用户名: 密码: 验证码:
基于高双折射光子晶体光纤模间干涉的光学电压互感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体光纤(PCF)是一种新型特种光纤,其包层排列有周期性或随机性分布的微米量级的空气孔,使PCF在设计和制备上具有了更大的灵活性。通过在纤芯附近引入应力元,或者调整空气孔的尺寸和排列方式,均可以获得具有高双折射特性的PCF。与常规保偏光纤(PMF)相比较,高双折射PCF具有灵敏度更高、温度稳定性更好、保偏性能更好等优点,可广泛应用于光纤陀螺、光纤偏振干涉仪等光纤传感领域。本论文探索研究高双折射PCF的模间干涉特性及其在光学电压互感器中的应用,为光学电流/电压互感器的实现提供一种新的思路。
     本文详细介绍了高双折射PCF中双折射产生的原理及其在传感方面的应用现状,以及国内外光学电压互感器的基本工作原理及其研究发展现状,在此基础上,分析了高双折射PCF的模间干涉特性,并对基于高双折射PCF模间干涉的光学电压互感器进行了探索性研究。本文的主要研究内容如下:
     第一,采用有限元方法对双孔PCF、类矩形PCF以及六角芯PCF这三种不同结构的几何型高双折射PCF的模式特性进行分析,探索适合用于电压互感器的高双折射PCF。分析了三种PCF的模式双折射随波长的变化关系,以及各阶模式的截止波长,研究高双折射PCF的双模工作波长范围,并且以双孔PCF为例,讨论了光纤截面参数的变化对于模式双折射和模场半径的影响。
     第二,对椭圆芯PMF、双孔PCF和类矩形PCF的模间干涉特性进行了仿真研究,比较分析了这三种光纤的模式截止特性及其模间干涉灵敏度、干涉场的模场特性随波长的变化规律,证明高双折射PCF更适于基于模间干涉的光学电压互感器。
     第三,研究了双孔PCF的结构参数对模间干涉特性的影响,分析了不同结构参数双孔PCF的双模传输波长范围以及模间干涉灵敏度随波长的变化规律,探索研究了适合用于模间干涉的双孔PCF的结构参数。
     第四,对基于高双折射PCF模间干涉的光学电压互感器基本传感性能进行了实验研究和分析。通过实验观测双孔PCF的模间干涉现象,分别采用直接拉伸调制光纤长度和通过压电陶瓷调制光纤长度两种实验方法对双孔PCF模间干涉灵敏度进行了测量。对利用压电陶瓷和双孔PCF实现的基于模间干涉原理和逆压电效应的低电压传感系统进行了实验研究,对利用石英晶体逆压电效应和双孔PCF模间干涉原理的高压互感器进行了可行性实验研究,并对实验结果进行了分析和讨论。
Photonic Crystal Fiber (PCF) is a new special type of optical fibers. The periodical or random arrangement of micrometer-scale air holes running along the full length of the fiber in the cladding region brings flexibility for the design and fabrication of fiber. Highly birefringence can be obtained by introducing the stress-applying parts into the core or changing the dimension and location of the air holes of PCF. Compared with the conventional polarization maintaining fiber (PMF), highly birefringent PCF (HB-PCF) has many advantages, such as the higher sensitivity, the better temperature stability and the better ability of polarization maintaining, which make it apply to a wide range field related with optical fiber sensing. This paper researches the modular interference characteristics of HB-PCF, and applies HB-PCF to optical voltage transducer (OVT), providing a novel thought to optical voltage and current transducer.
     This paper introduces the principles and the applications in HB-PCF sensing. Referring to the development status, basic theory of OVT in the world, the modular characteristics of HB-PCF is analyzed, and an OVT based on HB-PCF is proposed and studied theoretically and experimentally. The main contents are as follows:
     First, the mode properties of two-hole PCF, near-rectangle PCF and hexagonal core PCF are analyzed using finite-element method in order to find the proper HB-PCF used for OVT. The dependence of modal birefringence on the wavelength, the cut-off wavelength of guided modes and the wavelength range for two-mode operation are researched. Taking two-hole PCF as the example, the effects of structural parameters on modal birefringence and mode field radius are discussed.
     Second, the modular interference characteristics of elliptical core PMF, two-hole PCF and near-rectangle PCF are simulated. The cut-off wavelength of guided modes, the dependence of the modular interference sensitivity and mode field properties on wavelength are compared. The results show that HB-PCF is more suitable for OVT.
     Third, the effects of structural parameters on modular interference in two-hole PCF are discussed. The wavelength range for two-mode operation, the relationship between the modular interference sensitivity and wavelength in two-hole fiber with different structure parameters are analyzed. The optimal structure of two-hole PCF for modular interference is designed.
     Fourth, the experimental system of PCF OVT based on modular interference is set up. The phenomena of modular interference about two-hole PCF are observed. The modular interference sensitivity of two-hole PCF is measured when the fiber’s length is changed by tensing or using the converse piezoelectric effect of PZT. The low voltage sensor system based on PZT and the high voltage sensor system based on quartz crystal are researched experimentally. The results are analyzed and discussed.
