用户名: 密码: 验证码:
大豆长期连作土壤对根腐病病原微生物的抑制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根腐病作为大豆连作后主要发生的根部病害,是东北黑土区大豆连作障碍的主要原因之一。然而近年发现经过长期连作,大豆根腐病发病情况得到明显的控制,因此提出了长期连作可能形成根腐病抑制性土壤的假设。为了验证这一假设,应用中国科学院海伦农业生态试验站大豆连作定位试验区,以大豆长期连作—大豆根腐病病原微生物—病原抑制性微生物三者关系为研究对象,结合传统分离计数、形态学鉴定、致病性检测、核酸序列分析、实时荧光定量PCR(Real-time PCR)和变性梯度凝胶电泳(DGGE)等方法,研究了大豆连作方式下根腐病原菌种类,以及其在3年连作、20年连作和20年轮作土壤中的种群密度、结构及致病性分化。同时,通过微生物群落的解析明确长期连作土壤中根腐病原菌抑制性微生物种类、抑制能力以及其在3种轮作方式中的种群密度和结构,以期证实上述假设并为更深入、系统地研究大豆连作障碍生物机制提供方法指导。
     通过苗期大豆生长发育情况的调查结果表明,与大豆3年连作种植相比较,大豆20年连作种植显著地改善了大豆的根长、地上和地下鲜重生长发育情况,仅对株高的影响不显著。同时,大豆根腐病病情指数亦较3年连作显著降低。大豆连作根部位定殖真菌共分离到分属7个属的84个菌株。致病性测定结果显示仅镰孢菌属Fusarium spp.的部分菌株具有大豆根腐病致病能力。结合转录延长因子序列(EF-1α)的系统发育分析和致病性检测结果,确定尖镰孢F. oxysproum、禾谷镰孢F. graminearum和燕麦镰孢F.avenaceum为病原镰孢菌,木贼镰孢F. equiseti、腐皮镰孢F. solani及拟轮枝镰孢F.verticillioides为非致病性镰孢菌。大豆根部镰孢菌属DGGE检测表明尖镰孢菌F.oxysproum为最优势种,因此,大豆连作方式下大豆根腐病原菌以尖镰孢为主,联合禾谷镰孢和燕麦镰孢复合侵染所引起。
     结合稀释平板法和Real-time PCR方法,检测了大豆20年连作方式下土壤镰孢菌种群的基因组DNA质量和CFU数量,分别为4.5ng/g干土和2.7×10~4个/g干土,均显著低于3年连作的16.0ng/g干土和6.0×10~4个/g干土。传统分离鉴定和DGGE结果显示,3年连作方式土壤镰孢菌属中以尖镰孢菌为优势菌,且其在20年连作方式土壤中的优势度明显下降。由镰孢菌属各个种的分离频率可知,20年连作方式镰孢菌种群结构多样性、均匀度和优势度指数均较3年连作方式有显著的改善。而对DGGE结果的主成分分析和聚类分析结果表明,大豆20年连作方式通过降低尖镰孢菌和禾谷镰孢菌的密度,从而改变土壤镰孢菌属种群结构。研究至此确定了大豆长期连作可以形成根腐病抑制性土壤。
     结合传统分离计数、Real-time PCR以及DGGE方法研究土壤中的微生物群落结果表明,大豆20年连作方式对土壤细菌群落的密度和结构没有产生明显的影响,仅应用DGGE方法挑选出优势细菌类群,即荧光假单胞菌Pseudomonas fluorescens。但长期连作可以降低土壤真菌群落的CFU数量,增加真菌群落多样性水平,并改变群落结构构成。确定了与20年连作方式相关的特异性真菌类群,即厚垣轮枝菌Verticiliumchlamydosporium和木霉菌属真菌Trichoderma spp.。同时对土壤细菌与真菌群落密度的比较,大豆3年连作方式下CFU和基因组DNA比率分别为88.9(±22.3)和1.5(±0.8),均低于大豆20年连作的111.7(±14.5)和2.2(±2.8)。
     分离的44株荧光假单胞菌P. fluorescens和8株厚垣轮枝菌V. chlamydosporium中未发现具有抑制性作用的菌株,而在44株木霉菌株Trichoderma中得到具有抑制性的菌株32株。其中24株分离自大豆3年连作土壤,且23株具有病原镰孢菌的抑制能力;18株分离自大豆20年连作土壤,8株具有抑制能力。3年连作土壤中以哈茨木霉菌T.harzianum为主,抑制方式主要为重寄生作用;20年连作方式主要以绿木霉T. viren为主,抑制方式主要为次生代谢产物。盆栽结果显示,3年连作分离的木霉菌具有更高的大豆根腐病发病抑制效果,但20年连作分离的木霉菌在可以抑制根腐病的同时,还具有对大豆生长发育的促生作用。最终确定木霉菌Trichoderma spp.中的哈茨木霉T.harzianum和绿木霉T. virens是大豆长期连作过程中产生的大豆根腐病抑制性微生物之一。
     综上所述,东北黑土区大豆长期连作方式可以形成根腐病抑制性土壤,减轻大豆根腐病发病程度,抑制病原镰孢菌的生长。而木霉菌属真菌可以作为抑制性微生物控制根腐病病原种群密度,从而达到对根腐病的控制作用。
As the primary root disease in the continuous cropping field of soybean, soybean root rotis one of the principal factors that causing the continuous cropping obstacles in NortheastChina. However, the situation of soybean root rot disease is amended significantly after thelong-tern continuous cropping, which means that the disease-suppressive soil has formed bythis management. For sustaining this hypothesis, from the relationship among continuouscropping of soybean, pathogenic microbes and suppressive microbes, the pathogenicmicroorganism and their population abundance, diversity and pathogenic differentiation werestudied using the traditional isolating, counting and morphological identification methodscombined with sequencing analysis, real-time PCR and denaturing gradient gel electrophoresis(DGGE) techniques. Meanwhile, according to the analysis of soil microbial population in long-tern continuous cropping, the suppressive microbes and their population abundance anddiversity in three rotation systems were explored.
