Finite-Element Solution of Integrated Optical Waveguides", J.Lightwave Technoi., 1984, LT-2(5): 682-688
    [18] Jan A.M.Svedin, "A Modified Finite-Element Method for Dielectric Waveguides Using an Asymptotically Correct Approximation on Infinite Elements", IEEE Transactions on Microwave Theory and Techniques, 1991,39(2): 258-266
    [19] Maxim V.Eliseev, Andrey G.Rozhnev, Alexander B.Manenkov, "Guided and Leaky Modes of Complex Waveguide Structures", J. Lightwave Technol., 2005, 23(8): 2586-2594
    [20] W.P.Huang, C.L.Xu, W.Lui, et al., "The Perfectly Matched Layer (PML) Boundary Condition for the Beam Propagation Method", IEEE Photonics Technoi. Lett., 1996, 8(5): 649-651
    [21] S.S.A.Obayya, B.M.A.Rahman, H.A.EI-Mikati, "New Full-Vectorial Numerically Efficient Propagation Algorithm Based on the Finite Element Method", J. Lightwave Technol., 2000, 18(3): 409-415
    [22] S. Selliri, L. Vincetti, A. Cucinotta, et al., "Complex FEM modal solver of optical waveguides with PML boundary conditions", Optical and Quantum Electronics, 2001, 33:359-371
    [23] L.Vincetti, "Confinement Losses in Honmeycomb Fibers", IEEE Photonics Technol. Lett., 2004, 16(9): 2048-2050
    [24] 王健,雷乃光,余重秀,“椭圆空气孔微结构光纤限制损耗的分析”,物理学报,2007,56(2):946-951
    [25] 李维特,黄保海,毕仲波,“热应力理论分析及应用”,北京:中国电力出版社,2004
    [26] 薛守义,“弹塑性力学”,北京:中国建材工业出版社,2005
    [27] 天津大学材料力学教研室光弹组,“光弹性原理及测试技术”,北京:科学出版社,1980
    [28] 吴重庆,“光波导理论”,北京:清华大学出版社,2000
    [29] M.Koshiba, K.Hayata, M.Suzuki, "Improvement finite-element formulation in terms of the magnetic field vector for dielectric waveguide", Trans. Microwave Theory and Technol., 1985, MTT-33(3): 227-233
    [30] Y.C.Chiang, Y.P.Chiou, H.C.Chang, "Improvement full-vectorial finite-difference mode solver for optical waveguides with step-index profiles", J. Lightwave Technol., 2002, 20(8): 1609-1618
    [31] 任国斌,“光子晶体光纤的理论与制造工艺研究”,[博士学位论文],北京:北京交通大学电子学院,2005
    [32] Shangping Guo, Sacharia Albin, "Simple plane wave implementation for photonic crystal calculations", Opt. Express, 2003, 11(2): 167-175
    [33] Marcos A. R. Franco, Haroldo T. Hattori, Francisco Sircilli, et al., "Finite Element Analysis of Photonic Crystal Fibers", SBMO/IEEE MTT-S IMOC 2001 : 5~7
    [34] Kunimasa Saitoh, Masanori Koshiba, "Confiniement Losses in Air-Guiding Photonic Bandgap Fibers", IEEE Photonics Technol. Lett., 2003, 15(2): 236-238
    [35] Niels Asger Mortensen, "Effective area of photonic crystal fibers", Opt. Express, 2002, 10(7): 341-348
    [36] 娄淑琴,“保偏光子品体光纤的研究”,[博士学位论文],北京:北京交通大学电子学院,2005
    [37] T. P. White, R. C. McPhedran, C. M. de Sterke, et. al., "Confinement loss in microstructured optical fibers", Opt. Lett., 2001, 26:1660-1662
    [38] H. Renner, "Bending loses of coated single-mode fibers: A simple approach", J. Lightwave Technol., 1992, 10(5): 544-551
    [39] G P.Agrawal著,贾东方等译,“非线性光纤光学原理及应用”,北京:电子工业出版社,2002