引文
1 Y. Senoo, N. Nishizawa, Y. Sakakibara, et al. Ultralow-Repetition-Rate, High-Energy, Polarization-Maintaining, Er-doped, Ultrashort-Pulse Fiber Laser Using Single-Wall-Carbon- Nanotube Saturable Absorber. Optics Express,2010,18(20):20673-20680
    2 Martin Baumgartl, Florian Jansen, Fabian Stutzki, et al. High Average and Peak Power Femtosecond Large-Pitch Photonic Ctystal Fiber Laser. Optics Letters,2011,36(2):244-246
    3 Ivan P. Kaminow. Polarization in Optical Fibers. IEEE Journal of Quantum Electronics, 1981,QE-17(1):15-22
    4 Scott C. Rashleigh. Origins and Control of Polarization Effects in Single-Mode Fibers. Journal of Lightwave Technology,1983,LT-1(2):312-331
    5 Juichi Noda, Katsunari Okamoto, and Yutaka Sasaki. Polarization–Maintaining Fibers and Their Applications. Journal of Lightwave Technology,1986,LT-4(8):1071-1089
    6 T. Katsuyama, H. Matsumura, and T. Sugamuma. Propagation Characteristics of Single Polarization Fibers. Applied Optics,1983,22(11):1748-1753
    7 T. Katsuyama, H. Matsumura, and T. Sugamuma. Low-Loss Single-Polarization Fibers. Electronics Letters,1981,17(13):473-474
    8 Scott C. Rashleigh, Michael J. Marrone. Polarization Holding in Elliptical-Core Birefringent Fibers. IEEE Journal of Quantum Electronics,1982,QE-18(10):1515-1523
    9 V. Ramaswamy, W. G. French, and R. D. Standley. Polarization characteristics of noncircular core single-mode fibers. Applied Optics,1978,17(18):3014-3017
    10 K. Kitayama, S. Seikai, N. Uchida, et al. Polarization-Maintaining Single-Mode Fiber with azimuthally inhomogeneous index profile. Electronics Letters,1981,17(17): 419-420
    11 T. Hosaka, K Okamoto, Y Sasaki, et al. Single-Mode Fibers with Asymmetrical Refractive-Index Pits on both Sides of the Core. Electronics Letters,1981,17(5):191-193
    12 M. P. Varnham, D. N. Payne, R. D. Birch, et al. Single-Polarization Operation of Highly Birefringent Bow-Tie Optical Fibers. Electronics Letters,1983,19(7):246-247
    13 T. Okoshi, K. Oyamada, M. Nishmura, et al. Side-Tunnel Fiber: An Approach to Polarization-Maintaining Optical Waveguiding Scheme. Electronics Letters,1982,18(19): 824-826
    14 Y Sasaki, T. Hosaka, and J. Noda. Low-Loss and Low-Crosstalk Polarization-Maintaining Optical Fibers. Electronics Letters,1985,21(4):156-157
    15 V. Ramaswasy, I. P. Kaminow, P. Kaiser, et al. Single Polarization Optical Fibers: Exposed cladding technique. Applied Physics Letters,1978,33(9):814-816
    16 T. Katsuyama, H. Matsumura, and T. Sugamuma. Low-Loss Single-Polarization Fibers. Applied Optics,1983,22(11):1741-1747
    17 A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne. Birefringence and Polarization-Mode Dispersion in Spun Single-Mode Fibers. Applied Optics,1981,20(17):2962-2968
    18 R. Ulrich, and A. Simon. Polarization Optics of Twisted Single-Mode Fibers. Applied Optics, 1979,18(13):2241-2251
    19 S. C. Rashleigh, M. J. Marrone. Temperature Dependence of Stress Birefringence in an Elliptical Clad Fiber. Optics Letters,1983,8(2):127-129
    20 A. Ourmazed, R. D. Birch, M. P. Varnham, et al. Enhancement of Birefringence in Polarization-Maintaining Fibers by Thermal annealing. Electronics Letters,1983,19(4): 143
    21 Shang-Yuan Huang, James N. Blake, and Byoung Yoon Kim. Perturbation Effects on Mode Propagation in Highly Elliptical Core Two-Mode Fibers. Journal of Lightwave Technology, 1990,8(1):23-33
    22 Nigel G. Walker, Graham R. Walker. Polarization Control for Coherent Communications. Journal of Lightwave Technology,1990,8(3):438-458
    23 E. R. Lyons, H. P. Lee. An Electrically Tunable All-Fiber Polarization Controller based on Deposited Thin-Film Microheaters. Photonics Technology Letters,2002,14(9):1318-1320
    24李锐辰,刘军号,庞璐.宽带保偏光纤耦合器的研究.应用光学,2010,31(5):796-799
    25 Wang Limeng, Xie Tonglin, Huang Jiaping. Analysis of Optical Properties for All-Fiber with Polarization Maintaining. Proceedings of SPIE, the International Society for Optical Engineering,2001,4604:223-228
    26杨远洪,郭锦锦,段纬倩.抗恶劣环境的保偏光纤温度传感器.微纳电子技术, 2007,7/8:266-269
    27 Zou Weiwen, He Zuyuan, K. Hotate. Demonstration of Brillouin Distributed Discrimination ofStrain and Temperature Using a Polarization-Maintain Optical Fiber. Photonics Technology Letters,2010,22(8):526-528
    28 Stephan Wildermuth, Klaus Bohnert, and Hubert Brandle. Interrogation of a Birefringent Fiber Sensor by Nonreciprocal Phase Modulation. Photonics Technology Letters,2010, 22(18):1388-1390
    29张朝阳,张春熹,王夏霄等.闭环全光纤电流互感器相位差的计算与测试.仪器仪表学报2009,30(1):153-156
    30廖延彪,黎敏,张敏等.光纤传感技术与应用.北京:清华大学出版社,2009:5-20