     Compared with3years continuous cropping, the situation of root length, ground freshweight and underground fresh weight were improved significantly by20years measure(P<0.05), but not for plant height (P>0.05). The attack of soybean root rot was also milder than3years treatment. There were84strains isolated from the suffering root of soybean classifiedinto7genuses. However, only some strains from Fusarium genus could cause the soybean rootrot. Using the sequencing analysis of EF-1α and DGGE method, the Fusarium speciescolonizing on the soybean roots were confirmed, including F. avenaceum, F. culmorum, F.equiseti, F. graminearum, F. solani, F. oxysproum, F. verticillioides and a relative specie with F.oxysproum. Through the test of pathogenicity, the pathogenic species were confirmed,including F. avenaceum, F. graminearum, F. oxysproum, and F. equiseti, F. solani and F.verticillioides were the nonpathogenic ones.
     Combined dilution plate method and real-time PCR, the genomic DNA quality and theCFU of soil Fusarium population in20years continuous cropping treatment were4.5ng pergram of soil and2.7×10~4per gram of soil, which significantly lower than that in3yearstreatment. Meanwhile, the result of identification and DGGE showed that the dominance of F.oxysproum species in20years treatment had decreased from the level of3years treatment.According to the isolation frequency of Fusarium spp., the diversity, evenness and dominanceof Fusarium population in20years continuous cropping had been improved than3years one.From the result of principal component analysis (PCA) and cluster analysis, the Fusariumpopulation in20years treatment had been altered by decreasing the abundance of certain dominant species.
     Using all above method to analyze the microbial population in long-tern continuouscropping field, it was shown that the abundance and structure of bacterial population was notinfluenced. There were not any specific microbes to select, and just pick the dominant speciesPseudomonas fluorescens. However, the CFU of fungal population was decreased, the diversitywas increased and the structure was altered thoroughly. Using the DGGE method, the specificmicrobes had been selected, which were Verticilium chlamydosporium and Trichoderma spp..Meanwhile, the bacterial to fungal ratio of CFU and genomic DNA quality in3years treatmentwere88.9(±22.3)and1.5(±0.8)respectively, both of which lower than that in20yearstreatment.
     According to the test of suppression capability, there were not any suppressive strains in44P. fluorescens and8V. chlamydosporium isolates. However, there were32suppressiveisolates in all44Trichoderma strains. Except one T. viride strain,23strains isolated from3years treatment owned capability that inhibited the pathogenic Fusarium, but there were just8strains among all18ones from20years treatment represented suppressive ability. T.harzianum was the dominant species in3years treatment, which act the superparasitism as thesuppressive mechanism. T. virens was the dominant species in20years treatment, which usingthe secondary metabolic production as the suppressive mechanism. Meanwhile, all strains from3years treatment were slightly better than that from20years treatment as a biological controlagent for soybean root rot disease, but all Trichoderma strains from20years treatment alsopresented growth promotion for soybean plants. The linear relation between Trichoderma spp.and Fusarium spp. was established by the result of CFU and genomic DNA quality. T.harzianum and T. virens were the dominant species in3years treatment, but this dominance ofT. harzianum had decreased after20years continuous cropping.
引文
[1] Abd-Elsalam K.A., Aly I.N., Abdel-Satar M.A., Khalil1M.S. and Verreet J.A.,2003. PCRidentification of Fusarium genus based on nuclear ribosomal-DNA sequence data. AfricanJournal of Biotechnology4:82-85.
    [2] Alabouvette C. and Couteaudier Y.,1992. Biocontrol of Fusarium wilts withnonpathogenic fusaria. In: Tjamos E.C., Papavizas G.C.and Cook R.J.(ed.). Biologicalcontrol of plant diseases, pp.415-425. Plenum Press, New York, USA.
    [3] Armstrong G.M. and Armstrong J.K.,1981. Formae specials and races of Fusariumoxysporum causing wilt diseases. In: Nelson P.E., Toussoun T.A. and Cook R.J.(ed).Fusarium: diseases, biology, and taxonomy, pp.391-399. Pennsylvania State UniversityPress, University Park, USA.
    [4] Baayen R P, O'Donnell K, Bonants P J M, Cigelnik E, Kroon L P N M, Roebroeck E J A,Waalwijk C. Gene genealogies and AFLP analyses in the Fusarium oxysporum complexidentify Monophyletic and Nonmonophyletic Formae Speciales Causing Wilt and RotDisease. Phytopathology,2000,90(8):891-900.
    [5]白雪梅译.大豆根腐病发育动态.大豆通报,2003,(1):31.
    [6] Bao J.R., Velema J., Dobinson K.F. and Lazarovits, G.. Using GUS expression in anonpathogenic Fusarium oxysporum strain in measuring fungal biomass. CanadianJournal of Plant Pathology,2000,22:70-78.
    [7] Barak R.,Elad Y,Chet I.,et al.Lectins:A possible basis for specific recognition inthe interaction of Trichoderma and Sclerotium rolfsii. Phytopathology,1985,75(4):458-462.
    [8] Bissett J.A revision of the genus Trichoderma I:section Longibrachiatum soct.nov.Can.J.Bot.,1984,62:924-931.
    [9] Bissett J.A revision of the genus TrichodermaⅡ:infraspecific classificati. Can.J.Bot.,1991a,(69):2357-2372.