    [40] Y. Usui, T. Ohshima, Y. Toda, et al., "Exact Splice Loss Prediction for Single-Mode Fiber", IEEE J. Quantum Electronics, 1982, QE-18(4): 755-758
    [41] J.P. Berenger, "A perfectly matched layer for absorbing of electromagnetic waves", J. Comput. Phys., 1994, 114(2): 185-200
    [42] D. S. Katz, E. T. Thiele, A. Taflove, "Validation and extention to three dimensions of the Berenger PML absorbing boundary condition for FDTD meshes", IEEE Microwave Guide Wave Lett., 1994, 4(8): 268-270
    [43] G Mur, "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations", IEEE Trans. EMC, 1981, 23(4): 377-382
    [44] 孔繁敏,刘新,李康等,“PML-FDTD法在分析平面光波导结构中的应用”,光电子.激光,2003,14(4):352~354
    [45] U. Pekel, R. Mittra, "A finite element method frequency domain application of the perfectly matched layer (PML) concept", Microwave Opt. Technol. Lett., 1995, 9:117-122
    [46] S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, "Accurate finite element modal solution of photonic crystal fibers", IEEE Proc.-Optoelectron., 2005, 152(5): 241-246
    [47] A. C. Polycarpou, C. A. Balanis, "An Optimized Anisotropic PML for the Analysis of Microwave Circuits", IEEE Microwave and Guided Wave Lett., 1998, 8(1): 30-32
    [48] A. C. Polycarpou, M. R. Lyons, C. A. Balanis, "A Two-Dimensional Finite Element Formulation of the Perfrctly Matched Layer", IEEE Microwave and Guided Wave Lett., 1996, 6(9): 338-340
    [49] A. Mitchell, D. M. Kokotoff, M. W. Austin, "Improvement to the PML Boundary Condition in the FEM Using Mesh Compression", IEEE Trans. Microwave Theory and Technol., 2002, 50(5): 1297-1302
    [50] U. Pekel, R. Mittra, "Mesh Truncation in the Finite Element Frequency Domain Method with a Perfectly Matched Layer (PML) Applied in conjunction with Analytical and Numerical Absorbing Boundary Conditions", Microwave Opt. Technol. Lett., 1995, 9:176-180
    [51] 卫延,常德远,郑凯等,光子晶体光纤的温度特性数值模拟.中国激光,2007,34(7):945-951
    [1] T. Hosaka, K. Okamoto, Y. Sasaki, et al., Single-mode Fibers with Asymmetrical Refractive-index Pits on Both Sides of the Core. Electron. Lett., 1981,17(5): 191-193
    
    [2] T. Okoshi, K. Oyamada, M. Nishimura, et al., Side Tunnel Fiber: An Approach to Polarization-maintaining Optical Waveguiding Scheme. Electron. Lett., 1982,18(19): 824-826
    
    [3] J. R. Clowes, S. Syngellakis, M. N. Zervas, Pressure Sensitivity of Side-Hole Optical Fibers. IEEE Photonics Technol. Lett., 1998,10(6): 857-859
    
    [4] S. N. Magdalena, J. B. Wojtek, U. Waciaw, et al., Highly Sensitive Fiber-Optic Sensor for Dynamic Pressure Measurements. Proc. SPIE, 1999,3745: 293-297
    
    [5] 李智忠,杨华勇,刘阳等,光纤光栅交叉敏感解决方案研究.光通信技术,2004,28(6):20-22
    
    [6] A. Ortigosa-Blanch, A. Diez, M. Delgado-Pinar, et al., Temperature Independence of Birefringence and Group Velocity Dispersion in Photonic Crystal Fibers. Electron. Lett., 2004, 40(21): 1327-1329
    [7] T. Ritari, H. Ludvigsen, M. Wegmuller, et al., Experimental Study of Polarization Properties of Highly Birefringent Photonic Crystal Fibers. Opt. Express, 2004, 12(24): 5931-5939