    31周海波,刘建业,赖际舟等.光纤陀螺仪的发展现状传感器技术.2005,25(6):1-3
    32张仁和,倪明.光纤水听器的原理与应用.物理,2004,33(7):503-507
    33 E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters,1987,58(20):2059-2062
    34 S. John. Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Physical Review Letters,1987,58(23):2486-2489
    35 J. C. Knight, T. A. Birks, and D. M. Atkin, et al. Pure Silica Single-Mode Fiber with Photonic Crystal Cladding. Proceedings of OFC,1996,PD3:339-342
    36 J. C. Knight, T. A. Birks, P. St. J. Russell, et al. All-Silica Single-Mode Optical Fiber with Photonic Crystal Cladding. Optics Letters,1996,21(19):1547-1549
    37 J. C. Knight, J. Brong, T. A. Birks, et al. Photonics Band Gap Guidance in Optical Fiber. Science,1998,282:399-342
    38 Jeff Hech.光纤光学.贾东方,余震虹,王肇颖等.第四版.北京:人民邮电出版社,2004:2-13
    39 M. Nielsen, J. Folkenberg, N. Mortensen, et al. Bandwidth Comparison of Photonic Crystal Fibers and Conventional Single-Mode Fibers. Optics Express,2004,12(3):430-435
    40 T. A. Birks, J. C. Knight, and P. St. J. Russell. Endlessly Single-Mode Photonic Crystal Fiber. Optics Letters,1997,22(13):961-963
    41 K. Saitoh, Y. Tsuchida, M. Koshiba, et al. Endlessly Single-Mode Holey Fibers: the Influence of Core Design. Optics Express,2005,13(26):10833-10839
    42 Y. Tsuchida, K. Saitoh, M. Koshiba. Design of Single-Moded Holey Fibers with Large-Mode-Area and Low Bending Losses: the Significance of the Ring-Core Region. Optics Express,2007,15(4): 1794-1803
    43 Emmanuel K. Akowuah, Huseyin Ademgil, Shyqyri Haxha, et al. An Ehdlessly Single-Mode Photonic Crystal Fiber with Low Chromatic Dispersion, and Bend and Rotational Insensitivity. Journal of Lightwave Technology,2009,27(17):3940-3947
    44 M. Nielsen, N. Mortensen, M. Albertsen, et al. Predicting Macrobending Loss for Large-Mode Area Photonic Crystal Fibers. Optics Express,2004,12(8):1775-1779
    45 Y. Zhu, P. Shum, J. H. Chong, et al. Deep-notch, Ultracompact Long-Period Grating in a Large-Mode-Area Photonic Crystal Fiber. Optics Letters,2003,28(24):2467-2469
    46 T. Südmeyer, F. Brunner, E. Innerhofer, et al. Nonlinear Femtosecond Pulse Compression at High Average Power Levels by Use of A Large-Mode-Area Holey Fiber. Optics Letters,2003, 28 (20):1951-1953
    47 W. Belardi, G. Bouwmans, L. Provino, et al. Form-Induced Birefringence in Elliptical Hollow Photonic Crystal Fiber with Large Mode Area. Quantum Electronics,2005,41(12):1558-1564
    48 A. Huttunen, P. Torm. Optimization of Dual-Core and Microstructure Fiber Geometries for Dispersion Compensation and Large Mode Area. Optics Express,2005,13(2):627-635
    49 V. P. Minkovich, A. V. Kir'yanov, A. B. Sotsky, et al. Large-Mode-Area Holey Fibers With a Few Air Channels in Cladding: Modeling and Experimental Investigation of the Modal Properties. Journal of the Optical Society of America B, 2004,21(6):1161-1169
    50 M. Foroni, F. Poli, L. Rosa, et al. Cut off Properties of Large-Mode-Area Photonic Crystal Fibers.
    4th Workshop on Fibres and Optical Passive Components, Palermo, 2005. New York, Institute of Electrical and Electronics Engineers, 2005:41-46
    51 G. Genty, T. Ritari, H. Ludvigsen. Supercontinuum Generation in Large Mode-Area Microstructured Fibers. Optics Express, 2005, 13(21):8625-8633
    52 B. Kibler, J. M. Dudley, S. Coen. Supercontinuum Generation and Nonlinear Pulse Propagation in Photonic Crystal Fiber: Influence of the Frequency-Dependent Effective Mode Area. Applied Physics B: Lasers and Optics,2005,81(2):337-342
    53 L. Michaille, C. R. Bennett, D. M. Taylor, et al. Phase Locking and SuperMode Selection in Multicore Photonic Crystal Fiber Lasers With A Large Doped Area. Optics Letters,2005,30 (13):1668-1670
    54 K. Saitoh, N. J. Florous, M. Koshiba. Theoretical realization of Holey Fiber with Flat Chromatic Dispersion and Large Mode Area: An Intriguing Defected Approach. Optics Letters,2006,31(1):26-28
    55 N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, et al. Improved Large-Mode-Area Endlessly Single-Mode Photonic Crystal Fibers. Optics Letters,2003,28(6):393-395
    56 J. L?gsgaard, A. Bjarklev. Photonic Crystal Fibres with Large Nonlinear Coefficients. Journal of Optics A: Pure and Applied Optics,2004,6(1):1-5
    57 J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, et al. High-Nonlinearity Dispersion-Shifted Lead-Silicate Holey Fibers for Efficient 1μm Pumped Supercontinuum Generation. Journal of Lightwave Technology,2006,24(1):183-190