    [10]Bissett J.A revision of the genus Trichoderma Ⅲ:section Pachybasium. Can.J.Bot.,1991b,(69):2373-2417.
    [11]Bissett J.A revision of the genus Trichoderma Ⅳ: Additional notes on sectionLongibrachiatum. Can.J.Bot.,1991c,(69):2418-2420.
    [12]博慧兰,战景仁,周曰哲,等.大豆连作对土壤纤维酶活性的影响.大豆科学,1999,18(1):81-84.
    [13]Boehm M.J., Wu T.Y., Stone A.G., Kraakman B., Iannotti D.A., Wilson G.E., Madden L.V.and Hoitink H.A.J.. Cross-polarized magic-angle spinning13C nuclear magnetic resonancespectroscopic characterization of soil organic matter relative to culturable bacterial speciescomposition and sustained biological control of Pythium root rot. Applied andEnvironmental Microbiology,1997,63:162-168.
    [14]Booth, C. The genus Fusarium. Kew and Surrey: Commonwealth Mycological Institute,1971,1-237.
    [15]Bossio DA, Scow KM. Impacts of carbon and flooding on soil microbial communities:phospholipid fatty acid profiles and substrate utilization patterns. Micob. Ecol.,1998,35:265-278.
    [16]Bulluck L.R. and Ristaino J.B.. Effect of synthetic and organic soil fertility amendmentson southern blight, soil microbial communities and yield of processing tomatoes.Phytopathology,2002,92:181-189.
    [17]Castellá G, Bragulat M R, Rubiales M V, Caba es F J. Malachite green agar, a newselective medium for Fusarium. Mycopathologia,1997,137:173-178.
    [18]Chang Y C and Baker R..Increased growth of plants in the presence of the biologicalcontrol agent Trichoderma harzianum. Plant Disease,1986,(70):145-148.
    [19]Chambers S M,Scott E S.In vitro antagonism of Phytophthora cinnamomi and P.citricola by isolates of Trichoderma spp. and Gliocladium virens. Phytopathol,1995,143:471-477.
    [20]Chen C, Belanger R R, Benhamou N. and Paulitz T.C. Defense enzymes induced incucumber roots by treatment with plant growth-promoting rhizobacteria(PGPR) andPythium aphanidermatum.Plant Pathology,2000,(56):13-23.
    [21]陈法霖,郑华,阳柏苏,等.外来种湿地松凋落物对土壤微生物群落结构和功能的影响.生态学报,2011,31(12):3543-3550.
    [22]陈鸿逵,王拱辰.浙江镰刀菌志.杭州:浙江科学技术出版社,1991:1-72.
    [23]陈家云.植物病原真菌学.北京:中国农业出版社,2002,436-437.
    [24]陈立杰,段玉玺,范圣长,等.大豆胞囊线虫病的生防因子研究进展.西北农林科技大学学报,2005,33:190-194.
    [25]陈中宽,黄复民,郭桂清,等.大豆连作土壤肥力变化与有害生物发生的关系.中国农学通报,2006,22(7):373-376.
    [26]陈宗泽,殷勤燕,王旭明,等.土壤病原菌对连作大豆的致病性初探.吉林农业大学学报,1999,v21(1):29-32.
    [27]成田保三郎.连、轮作烟土壤の微生物作用.日本土壤肥料学杂志,1983,(53):6-12.
    [28]戴芳澜.中国真菌总汇.北京:科学出版社,1979.
    [29]Dekkers L C, Mulders I H M, Phoelich C C. The Colonization Gene of the Tomato-Fusarium oxysporum f. sp. radicis-lycopersici Biocontrol Strain Pseudomonas-fluorescensWCS365Can Improve Root Colonization of Other Wild-type Pseudomonas spp. Bacteria.Molecular Plant-Microbe Interactions,2000,13(11):1177-1183.
    [30]Dennis C.,Webster: Antagonistic properties of species-groups of Trichoderma.Hyphalinteraction,Trans. Br. Mycol. Soc.1971(57):363-369.
    [31]董楠.作物轮作和连作系统木霉菌种群动态与多样性研究.东北林业大学,2008
    [32]Elad Y., Barak R., Chet I.. The possible role oflectins in mycoparasitism.Bacterial,1983,154:1431-1435.
    [33]东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2002,162-166.
    [34]Dowling DN, O’Gara F: Metabolites of Pseudomonas involved in the biocontrol of plantdisease. Trends Biotechnol,1994,12:133-144.
    [35]丁俊杰.黑龙江省大豆主要病害研究进展.中国农学通报,2003,19(1):57-80.
    [36]Fauci M.F. and Dick R.P.,1994. Soil microbial dynamics: short and long-term effects oninorganic and organic nitrogen. Soil Science Society of America journal58:801-806.
    [37]Forsyth L.M., Smith L.J. and Aitken E.A.B.. Identification and characterization of non-pathogenic Fusarium oxysporum capable of increasing and decreasing Fusarium wiltseverity. Mycological Research,2006,110:929-935.
    [38]付慧兰,邹永久,杨振明,等.大豆连作土壤pH与土壤酶活性.大豆科学,1997,16(2):157-161.
    [39]Fuente LDL, Landa BB, Weller DM. Host crop affects rhizosphere colonization andcompetitiveness of2,4-diacetylphloroglucinol-producing Pseudomonas fluorescents.Phytopathology,2006,96(7):51-62.
    [40]高克祥,刘晓光,郭润芳,等.木霉菌对五种植物病原真菌的重寄生作用.山东农业大学学报(自然科学版),2002,33(1):37-42.