    [8] Z. Zhu, T. G. Brown, Stress-Induced Birefringence in Microstructured Optical Fibers. Opt. Lett., 2003,28(23): 2306-2308
    [9] G. Statkiewicz, T. Martynkien, W. Urbanczyk, Measurements of Modal Birefringence and Polarimetric Sentivity of the Birefringent Holey Fiber to Hydrostatic Pressure and Strain. Opt. Commun., 2004,241(46): 339-348
    [10] R. P. Espindola, R. S. Windeler, A. A. Abranmov, et al., External Refractive Index Insensitive Air-Clad Long Period Fiber Grating. Electron. Lett., 1999, 35(4): 327-328
    
    [11] B. J. Eggleton, P. S. Westbrook, R. S. Windeler, et al., Grating Resonances in Air-Silica Miscrostructured Optical Fibers. Opt. Lett., 1999,24(21): 1460-1462
    
    [12] B. J. Eggleton, P. S. Westbrook, R. S. Windeler, et all, Grating Spectra in Air-Silica Microstructure Fibers. OFC2000, ThI2, 2000
    [13] B. J. Eggleton, P. S. Westbrook, C. A. White, et al., Cladding-Mode-Resonances in Air-Silica Microstructure Optical Fibers. J. Lightwave Technol., 2000,18(8): 1084-1100
    [14] B. J. Eggleton, C. Kerbage, P. S. Westbrook, et al., Microstructured Optical Fiber Devices. Opt. Express, 2001, 9(13): 698-713
    [15] Y. J. Lee, K. G Hwan, Y. G. Han, et al., Effect of Air Hole Size on Transmission Characteristics of Fiber Bragg Gratings Written in Holey Fiber. OFC 2006
    [16] Y. G. Han, Y. J. Lee, K. G. Hwan, et al., Transmission Characteristics of Fiber Bragg Gratings Written in Holey Fibers Corresponding to Air-Hole Size and their Application. IEEE Photonics Technol. Lett., 2006, 18(16): 1783-1785
    [17] 吴鸿庆,任侠编,结构有限元分析.中国铁道出版社,北京,2002
    [18] 张春书,开桂云,王志等,横向压力对微结构光纤双折射的影响.光学学报,2006,26(2):171-175
    [19] 刘磊,王智,横向应力传感系统的光子晶体光纤的有限元分析.华东交通大学学报,2006,23(2):19-22
    [20] W. J. Bock, W. Urbanczyk, A. Barwicz, Performance Analysis of Fiber-Optic Transducer for Measuring Low Pressures. IEEE Trans. on Instrumentation and Measurement, 1996, 45(2): 556-560
    [21] J. Wojcik, P. Mergo, W. Urbanczyk, Possibilities of Application of the Side-Hole Circular Core Fiber in Monitoring of High Pressures. IEEE Instrumentation and Measurement Technol. Conference, 1997:975-978
    [22] J. A. Croucher, L. Gomez-Rojas, S. Kanellopoulos, et al., Approach to Highly Sensitive Pressure Measurements Using Side-Hole Fiber. Electronics Lett., 1998, 34(2): 208-209
    [23] W. J. Book, M. S. Nawrocka, W. Urbanczyk, Highly Sensitive Fiber-Optic Sensor for Dynamic Pressure Measurements. IEEE Trans. on Instrumentation and Measurement, 2001, 5(5): 1085-1088
    [24] M. S. Nawrocka, W. J. Bock, W. Urbanczyk, Dynamic High-Pressure Calibration of the Fiber-Optical Sensor Based on Birefringent Side-Hole Fibers. IEEE Sensors Journal, 2005, 5(5): 1011-1018
    [25] J. S. Robert, Y. Tsutomu, U. Eric, High Pressure and Temperature Sensing for the Oil Industry using Fiber Bragg Gratings Written onto Side Hole Single Mode Fiber. SPIE[C], 1999, 3475: 42-44