    58 Yamiao Wang, Xia Zhang,Xiaomin Ren, et al. Design and Analysis of a Dispersion Flattened and Highly Nonlinear Photonic Crystal Fiber with Ultralow Confinement Loss. Applied Optics,2010,49(3):292-297
    59 Feroza Begum, Yoshinori Namihira, S. M. Abdur Razzak, et al. Design and Analysis of Novel Highly Photonic Crystal Fibers with Ultra-Flattened Chromatic Dispersion. Optics Communications,2009,282(7):1416-1421
    60 J. C. Travers, S. V. Popov, J. R. Taylor. Extended blue supercontinuum generation in cascaded holey Fibers. Optics Letters,2005,30(23):3132-3134
    61 G. Humbert, W. Wadsworth, S. Leon-Saval, et al. Supercontinuum Generation System for Optical Coherence Tomography Based on Tapered Photonic Crystal Fibre. Optics Express,2006,14(4): 1596-1603
    62 A. Kudlinski, A. K. George, J. C. Knight, et al. Zero-Dispersion Wavelength Decreasing Photonic Crystal Fibers for Ultraviolet-Extended Supercontinuum Generation. Optics Express,2006,14(12): 5715-5722
    63 J. T. Moeser, N. A. Wolchover, J. C. Knight, et al. Initial Dynamics of Supercontinuum Generation in Highly Nonlinear Photonic Crystal Fiber. Optics Letters,2007,32(4):391-393
    64 Yamiao Wang, Xia Zhang, Xiaomin Ren, et al. Ultra-Flattened Chromatic Dispersion Photonic Crystal Fiber with High Nonlinearity for Supercontinuum Generation. Communication and Photonics Conference and Exhibition,2009,2:1-7
    65 Liang Fang, Jianlin Zhao, and Xuetao Gan. Ultra Broadband-Flattened Dispersion Photonic Crystal Fiber for Supercontinuum Generation. Chinese Optics Letters,2010,8(11):1028-1031
    66 Taotao Yang, Chester Shu, and Chinlon Lin. Depolarization Technique for WavelengthConversion using Four-Wave Mixing in a Dispersion-Flattened Photonic Crystal Fiber. Optics Express,2005,15(2):596-601
    67 S. Asimakis, P. Petropoilos, F. Poletti, et al. Towards Efficient and Broadband Four-Wave- Mixing Using Short-Length Dispersion Tailored Lead Silicate Holy Fibers. Optics Express,2007,13(14):5409-5415
    68 Ming Chen, Qing Yang, Tiansong Li, et al. New High Negative Dispersion Photonic Crystal Fiber. Optik-International Journal for Light and Electron Optics,2010,121(10):867-871
    69 Bhawana Dabas, R. K. Sinha. Dispersion Characteristic of Hexagonal and Square Lattice Chalcogenide As2Se3 Glass Photonic Crystal Fiber. Optics Communications,2010,283(7): 1331-1337
    70 J. C. Knight, J. Arriaga, T. A. Birks, et al. Anomalous Dispersion in Photonic Crystal Fiber. IEEE Photonics Technology Letters,2000,12(7):807-809
    71 S. Yang, Y. Zhang, L. He, et al. Broadband Dispersion-Compensating Photonic Crystal Fiber. Optics Letters,2006,31(19):2830-2832
    72 Y. Ni, Z. Lei, J. Shu, et al. Dispersion of Square Solid-Core Photonic Bandgap Fibers. Optics Express,2004,12(13):2825-2830
    73 F. Gér?me, J. L. Auguste, and J. M. Blondy. Design of Dispersion-Compensating Fibers Based on a Dual-Concentric-Core Photonic Crystal Fiber. Optics Letters,2004,29(23):2725-2727
    74 N. Mortensen, M. Nielsen, J. Folkenberg, et al. Photonic Crystal Fiber with a Hybrid Honeycomb Cladding. Optics Express,2004,12(3):468-472
    75 Z. Wang, X. Ren, X. Zhang, et al. Design of a Microstructure Fibre for Slope-Matched Dispersion Compensation. Journal of Optics A: Pure and Applied Optics,2007,9(5):435-440
    76 T. Matsui, K. Nakajima, and I. Sankawa. Dispersion Compensation over All the Telecommunication Bands with Double-Cladding Photonic-Crystal Fiber. Journal of Lightwave Technology,2007,25(3):757-762
    77 T. A. Birks, D. Mogilevtsev, J. C. Knight, et al. Dispersion Compensation Using Single-Material Fibers. IEEE Photonics Technology Letters,1999,11(6):674-676
    78 S. K. Varshney, N. J. Florous, K. Saitoh, et al. Numerical Investigation and Optimization of A Photonic Crystal Fiber for Simultaneous Dispersion Compensation Over S+C+L Wavelength Bands. Optics Communications,2007,274(1):74-79
    79 S. K. Varshney, K. Saitoh, M. Koshiba, et al. Analysis of a Realistic and Idealized Dispersion Compensating Photonic Crystal Fiber Raman Amplifier. Optical Fiber Technology,2007,13 (2):174-179
    80 F. Poletti, V. Finazzi, T. M. Monro, et al. Inverse Design and Fabrication Tolerances of Utra-Flattened Dispersion Holey Fibers. Optics Express,2005,13(10):3728-3736
    81 H. Subbaraman, T. Ling, Y. Q. Jiang, et al. Design of a Broadband Highly Dispersive Pure Silica Photonic Crystal Fiber. Applied Optics,2007,46(16):3263-3268
    82 J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, et al. Polarization maintaining large mode area Photonic Crystal Fiber. Optics Express,2004,12(5):956-960