    [41]高同春,周书其,王振荣,等.大豆根腐病病原物的分离、鉴定及致病性测定.安徽农业科学,1992,20(1):79-81.
    [42]甘文奇,陈曙旸,何凤生.我国农药的使用与发展及存在的问题.中国公共卫生,2000,16(9):852-853.
    [43]Gandon S, Michalakis Y. Local adaptation, evolutionary potential and host-parasitecoevolution: interactions between migration, mutation, population size and generation time.J. Evol. Biol.,2002,15(3):451-462.
    [44]Geiser D M, Delmar Jimenez-Gasco M, Kang S, Makalowska I, Veeraraghavan N, Ward TJ, Zhang N, Kuldau G A, O Donnell K. FUSARIUM-ID v.1.0: A DNA sequence databasefor identifying Fusarium. European Journal of Plant Pathology,2004,110(4):473-479
    [45]Gelsomino A., Cacco G. Compositional shifts of bacterial groups in a solarized andamended soil as determined by denaturing gradient gel electrophoresis. Soil Biology andBiochemistry,2006(38):91-102.
    [46]郭润芳,刘晓光,高克样,等.拮抗木霉菌在生物防治中的应用与研究进展.中国生物防治,2002,18(4):180-184.
    [47]韩庆新,辛普惠.大豆根腐病主要病原菌对大豆幼苗治病性的初步研究.大豆科学,1990,9(2):157-162.
    [48]韩晓增,许艳丽主编.大豆重迎茬减产控制及主要病虫害防治技术.科学技术出版社.1999.
    [49]何志鸿,刘忠堂,许艳丽,等.大豆重迎茬减产的原因及农艺对策研究—Ⅳ.重迎茬大豆的土壤养分与养分吸收.大豆科学,2003a,22(2):120-126.
    [50]Hatsch D, Phalip V, Jeltsch J M. Use of genes encoding cellobiohydrolase-C andtopoisomerase II as targets for phylogenetic analysis and identification of Fusarium.Research in Microbiology,2004,155:290-296.
    [51]Horace G C,Richard H C,Fanist G.et al.6-pentyl-α-pyrone from: Trichodermaharzianum:Its planter growth inhibitory and antimicrobial properties.Agric. Biol.Chem.,1986,50(11):943-2945.
    [52]侯德安.大豆根腐病重发原因及防治对策.种子世界,2004,(5):45.
    [53]Hou X.Y., Han X.Z., Wang S.Q. and Song C.. Different land uses and management effectson soil fertilities in black soil. Journal of Soil and Water Conservation,2008,22:99-103.
    [54]Huang J.Y. and Li C.X.. Main factors of soil microbial diversity and their effect oncropland. Journal of Henan University of Science and Technology,2004,24:10-13.
    [55]Isabel M, G Roncero, C Hera. Fusarium as a model for studying virulence in soil borneplant pathogens. Physiological and Molecular Plant Pathology,2003,62:87-98.
    [56]Janvier C, Villeneuve F, Alabouvette C, et al. Soil health through soil disease suppression:Which strategy from descriptors to indicators? Soil Biol. Biochem.,2007,39(1):1-23.
    [57]Jaroszuk-Scisel J., Kurek E., Winiarczyk K., Baturo A. and Lukanowski A.,2008.Colonization of root tissues and protection against Fusarium wilt of rye (Secale cereale)by nonpathogenic rhizosphere strains of Fusarium culmorum. Biological Control45:297-307.
    [58]计钟程.大豆重迎茬减产主要原固与对策.土壤通报,1990.21(2):76-78.
    [59]计钟程,许文芝.重茬大豆减产与土壤环境变化.大豆科学,1995,14(4):321-329.
    [60]靳学慧,马汇泉.农业植物病理学-粮食作物和经济作物部分.内蒙科学技术出版社.1999.
    [61]金颖,胡洪波,张雪洪.假单胞菌产生的抗生素研究.上海农业学报,2005,21:106-109.
    [62]Kageyama, K., Ui, T and Narita,Y.. Influence of Pythium spp. on the injury by beanmonoculture. Ann. Phytopath. Soc. Japan.1981a,47:320-326.
    [63]Kageyama, K., Ui, T., Narita, Y. et a1.. Relation of Pythium spp. to monoculture injury ofsoybean. Ann. Phytopath. Soc. Japan.1982,48:333-335.
    [64]Kinkel, L L, Bakker M G., Schlatter D C. A coevolutionary framework for managingdisease-suppressive soils. Annu. Rev. Phytopathol,2011,49:47-67.
    [65]Kistler H.C.. Genetic diversity in the plant-pathogenic fungus Fusarium oxysporum.Phytopathology,1997,87:474-479.
    [66]Kistler H.C., Alabouvette C., Baayen R.P., Bentley S., Brayford D., Coddington A.,Correll J., Daboussi M.J., Elias K., Fernandez, D., Gordon T.R., Katan T., Kim H.G.,Leslie J.F., Martyn R.D., Migheli Q., Moore N.Y., O’Donnell K., Ploetz R.C., RutherfordM.A., Summerell B., Waalwijk C. and Woo S., Systematic numbering of vegetativecompatibility groups in the plant pathogenic fungus Fasarium oxysporum. Phytopathology,1998,88:30-32.
    [67]Kistler, H.C., Alabouvette, C., Baayen, R.P. et a1., Systematic Numbering of VegetativeCompatiability Groups in the Plant Pathogenic Fungus Fasarium oxysporum.Phytopathology,1999,88:30-32.
    [68]腊塞尔E W.土壤条件与植物生长.北京:科学出版社.1979:148.