    [26] 胡永明,杨华勇,李智忠等,边孔光纤光栅特性研究.光电子.激光,2005,16(11):1278-1281
    [27] 孙崇峰,李智忠,胡永明等,边孔光纤光栅温度降敏特性研究.光电子.激光,2005,16(9):1032-1035
    [28] 李智忠,胡永明,杨华勇等,圆芯型边孔光纤双折射的有限元分析.光学学报,2005,25(8):1013-1018
    [29] 孙崇峰,李智忠,胡永明等,边孔光纤双折射的分析及其测量.传感器与微系统,2006,25(2):73-75
    [30] 孙崇峰,蒋玉娥,李智忠等,椭圆芯边孔光纤光栅压力及温度敏感特性研究.半导体光电, 2006,27(5):539-542
    [31] 孙崇峰,李智忠,胡永明等,基于偏振检测的边孔光纤光栅双峰间距的测量.光电子.激光,2006,17(2):139-142
    [32] 吴重庆,光波导理论(第2版).北京:清华大学出版社,2005
    [33] K. Hayata, M. Koshiba and M. Suzuki, Stress-Induced Birefringence of Side-Tunnel Type Polarization-Maintaining Fibers. J. Lightwave Tech., 1986, LT-4(6): 601~607
    [34] Kun-Hsieh Tsai, Kyung-Suk Kim, and T. F. Morse, General Solutions for Stress-Induced Ploarization in Optical Fibers. J. Lightwave Tech., 1991, 9(1): 1~17
    [35] F. Prudenzano, Erbium-Doped Hole-Assisted Optical Fiber Amplifier: Design and Optimization. J. Lightwave Tech., 2005, 23(1): 330~340
    [36] 卫延,常德远,郑凯等,圆芯边孔光纤模式场分布和双折射的研究.光电子.激光,2007,18(2):154~158
    [37] J. Wojcik, P. Mergo, Anomaly of Sensitivity to Pressure of Side-Hole HB Optical Fiber. Proc. SPIE, 1998, 3730:2-7
    [38] 梁毅,特种光纤的研究和试制.[博士学位论文],北京:北京交通大学,1988
    [39] J. Noda, K. Okamoto, Y. Sasaki, Polarization-Maintaining Fibers and their Applications. J. Lightwave Technol., 1986, LT-4(8): 1071 - 1089
    [40] 徐芝纶,弹性力学(上册).北京:高等教育出版社,1990
    [41] T. P. Hansen, J. Broeng, E. B. Libori, et al., Highly Birefringence Index-Guiding Photonic Crystal Fibers. IEEE Photon. Tech. Lett., 2001, 13(5): 588-590
    [42] A. Ortigosa-Blanch, J. Knight, W. Wadaworth, et ai., Highly Birefringent Photonic Crystal Fibers. Opt. Lett., 2000, 25(15): 1325-1327
    [43] 娄淑琴,保偏光子晶体光纤的研究-[博士学位论文].北京:北京交通大学电子学院,2005
    [44] J. Ju, W. Jin, Y. L. Hoo, et al., Design of Single-Polarization PCF at 1300 and 1500 nm Bands. Proc. of SPIE, 2004, 5502:358-361
    [45] W. J. Bock, J. Chen, T. Eftimov, et al., A Photonic Crystal Fiber Sensor for Pressure Measurements. IEEE Trans. on Instrumentation and Measurement, 2006, 55(4): 1119-1123
    [1] J. E. Townsend, S. B. Poole, D. N. Payne, Solution-doping Technique for Fabrication of Rare-earth-doped Optical Fibers. Electron. Lett., 1987, 23(7): 329-331
    [2] R.D. birch, D. N. Payne, M. P. Vamham, Fabrication of Polarization Maintaining Fibers using Gas-phase Etching. Electron. Lett., 1982, 18(24): 1036-1038
    [3] 廖延彪,光纤光学.北京:清华大学出版社,2000
    [4] T. Katsuyama, H. Matsumura, T. Suganuma, Reduced-Pressure collapsing MCVD method for single polarization optical fibers [J]. J. Lightwave Technol., LT-2(9), 1984:634~639
    [5] Y. Sasaki, T. Hosaka, J. Noda, 8 kin-long Polarization Maintaining Fiber with Highly Stable Polarization State. Electron. Lett., 1983, 19(19): 792-794
    [6] 王京献,黄荣义,张春,PANDA型保偏光纤预制棒的成孔技术.航空精密制造技术,1998,34(4):18-20
    [7] 吴重庆,光波导理论(第2版).北京:清华大学出版社,2005