    83 T. Schreiber, F. Roser, O. Schmidt, et al. Stress-Induced Single-Polarization Single- Transverse Mode Photonic Crystal Fiber with Low Nonlinearity. Optics Express, 2005,13(19):7621-7630
    84 A. Michie, J. Canning, I. Bassett, et al. Spun Elliptically Birefringent Photonic Crystal Fibre. Optics Express,2007,15(4):1811-1816
    85 B. M. A. Rahman, A. Kabir, M. Rajarajan, et al. Birefringence Study of Photonic Crystal Fibers by Using the Full-Vectorial Finite Element Method. Applied Physics B: Lasers and Optics,2006,84(1):75-82
    86 A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, et al. Highly Birefringent Photonic Crystal Fibers. Optics Letters,2000,25(18):1325-1327
    87 T. P. Hansen, J. Broeng, S. E. B. Libori, et al. Highly Birefringent Index-Guiding Photonic Crystal Fibers. IEEE Photonics Technology Letters,2001,13(6):588-590
    88 A. B. Fedotov, E. E. Serebryannikov, A. A. Ivanov, et al. Spectral Transformation of Femtosecond Cr: Forsterite Laser Pulses in A Flint-Glass Photonic-Crystal Fiber. Applied Optics,2006,45(26): 6823-6830
    89 Y. Yue, G. Kai, Z. Wang, et al. Highly Birefringent Elliptical-Hole Photonic Crystal Fiber With Squeezed Hexagonal Lattice. Optics Letters,2007,32(5):469-471
    90 D. Chen, L. Shen. Ultrahigh Birefringent Photonic Crystal Fiber with Ultralow Confinement Loss. Photonics Technology Letters,2007,19(4):185-187
    91 D. Chen, L. Shen. Highly Birefringent Elliptical-Hole Photonic Crystal Fibers with Double Defect. Journal of Lightwave Technology, 2007,25(9):2700-2705
    92 M. Delgado-Pinar, A. Diez, J. L. Cruz, et al. High Extinction-Ratio Polarizing EndlesslySingle-Mode Photonic Crystal Fiber. IEEE Photonics Technology Letters,2007,19(8):562-564
    93 T. Schreiber, H. Schulta, O. Schmidt, et al. Stress-Induced Birefringence in Large-Mode-Area Micro-Structured Optical Fibers. Optics Express,2005,13(10): 3637-3646
    94 O. Schmid, J. Rothhaedt, T. Eidam, et al. Single-Polarization Ultra-Large-Mode- Area Yb-Doped Photonic Crystal Fiber. Optics Express, 2008,16(6):3918-3923
    95 Xin Chen, Ming-Jun Li, Joohyun Koh, et al. Wide Band Single Polarization and Polarization Maintaining Fibers Using Stress Rods and Air Holes. Optics Express,2008,16(16): 12060-12068
    96 K. Suzuki, H. Kubota, S. Kawanishi, et al. High-Speed Bi-Directional Polarization Division Multiplexed Optical Transmission in Ultra Low-Loss(1.3dB/km) Polarization-Maintaining Photonic Crystal Fiber. Electronics Letters,2001,37(23):1399-1401
    97 R. Kotynski, K. Panajotov, M. Antkowiak, et al. Interplay of Form and Material Birefringence in Photonic Crystal Fibers: Application for Sensing. Proceeds of the 3rd European Symposium on Photonic Crystals,2004:95-98
    98 Xin Chen, Ming-Jun Li, Natesan Venkataraman, et al. Highly Birefringent Hollow-Core Photonic Bandgap Fiber. Optics Express,2004,12(16):3888-3893
    99 Orlando Frazao, Jose M. Baptista, Jose L. Santos, et al. Curvature Sensor Using a Highly Birefringent Photonic Crystal Fiber with Two Asymmetric Hole Regions in a Sagnac Interferometer. Applied Optics,2008,47(13):2520-2523
    100 J. Wojcik, P Mergo, M. Makara, et al. V Type High Birefringent PCF Fiber for Hydrostatic Pressure Sensing. Photonic Letters of Poland,2010,2(1):10-12
    101 Arismar Cerqueira S Jr, F. Luan, C. M. B. Cordeiro, et al. Hybrid Photonic Crystal Fiber. Optics Express,2006,14(2):926-931
    102 Masashi Eguchi, Yasuhide Tsuji. Single-Mode Single-Polarization Holey Fiber Using Anisotropic Fundamental Space-Filling Mode. Optics Letters,2007,32(15):2112-2114
    103 Dora Juan Juan Hu, Ping Shum, Chao Lu, et al. Holey Fiber Design for Single-Polarization Single-Mode Guidance. Applied Optics,2009,48(20):4038-4043
    104 Yang Yue, Guiyun Kai, Zhi Wang, et al. Highly Birefringent Elliptical-Hole Photonic Crystal Fiber with Squeezed Hexagonal Lattice. Optics Express,2007,32(5):469-471
    105 Yuh-Sien Sun, Yuan-Fong Chau, Han-Hsuan Yeh, et al. High Birefringence Photonic Crystal Fiber with A Complex Unit Cell of Asymmetric Elliptical Air Hole Cladding. Applied Optics,2007,46(22):5276-5281
    106 Daru Chen, Genzhu Wu. Highly Birefringent Photonic Crystal Fiber based on A Double-Hole Unit. Applied Optics,2010,49(9):1682-1686
    107 Fu Bo, Li Shu-Guang, Yao Yan-Yan, et al. Supercontinuum Generation with High Birefringence SF6 Soft Glass Photonic Crystal Fibers. Chinese Physics Letters,2010,27(7): 074209
    108 H. Ademgil, S. Haxha, T. Gorman, et al. Bending Effects on Highly Birefringent Photonic Crystal Fibers With Low Chromatic Dispersion and Low-Confinement Losses. Journal of Lightwave Technology, 2009,27(5):559-567