    [69]Larkin RP. Characterization of soil microbial communities under different potato croppingsystems by microbial population dynamics, substrate utilization, and fatty acid profiles.Soil Biol. Biochem.,2003,35:1451-1466.
    [70]Larkin R.P. and Fravel D.R.,1999. Mechanisms of action and dose–response relationshipsgoverning biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp.Phytopathology,89:1152-1161.
    [71]Lemanceau P. and Alabouvette C.. Biological control of Fusarium diseases by fluorescentPseudomonas and nonpathogenic Fusarium. Crop Protection,1991,10:279-286.
    [72]Leslie J.F. and Summerell B.A.,2006. The Fusarium Laboratory Manual. BlackwellPublishing Professional, Ames, Iowa, USA.
    [73]李长松,罗瑞梧,王金龙,等.山东省大豆根腐病研究与防治.大豆通报,1995,3:7-8.
    [74]李长松,赵玖华,杨崇良,等.我国大豆根腐病研究概况及存在的问题.1997,中国油料,19(3):82-84.
    [75]Li H.B., Han X.Z. and Wang F.2007. Review of soil carbon and nitrogen cycling underlong-term fertilization. Chinese Journal of Soil Science38:384-388.
    [76]李红叶,曹若彬.果蔬产生病害生物防治研究进展.生物防治通报,1993(4):176-180.
    [77]李怀波,彭珺,包衍,等.拮抗油菜菌核病菌的荧光假单胞杆菌的分离与筛选.中国农学通报,2005,21:334-337.
    [78]李玉霞,马保罗,N.B. McLaughlin,C.F. Drury.轮作在保护性耕作中的作用.中国农技推广,2006,5(3):15-17.
    [79]Li Z.G., Song D.H. and Wang J.M.. Establishment of single conidial strains of Fusariumand rapid isolation of their genomic DNA. Journal of Shanxi Agricultural University,2002,32:31-34.
    [80]梁喜龙,郑殿峰,左豫虎.大豆根腐病的研究现状及展望.黑龙江八一农垦大学学报,2003,15(4):30-34.
    [81]刘海龙,李春杰,许艳丽.生防细菌的抑菌谱和对大豆根腐病的防治.大豆通报,2008,(1):10-15.
    [82]刘金波.大豆根部和根际镰孢菌种群结构及动态.中国科学院研究生院,2008.
    [83]Liu J.B., Xu Y.L. and Wei W.,2008. Comparing different methods for isolating Fusariumfrom soybean rhizosphere soil. Soybean Scencei27:106-112.
    [84]Liu J.B., Xu Y.L., Li C.J., and Diao Z.2008. Effect of Long Term Soybean Monocultureon Soybean Root Rot and Soybean Growth and Development in Pot Experiment. SoybeanScience27:806-810.
    [85]刘金波,许艳丽,李春杰,等.长期连作对大豆根际真菌主要类群的影响.农业系统科学与综合研究,2009,25(1):105-108.
    [86]柳良好,徐同.哈茨木霉几丁质酶诱导及其对水稻纹枯病的拮抗作用.植物病理学报,2003,33(4):359-363.
    [87]刘云龙,何永宏,张旭东.哈茨木霉对辣椒生长的影响.云南农业大学学报,2002,17(4):245-246.
    [88]刘晓冰,于广武,许艳丽,等.大豆连作效应分析.农业系统科学与综合研究,1990,(3):40-44.
    [89]刘忠堂,何志鸿,祖伟,等.重迎茬对大豆产量影响及机理的研究.大豆科学,2001,20(2):153.
    [90]刘铸德.大豆根腐病的研究.中国油料作物学报.1992(1):42-44.
    [91]刘增柱,周玉芝,韩静淑.大豆连、轮作土壤微生物生态分布与大豆孢囊线虫群体动态的研究.大豆科学,1990,9(3):206-211.
    [92]Lugtenberg BJJ, Dekkers LC: What makes Pseudomonas bacteria rhizosphere competent?Environ Microbiol1999,1:9-13.
    [93]罗瑞梧,尚佑芬,杨崇良,等.大豆根腐病防治研究.山东农业科学,1991(3):46-48.
    [94]Mazzola M. Assessment and management of soil microbial community structure fordisease suppression. Annu. Rev. Phytopathol,2004,42:35-59.
    [95]马春梅,唐远征,季尚宁.作物定位轮作体系长期试验研究—土壤微生物在作物可生育期间的数量变化(Ⅰ).东北农业大学学报,2004,35(2):129–134.
    [96]马汇泉,靳学慧,孙伟萍,等.大豆根腐病生态学研究Ⅱ.不同土壤条件对大豆根腐病的影响.中国油料,1995,17(1):47–48.
    [97]马汇泉,靳学慧,孙伟萍,等.大豆根际真菌类群对大豆幼苗生长的影响.中国油料,1996,18(3):54–55.
    [98]马汇泉,辛惠普.大豆根腐病病原菌种类鉴定及其生态学研究.黑龙江八一农垦大学学报,1988,(2):115-121.
    [99]马汇泉,郑桂萍,赵九洲,等.大豆连作障碍及产生机理.土壤,1997,1:46-48.
    [100]马淑梅,李宝英.大豆品种资源对根腐病抗性鉴定研究.作物品种资源,1997(3):34-35.
    [101] Mohamed Z K. Physiological and antagonistic activities of streptomycetes in rhizosphereof some plants. Egypt. J. Phytopathol,1982,14:121-128.
    [102] M hlenhoff P., Muller L., Gorbushina A.A., Petersen K. Molecular approach to thecharacterization of fungal communities: methods for DNA extraction, PCR amplificationand DGGE analysis of painted art objects. FEMS Microbiology Letters,2001(195):169-173.