    [8] K. Hayata, M. Koshiba and M. Suzuki, Stress-Induced Birefringence of Side-Tunnel Type Polarization-Maintaining Fibers[J]. J. Lightwave Tech., 1986, LT-4(6): 601~607
    [9] 梁毅,特种光纤的研究和试制.[博士学位论文],北京:北京交通大学,1988
    [10] 傅永军,简伟,郑凯等,高数值孔径双芯光纤的双折射研究.光学学报,2005,25(3):297~301
    [11] 傅怀杰,黄秀钦,刘昆,对熊猫光纤设计制造的讨论.光纤光缆传输技术,1996,4:1-14
    [12] J. W. Fleming, Dispersion in GeO2-SiO2 glasses. Appl. Opt., 1984, 23(4): 4486-4493
    [13] Moustafa H. Aly, M. Sami A. Abouelwafa, Mohamed M. Keshk, "Thermal-Stress-Induced Birefringence in Panda and Bow-Tie Optical Fibers".Fifteenth National Radio Science Conference, D14:1~11
    [14] Kun-Hsieh Tsai, Kyung-Suk Kim, T.EMorse, "General Solutions for Stress-Induced Polarization in Optical Fibers", J. Lightwave Technol., 1991, 9(1): 7~17
    [15] 郑凯,新型特种光纤及其相关光器件的研究.[博士学位论文],北京:北京交通大学电子学院,2007
    [16] K. Tajima, Y. Sasaki, Transmission Loss of a 125-μm Diameter PANDA Fiber with Circular Stress-Applying Parts. J. Lightwave Technol., 1989, 7(4): 674-679
    [17] B. J. Ainslie, A Review of the Fabrication and Properties of Erbium-Doped Fibers for Optical Amplifiers. J, Lightwave Technol., 1991, 9(2): 220-227
    [18] 王怀善,钱国栋,王民权,通讯窗口稀土(钕和铒)掺杂有源光波导材料的研究进展.材料导报,2002,16(4):44-46
    [19] M. C. Farries, Excited-State Absorption and Gain in Erbium-Fiber Amplifiers Between 1.05 and 1.35μm. IEEE Photonics Technol. Lett, 1991, 3(7): 619-620
    [20] 干福熹,硅酸盐玻璃物理性质变化规律及其计算方法.北京:科学出版社,1966
    [21] H. Sotobayashi, J. T. Gopinath, E. P. Ippen, 23cm Long Bi203-Based EDFA for Picosecond Pulse Amplification with 80nm Gain Bandwidth. Electronics Lett., 2003, 39, 1374-1375
    [22] 唐仁杰,曹美娥,提高MCVD工艺单模光纤生产铝的新技术.光通信研究,1998,4,24-31
    [23] A. Dhar, M. C. Paul, M. Pal, et. al, Characterization of Porous Core Layer for Controlling Rare Earth Incorporation in Optical Fiber. Opt. Express, 2006, 14(20): 9006-9015
    [24] S. R. Nagel, J. B. Macchesney, K. L. Walker, An Overview of the Modified Chemical Vapor Deposition (MCVD) Process and Performance. J. Quantum Electron., 1982, QE-18(4): 459-476
    [25] Li Tingye, Optical Fiber Communications vol.1 Fiber Fabrication. London: Academic Press, 1985
    [26] K. L. Walker, F. T. Geyling, S. R. Nagel, Thermophoretic Deposition of Small Particles in the Modified Chemical Vapor Deposition (MCVD) Proess. J. Amer. Ceram. Soc., 1980, 63(9-10): 552-558
    [27] M. Pal, R. Sen, M. C. Paul, et. al, Investigation of the Deposition of Porous Layers by the MCVD Method for the Preparation of Rare-Earth Doped Cores of Optical Fibers. Opt. Communications, 2005, 254: 88-95
    [28] 娄淑琴,保偏光子晶体光纤的研究.[博士学位论文],北京:北京交通大学电子学院,2005
    [29] C. R. Giles, E. Desurvire, Modeling Erbium-Doped Fiber Amplifiers. J. Lightwave Technol., 1991, 9(2): 271-283
    [30] W. L. Barnes, R. I. Laming, E. J. Tarbox, et al., Absorption and Emission Cross Section of Er~(3+) Doped Silica Fibers. IEEE J. Quantum Electron., 1991, 27(4): 1004-1010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700