    109 Ming-Yang Chen, Yong-Kang Zhang. Improved Design of Polarization-Maintaining Photonic Crystal Fibers. Optics Letters,2008,33(21):2542-2544
    110 Do-Hyun Kim, Jin U. Knag. Sagnac Loop Interferometer Using Polarization Maintaining Photonic Crystal Fiber. Conference on Lasers and Electro-Optics,2005:CTuD6
    111 O. Frazao, J. M. Baptista, and J. L. Santos. Temperature-Independent Strain Sensor Based on a Hi-Bi Photonic Crystal Fiber Loop Mirror. IEEE Sensors Journal,2007,7(10):1453-1455
    112 Chun-Liu Zhao, Xiufeng Yang, Chao Lu, et al. Temperature-Insensitive Interferometer Using a Highly Birefringent Photonic Crystal Fiber Loop Mirror. IEEE Photonics Technology Letters,2004,16(11):2535-2537
    113 Marcin Szpulak, Tadeusz Martynkien, and Waclaw Urbanczyk. Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers. Applied Optics,2004,43(24):4739-4744
    114 Gabriela Statkiewicz, Tadeusz Martynkien, and Waclaw Urbanczyk. Measurements of Modal Birefringence and Polarimetric Sensitivity of the Birefriengent Holey Fiber to Hydrostatic Pressure and Strain. Optics Communications,2004,241:339-348
    115 Tadeusz Martynkien, Marcin Szpulak, Gabriela Statkiewicz, et al. Pressure Sensitivity of the Birefringent Photonic Crystal Fiber with Triple Defect. Proceedings of SPIE,2004,5450: 550-556
    116 J. Ju, W. Jin, and M. S. Demokan. Two-Mode Operation in Highly Birefringent Photonic Crystal Fiber. IEEE Photonics Technology Letters. 2004,16(11): 2472-2474
    117 Joel Villatoro, Vittoria Finazzi, Vladimir P. Minkovich, et al. Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing. Applied physics letters, 2007,91,091109
    118 Joel Villatoro, Vittoria Finazzi, Valerio Pruneri, et al. Two-mode photonic crystal fiberinterferometer for sensing applications. CLEOE-IQEC 2007
    119 V. Finazzi, J. Villatoro, G. Coviello, et al. Photonic crystal fiber sensor for high temperature energy environment. Optics and Photonics for Advanced Energy Technology. 2009:ThC1
    120 Jian Ju, Zhi Wang, and Demokan M. S. Temperature Sensitivity of a Two-Mode Photonic Crystal Fiber Interferometric Sensor. Photonics Technology Letters. 2006,18(20):2168-2171
    121 Wei Jin, Zhi Wang, and Jian Ju. Two-mode photonic crystal fibers. Optical Express. 2005,13(6):2082-2088
    122 Z. Wang, J. Ju, and W. Jin. Optimizing PCF for two-mode interference. Optical Fiber Technology. 2006,12(1):29-37
    123 Honglei Li, Shuqin Lou, Suchun Feng, et al. Two-Mode Photonic Crystal Fiber Interferometer for Temperature and Strain Sensing. Proceedings of SPIE, 7630
    124 Wojtek J. Bock, Tinko A. Eftimov, Predrag Mikulic, et al. An Inline Core-Cladding Intermodal Interferometer Using a Photonic Crystal Fiber. Journal of Lightwave Technology, 2007,27(17):3933-3939
    125侯建平,宁韬,盖双龙等.基于光子晶体光纤模间干涉的折射率测量灵敏度分析.物理学报.2010,59(7):4732-4737
    126袁季修,盛和乐,吴素业.保护用电流互感器应用指南.北京:中国电力出版社, 2004:1-10
    127凌子恕.高压互感器技术手册.北京:中国电力出版社,2005:1-5
    128王均梅,吴春风,王晓琪.我国电力互感器的发展概况及应用现状.电力设备.2007,8(1): 5-10
    129时德钢,刘晔,张丽平等.高电压等级电压互感器综述.变压器.2003,40(6):11-14
    130罗承沐,张贵新,王鹏.电子式互感器及其技术发展现状.电力设备.2007,8(1):20-24
    131房金兰,蔺耀宏.国内外电容式电压互感器目前水平及发展趋势.电力电容器.1999,15(1):1-5
    132叶妙元.光电互感器(一)——21世纪电力系统电压电流测量的基本设备.广东输电与变电技术.2003,(4):11-16
    133叶妙元.光电互感器(二)——21世纪电力系统电压电流测量的基本设备.广东输电与变电技术.2004,(1):4-8
    134李旭光,秦松林,肖登明.光电互感器在特高压电网中的应用技术分析.高电压技术.2007, 33(6):13-15
    135 Grant Paul. Energy for the City of the Future. The industrial physicist. 2002,8(1):22-25
    136 Shu Yinbiao. Current Status and Development of National Grid in China. Electricity. 2005,16(4):6-10
    137 Reka Albert, Istvan Albert, and Gary L. Nakarado.Structural Vulnerability of the North American Power Grid. Physical Review E. 2004,69(2):025103(1)-025103(4)
    138任春阳,薛朵.特高压1 000 kV电容式电压互感器的研制.电力电容器.2007,(2):18-24
    139宋永华,别朝红.国外电网发展的回顾与展望.现代电力.2005,22(3):1-4
    140史兴华,王敏.国外特高压电网建设实践的启示.华东电力.2005,33(7):20-22
    141 Y.N.Ning, Z.P.Wang, A.W.Palmer, et al. Recent Progress in Optical Current Sensing Techniques. Review of Scientific Instrument. 1995,66(5):3097-3111
    142 K.Kurosawa, S.Yoshida, E.Mori, et al. Development of an Optical Instrument Transformer for DC Voltage Measurement. IEEE transaction on power delivery. 1993,8(4):1721-1726
    143冯春媚,叶妙元,李开成.一种适于野外作业的便携式光纤电场传感器.传感器技术.1996, 8(5):52-54
    144 A.Gruden. Compact 132 kV Combined Optical Voltage and Current Measurement System. IEEE, Instrumentation and measurement technology conference. Ottawa,Canada,1997:19-21