    [103] Muyzer G., Brinkhoff T., Nubel U., Santegoeds C., Schafer H., Wawer C. Denaturinggradient gel electrophoresis (DGGE) in microbial ecology. In: Kowalchuk G.A., de BruijnF.J., Head I.M., Akkermans A.D.L., van Elsas J.D.(eds): Molecular Microbial EcologyManual. Kluwer Academic Publishers Dordrecht,2004:743-769.
    [104] Muyzer G., Waal E.C. and Uitterlinden A.G.. Profiling of complex microbial populationsby denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplifiedgenes coding for16S rRNA. Applied and Environmental Microbiology,1993,59:695-700.
    [105] Muyzer G. DGGE/TGGE, a method for identifying genes from natural ecosystems. CurrOpin Microbiol,1999,2:317-322
    [106] Nagaraj K M, Jayaraj J, Muthukrishnan S, et al. Detoxification of oxalic acid by Peudomonas f luorescens strain PfM-DU2: implications for the biological control of rice sheathblight caused by Rhizoctonia solani. Microbiological Research,2005,160:291-298.
    [107] Nash S N and Snyder W C. Quantitative estimations by plate counts of propagules of thebean rot Fusarium in field soils. Phytopathology,1962,73:458-462.
    [108] Nicolaisen M., Suproniene S., Nielsen L.K., Lazzaro I., Spliid N.H. and Justesen A.F..Real-time PCR for quantification of eleven individual Fusarium species in cereals. Journalof Microbiological Methods,2009,76:234-240.
    [109] Nitsche A, Steuer N, Schmidt C A, et al. Different real-time PCR formats compared forthe quantitative detection of human cytomegalovirus DNA. Clinical Chemistry,1999,45:1932-1937
    [110] Notz R, Maurhofer M, Dubach H, et al. Fusaric acid-producing strains of Fusariumoxysporum alter2,4-diacetrlphloroglucinol biosynthetic gene exp ression in Pseudomonas f luorescens CHAO in vitro and in the rhizosphere of wheat. Appl Environ Microbiol,2002,68(5):2229-2235.
    [111] O’Donnell K., Kistler H.C., Cigelnik E. and Ploetz R.C.. Multiple evolutionary origins ofthe fungus causing panama disease of banana: concordant evidence from nuclear andmitochondrial gene genealogies. Proceedings of the National Academy of Sciences,1998,95:2044-2049.
    [112] Oros-Sichler M., Gomes N.C.M., Neuber G., Smalla K. A new semi-nested PCRprotocol to amplify large18S rRNA gene fragments for PCR-DGGE analysis of soilfungal communities. Journal of Microbiological Methods,2006,(65):63-75.
    [113] Pan F.J., McLaughlin N.B., Yu Q., Xue A.G. and Xu Y.L. Responses of soil nematodecommunity structure to different long-term fertilizer strategies in the soybean phase of asoybean-wheat-corn rotation. European Journal of Soil Biology,2010,46:105-111.
    [114] Perez C, Dill-Macky R, Kinkel LL. Management of soil microbial communities toenhance populations of Fusarium graminearum antagonists in soil. Plant Soil,2008,302(1-2):53-69.
    [115] Phillips L.A., Germida J.J., Farrell R.E., Greer C.W. Hydrocarbon degradation potentialand activity of endophytic bacteria associated with prairie plants. Soil Biology andBiochemistry,2008,(40):3054-3064.
    [116] Postma J. and Luttikholt A.J.G.. Colonization of carnation stems by a nonpathogenicisolate of Fusarium oxysporum and its effect on Fusarium oxysporum f. sp. dianthi.Canadian Journal of Botany,1996,74:1841-1851.
    [117] Postma J, Schilder MT, Bloem J, van Leeuwen-Haagsma WK. Soil suppressiveness andfunctional diversity of the soil microflora in organic farming systems. Soil Biol. Biochem.,2008,40(9):2394-2406.
    [118]卜洪震,王丽宏,尤金成,等.长期施肥管理对红壤稻田土壤微生物量碳和微生物多样性的影响.中国农业科学,2010,43(16):3340-3347
    [119] Qiao Y.F., Miao S.J. and Wang S.Q.. Soil respiration affected by fertilization in blacksoil. Acta Pedologica Sinica,2007,44:1028-1035.
    [120] Ramamoorthy V., Raguchander T., Samiyappan R. Induction of defense-related proteinsin tomato roots treated with Pseudomonas fluorescens Pf1and Fusarium oxysporum f. sp.lycopersici. Plant and Soil,2002,239(1):55-68.
    [121] RIFAI M A.A revision of the genus Trichoderma.Mycol. Pap. CM.,1969,(116):1-56.
    [122] Roncero M.I.G., Hera C., Ruiz-Rubio M., Garcia M.F.I., Madrid M.P., Caracuel Z.,Calero F., Delgado-jarana J., Roldan-Rodriguez R., Martinet-Rocha A.L., VelascoC., RoaJ., Martin-Urdiroz M., Cordoba D. and Di P.A.. Fusarium as a model for studyingvirulence in soil borne plant pathogens. Physiological and Molecular Plant Pathology,2003,62:87-98.
    [123] Roy K W. Fusarium solani on Soybean Roots: Nomenclature of the Causal Agent ofSudden Death Syndrome and Identity and Relevance of F. solani form B. Plant Disease,1997,81(3):259-266.
    [124]阮维斌,王敬国,张福锁.连作障碍因紊对大豆养分吸收和固氮作用的影响.生态学报,2003,23(1):22-29.
    [125] Siddiqui Z A, Mahmood I. Biological control of Heterodera cajani and Fusarium udumon pigeonpea by Glomus mosseae, Trichoderma harzianum, and Verticilliumchlamydosporium. Israel Journal of Plant Sciences,1996,44(1):49-56.
    [126] Steinkellner S. and Langer I.. Impact of tillage on the incidence of Fusarium spp. in soil.Plant and Soil,2004,267:13-22.
    [127] Steinkellner S, I Langer. Impact of Tillage on the Incidence of Fusarium spp. in Soil.Plant and Soil,2004,267:13-22.
    [128] Stephanie A B, Rockie R Y, Peter J, et al. Bacterial and fungal contributions to soilnitrogen cycling under Douglas fir and red alder at two sites in Oregon. Soil Biology&Biochemistry,2008(40):443-451.
    [129]孙冬梅,杨谦,宋金柱.黄绿木霉菌对大豆根腐病镰刀菌的拮抗作用.中国油料作物学报,2005,27(3):58-61.
    [130]台莲梅,范文艳,刘海燕,等.不同耕作措施对重茬大豆根腐病及产量的影响[J].黑龙江八一农垦大学学报,2000,12(1):29-31.
    [131]台莲梅,张红梅,闫风云,等.重迎茬对大豆根际土壤微生物数量的影响.土壤肥料,2003a,6:41-43.
    [132] Thangavelu R., Palaniswami A., Doraiswamy S., et al. The Effect of Pseudomonasfluorescens and Fusarium oxysporum f.sp. cubense on Induction of Defense Enzymes andPhenolics in Banana. Biologia Plantarum,2003,46(1):107-112.
    [133] Tio M, Burgess L W, Nelson P E, Toussoun T A. Techniques for the isolation, culture,and preservation of the Fusaria. Australasian Plant Pathology Society Newsletter,1977,6:11-13.
    [134]仝赞华,郭荣君.生防菌AS818抗药性标记株在大豆根际的定殖[J].微生物学通报,2001,28(4):41-44.
    [135]仝赞华,王学士.大豆根腐病拮抗菌的室内筛选及温室测定[J].中国生物防治,1998,44(1):25-27.
    [136] Tu J C. Integrated control of the pea root rot disease complex in Ontario. Plant Disease,1987,71:9-13.
    [137] Van Elsas J, Garbeva P, Salles J. Effects of agronomical measures on the microbialdiversity of soils as related to the suppression of soil-borne plant pathogens.Biodegradation2002,13:29-40.
    [138] Van Elsas J.D., Duarte G.F., Keijzer-Wolters A., et al. Analysis of the dynamics offungal communities in soil via fungal-specific PCR of soil DNA followed by denaturinggradient gel electrophoresis. Journal of Microbiological Methods,2000,(43):133-151.
    [139] Van Wyk P S, Scholtz D J, Los O. A selective medium for the isolation of Fusarium spp.from soil debris. Phytophylactica,1986,18:67-69.
    [140] Vianene NM, Abawi GS. Hirsutella rhossiliensisand Verticillium chlamydosporium asBiocontrol Agents of the Root-knot Nematode Meloidogyne hapla on Lettuce. J Nematol.,2000,32(1):85-100.
    [141] Wakelin S.A., Warren R.A., Kong L.X. and Harvey P.R.,2008. Management factorsaffecting size and structure of soil Fusarium communities under irrigated maize inAustralia. Applied Soil Ecology39:201-209.
    [142]王德身,李哲,于希臣.几种旱田作物在轮作中的地位研究.辽宁农业科学,1991,3:1-6.
    [143]王拱辰,郑重等著.常见镰孢菌分类指南.中国农业出版社.1996,1-97.
    [144]王光华,金剑,潘相文,等.不同茬口大豆根圈土壤pH值和氮营养分布的变化.中国油料作物学报,2004,26(1):55–59.
    [145]王金龙,徐冉,陈存来,等.大豆连作下土壤环境条件变化的概述.大豆科学,2000,19(4):367-371.
    [146]王晶英,张红燕.连作大豆根冠比增大原因的研究.大豆科学,1997,i6(2):36-42.
    [147]汪锡德.大豆重迎茬与效益农业.大豆通报,1994,5:19.
    [148] Wang S.Q., Han X.Z. and Qiao Y.F.. Effects of long-term fertilization on enzymeactivities in black soil of Northeast China. Chinese Journal of Applied Ecology,2008,19:551-556.
    [149]王震宇,王英祥,陈祖仁,等.重茬大豆生长发育障碍机制初探.大豆科学,1991,10(1):31-36.
    [150] Wei W., Xu Y.L., Li S., et al. Analysis of Fusarium populations in a soybean field underdifferent fertilization management by real-time quantitative PCR and denaturing gradientgel electrophoresis. Journal of Plant Pathogenicity,2012,94(1):119-126.
    [151]魏巍,许艳丽,刘金波等.土壤镰孢菌Real-Time QPCR定量方法的建立及应用.大豆科学,2010,29(4):655-658.
    [152]魏巍,许艳丽,朱琳.分子生物学技术在镰孢菌分类及生态学研究中的应用.农业系统科学与综合研究,2009,26(2):181-187.
    [153] Weindlong R. Studies on a lethal principle effective in the parasit-icaction ofTrichoderma lignorum on Rhizoctonia solani and other-soil fungi.Phytopathology,1932,(22):837-845.
    [154] WellerDM, Raaijmakers JM,Gardener BBM,Thomashow LS.. Microbial populationsresponsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol.,2002,40:39-48.
    [155]文成敬,陶家凤,陈文瑞.中国西南地区木霉属分类研究.真菌学报,1993,12(2):118-130.
    [156]文景芝,杨建华,靳学慧,等.黑龙江省几种常用大豆种衣剂对大豆根腐病的防治效果.东北农业大学学报,1997,28(1):39-43.