    145 K.Bohnert, M. Ingold, and J.Kostovic. Fiber-optic Voltage Sensors for SF6 Gas Insulated High Voltage Switchgear. Applied optics. 1999,38(10):1926-1993
    146 Shinichi Wakana, Takuya Ohara, Mari Abe, et al. Fiber-Edge Electrooptic/Magnetooptic Probe for Spectral-Domain Analysis of Electromagnetic Field. IEEE transaction on microwave theory and techniques. 2000,48(12):2611-2614
    147 J.C.Santos, M.C.Taplamacioglu, and K.Hidaka. Pockels High Voltage Measurement System. IEEE high voltage engineering symposium. 1999,(8):53-57
    148 Akiko Kumada, Yasuhiro Shimizu, Masakumi Chiba, et al. Pockels surface potential probe and surface charge density measument. Journal of electrostatics. 2003,58(5):45-58
    149 Andrew Cruden, Zachery J.Richardson, James R.McDonald, et al. Compact 132 kV Combined Optical Voltage and Current Measurement System. IEEE transaction on instrumentation and measurement. 1998,47(1):219-223
    150 Amnon Yariv. Optical Electronics in Modern Communications. Beijing: Publishing house of electronics industry. 2002:326-350
    151 J.C Santos, K.Hidaka, A.L. Cortes, et al. Improved Optical Sensor for High Voltage Measurement Using White Light Interferometer. Proceedings SBMO/IEEE MTT-S IMOC.2003:615-519
    152 K. Kurosawa, S. Yoshida, E. Mori, et al. Development of an optical transformer for DC voltage Measurement. IEEE Transactions on Power Delivery. 1993,8(4):1721-1726
    153 J.A.Brandao Faria. An Overview of Electro-Optic High Voltage Measuring Systems. Aficon’92 Proceedings. 1992,(9):466-469
    154 ChangSheng Li, Toshihiko Yoshino. Optical Voltage Sensor Based on Electrooptic Crystal Multiplier. Journal of lightwave technology. 2002,20(5):843-849
    155 Yang Yongjun, Chen Fushen, and Sun Bao. Optical E-filed Probe Using LiNbO3 M-Z Waveguides in the Electromagnetic Compatibility Measurements. Chinese optics letters. 2006,4(11):643-645
    156 Pawel Niewczas, Lukasz Dziuda, Grzegorz Fusiek, et al. Design and Evaluation of a Prototype Hybrid Fiber-Optic Voltage Sensor for a Remotely Interrogated Condition Monitoring System. IEEE transaction on instrumentation and measurement. 2005,54(4):1560-1564
    157 Farnoosh Rahmatian, Patric P.Chavez, and Nicolas A.F.Jaeger. 138 kV and 345 kV Wide-Band SF6-Free Optical Voltage Ttransducer. IEEE-PEDS winter meeting. 2002:1472-1477
    158 Farnoosh Rahmatian, Patrick P.Chavez, and Nocolas A.F.Jaeger. 230 kV Optical Voltage Transducer Using Multiple Electric Field Sensors. IEEE trnasaction on power delivery. 2002,17(2):417-422
    159 Patrick P.Chavez, Nicolas A.F. Jaeger, and Farnoosh Rahmatian. Accurate Voltage Measurement by the Quadrature Method. IEEE transaction on polwer delivery. 2003,18(1):14-19
    160 J.A.Brandao Faria. An Overview of Electro-Optic High Voltage Measuring Systems. Aficon’92 Proceedings. 1992,(9):466-469
    161 L.Fabiny. High Resolution Fiber-Opitc Low Frequency Voltage Sensor Based on the Electrostrictive Effect. IEEE photonic technology letters. 1993,5(8):952-953
    162 K.Bohnert, P.Pequignot. Inherent Temperature Compensation of a Dual-Mode Fiber Voltage Sensor with Coherence-Tuned Interrogation. Journal of lightwave technology. 1998, 16(4):598-604
    163 K.Bohnert, P.Pequignot. Coherence-tTuned Interrogation of a Dual-Mode Fiber Voltage Sensor with Inherent Temperature Compensation. CLEO’97:421-422
    164 Pressmann. B. N. The traser system for light coupled current measurement at EHV. Proceedingsof SPIE. 1975.21:93-102
    165 Sanano. T. Laser CT and PD for EHV power Transmission Lines. Electrical Engineering in Japan. 1973,3(5):91-98
    166 T. W. Cease. A magneto-Optical Current Transducer. IEEE Transactions on Power Delivery. 1990,5(2):548-554
    167 S. Kobayashi. Development and Field Test Evaluation of Optical Current &Voltage Transfers. IEEE Transactions on Power Delivery. 1992,7(2):815-821
    168 D. Chatrefou. Alstom Optical Sensor Presentation. 2nd EPRO Optical Sensor Systems Workshop, Atlanta, Georgia, 2000
    169 Chris D. Reinbald. Application of Optical Current and Voltage Sensing. Electric Utility Conference, USA, 1997
    170 Farnoosh Rahmatian, Patrick P.Chavez, and Nocolas A.F.Jaeger. 230 kV Optical Voltage Transducer Using Multiple Electric Field Sensors. IEEE trnasaction on power delivery. 2002,17(2):417-422
    171 Patrick P.Chavez, Nicolas A.F. Jaeger, and Farnoosh Rahmatian. Accurate Voltage Measurement by the Quadrature Method. IEEE transaction on polwer delivery. 2003,18(1):14-19
    172 K. Bohnert, P. Gabus, J. Kostovic, et al. Optical Fiber Sensors for the Electric Power Industry. Optics and Lasers in Engineering. 2005,43:511-526.
    173郭小明,罗承沐.利用LiNbO3晶体电光效应测量脉冲电压.电工电能新技术.1995,(2):1-5
    174郑小平,廖延彪.光纤电压传感器温度特性的研究.光学学报.2000,20(12):1684-1687
    175郑小平,廖延彪.一种新型的电压温度双参量光纤传感器.中国激光.1997,24(11):997-1002
    176唐恕,李仰平,耿波.光学电压传感器探头的电场分析与计算.高压电器.2003,39(3):16-18
    177肖悦娱.光学电压互感器的电场分布对测量的影响.高电压技术.2007,33(5):37-40
    178张明明,李红斌,刘延冰.基于纵向Pockels效应的光学电压互感器.高电压技术.2005, 24(6):58-59,64
    179易本顺,刘延冰,阮芳.光纤电流互感器现场运行性能分析.中国电机工程学报,1997, 17(2):138-140
    180赵兴涛,侯蓝田,刘兆伦等.改进的全矢量有效折射率方法分析光子晶体光纤的色散特性.物理学报,2007,56(4):2275-2280
    181 X. Zhao, L. Hou, Z. Liu, et al. Improved Fully Vectorial Effective Index Method in PhotonicCrystal Fiber. Applied Optics,2007,46(19):4052-4056
    182 H. Li, A. Mafi, A. Schülzgen, et al. Analysis and Design of Photonic Crystal Fibers Based on an Improved Effective-Index Method. Journal of Lightwave Technology, 2007, 25(5):1224-1230
    183 Y. Li, Y. Yao, M. Hu, et al. Improved Fully Vectorial Effective Index Method for Photonic Crystal Fibers: Evaluation and Enhancement. Applied Optics, 2008,47(3):399-346
    184 A. Peyrilloux, S. Fevrier, J. Marcou, et al. Comparison between the Finite Element Method, the Localized Function Method and A Novel Equivalent Averaged Index Method for Modelling Photonic Crystal Fibres. Journal of Optics A: Pure and Applied Optics,2002,4(3):257-262
    185 B. M. A. Rahman, A. Kabir, M. Rajarajan, et al. Birefringence Study of Photonic Crystal Fibers by Using the Full-Vectorial Finite Element Method. Applied Physics B: Lasers and Optics,2006,84(1):75-82
    186 A. Cucinotta, S. Selleri, L. Vincetti, et al. Holey Fiber Analysis through the Finite-Element Method. IEEE Photonics Technology Letters, 2002,14(11):1530-1532
    187关荣峰,李占涛,侯斌等.类矩形保偏光纤应力双折射分析红外与毫米波学报. 2005,24(1):45-48
    188胡明列,王清月,栗岩锋.微结构光纤的有限元分析计算法.中国激光,2004,31(11):1337-1342
    189 H. P. Uranus, and H. J. W. M. Hoekstra. Modelling of Microstructured Waveguide Using a Finite-Element-Based Vectorial Mode Solver With Transparent Boundary Conditions. Optics Express, 2004.12(12):2795-2809
    190 S. Selleri, L. Vincetti, A. Cucinotta, et al. Complex FEM Modal Solver of Optical Waveguides with PML Boundary Conditions. Optical and Quantum Electronics, 2001,33(4):359-371
    191 B. T. Kuhlmey, T. P. White, G. Renversez, et al. Multipole Method for Microstructured Optical Fibers. II. Implementation and results. Journal of the Optical Society of America B, 2002,19(10):2331-2340
    192 T. White, R. McPhedran, L. Botten, et al. Calculations of Air-Guided Modes in Photonic Crystal Fibers Using the Multipole Method. Optics Express, 2001,9(13):721-732
    193 Steven G. Johnson, J. D. Joannopoulos. Block-Inerative Frequency-Domain Methods for Maxwell’s Equations in a Planewave Basis. Optics Express, 2001,8(3):173-190
    194 T. M. Monro, V. Pruneri, N. G. R. Broderick, et al. Broad-band Second-harmonic Generation in Holey Optical Fibers. IEEE Photonics Technology Letters, 2001, 13(9):981-983
    195方宏.光子晶体光纤理论模型、结构设计及制作工艺的研究.北京交通大学博士学位论文.2008:70-71
    196李玉权.光波导理论与技术.北京:人民邮电出版社,2002:13-16
    197刘丰.模间干涉式全光纤电压互感器的研究.燕山大学博士学位论文.2008:24-28
    198 B.Y. Kim, J. N. Blake, S.Y.Huang, et al. Use of highly elliptical core fibers for two-mode fiber devices, Optical Letters, 1987,12(9):729-731
    199 Kent A. Murphy, M.ark S. Miller, Ashish M. Vengsarar, et al. Elliptical-Core Two-Mode Optical-Fiber Sensor Implementation Methods. Journal of Lightwave Technology, 1990,8(11):1688-1696
    200陈卫东,刘丰.椭圆芯保偏光纤模传输特性和模间干涉拍长的研究.电子学报,2009,37(7): 1624-1627
    201张福学,王丽坤.现代压电学(中册).北京:科学出版社,2003:1-10
    202甘国友,严继康.压电复合材料的现状与发展.功能材料.2000,31(5):456-459
    203张涛,孙立宁.压电陶瓷基本特性研究.光学精密工程.1998,6(5):26-32
    204何金田等.传感器技术.哈尔滨:哈尔滨工业大学出版社,2004:122-127

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700