    [157]文景芝,张明厚.重迎茬大豆根腐病的发生与防治.大豆通报,1996,3:5-6.
    [158] Wiggins BE, Kinkel LL. Green manures and crop sequences influence alfalfa root rotand pathogen inhibitory activity among soil-borne streptomycetes. Plant Soil,2005a,268:271-283.
    [159] Wiggins BE, Kinkel LL. Green manures and crop sequences influence potato diseasesand pathogen inhibitory activity of indigenous streptomycetes. Phytopathology,2005b,95(2):178-185.
    [160] Wittwer C T, Ririe K M, Andrew R V, et al. The Light Cyclerk: a microvolumemultisample fluorimeter with rapid temperature control. Bio-Techniques,1997,22:176-181
    [161] Wu M, Zhang H, Li X, Zhang Y, Su Z, Zhang C. Soil fungistasis and its relations to soilmicrobial composition and diversity: a case study of a series of soils with differentfungistasis. J. Environ. Sci.,2008,20:871-877.
    [162]吴文君,高希武.生物农药及其应用.北京:化学工业出版社,2004,272-272
    [163]辛普惠,刘静如.大豆根腐病发生规律与综合防治.黑龙江八一农垦大学学报,1985,1:19-37.
    [164]辛惠普,刘静茹,刘义才,等.大豆根腐病发生规律与综合防治研究[J].黑龙江八一农垦大学学报,1985(1):19-37.
    [165]徐同.木霉在植病生防中的地位[C].第三届全国真菌地衣学术讨论会及论文摘要汇编,北京:中国植物学会真菌学会,1990.
    [166]徐同,柳良好.木霉几丁质酶及其对植物病原真菌的拮抗作用.植物病理学报,2002,32(5):97-102.
    [167]许艳丽,韩晓增.大豆重迎茬研究.哈尔滨:哈尔滨工程大学出版社,1991:12-16,29-56,78-83,87-91
    [168]许艳丽,刘爱群,韩晓增,等.黑龙江省黑土区不同茬口对不同生长发育及产量和品质影响的研究.大豆科学,1996,15(1):48-55.
    [169]许艳丽,刘晓冰,韩晓增,等.大豆连作对生长发育动态及产量的影响.中国农业科学,1999,32(增刊):64-68.
    [170]许艳丽,王光华,韩晓增.连作大豆生物障碍研究.中国油料,1997,19(3):48-48.
    [171]许艳丽,王光华,韩晓增,等.重迎茬大豆土壤微生态分布特征研究.许艳丽,韩晓增主编大豆重迎茬研究.哈尔滨:哈尔滨工程大学出版社.1995
    [172]许艳丽,王光华,韩晓增.连、轮作大豆土壤微生物分布特征与大豆根部病害关系的研究.农业系统科学与综合研究,1995,11(4):311–314.
    [173]许艳丽,张红骥,张匀华,等.施用根腐病生防颗粒剂对大豆田土壤微生物区系的影响.大豆科学,2007,26(2):198-203.
    [174] Yan K and Dickman M B. Isolation of a beta-tubulin gene from Fusarium moniliformethat confers cold-sensitive benomyl resistance [J]. Appl. Environ. Microbiol.,1996,62(8):3053-3056.
    [175] Yang C and Crowley D E. Rhizosphere microbial community structure in relation to rootlocation and plant iron nutritional status. Applied and Environmental Microbiology,2000,66(1):345-351
    [176] Yang C.H. and Crowley D.E.. Rhizosphere microbial community structure in relation toroot location and plant iron nutritional status. Applied and Environmental Microbiology,2000,66:345-351.
    [177]杨合同,唐文华,徐砚珂,等.木霉菌属的定义及其属下分类.山东科学,2002,15(2):15-22.
    [178]杨庆凯,马占峰,李季文.黑龙江大豆重迎茬问题及对策.大豆科学,1994,13(2):57-63.
    [179] Yedidia I., Benhanmou N., Kapulnik Y., et al. Influence and accumulation of PR proteinactivity during early stages of root colonization by the microparasite Trichodermaharzianum strainT202.Plant Physiology and biochemistry,2000,28(1):862-872.
    [180] Yehia A.H., EI-Hassan S.A. and EI-Baghdadi A.H.,1983. Biological seed treatment tocontrol Fusarium root-rot of broad bean. Egyptian Journal of Phytopathology14:59-66.
    [181] Yergeau E., Filion M., Vujanovica V. and St-Arnaud M.. A PCR-denaturing gradient gelelectrophoresis approach to assess Fusarium diversity in asparagus. Journal ofMicrobiological Methods,2005,60:143-154.
    [182]俞大绂.中国镰刀菌属(Fusarium)菌种的初步名录.植物病理学报,1955,1:1-17.
    [183]于广武,鲁振明.大豆连作障碍机制研究初报.大豆科学,1993,12(3):237-242.
    [184]于贵瑞,陆欣来,韩静淑,等.大豆、向日葵等作物连作障碍与轮作效应机理的研究初报,生杰学杂志,1988,7(2):1-8.
    [185] Zak J C, Willig M R, Moorhead D L, et al. Functional diversity of microbialcommunities: a quantitative approach. Soil Biology and Biochemistry,1994,26:1101-1108.
    [186]邹莉,袁晓颖,李玲,等.连作对大豆根部土壤微生物的影响研究.微生物学杂志,2005,25(2):27-30.
    [187] Zhang B Q, Yang X B. Pathogenicity of Pythium populations from corn-soybean rotationfields [J]. Plant Disease,2000,84:94-99.
    [188]章初龙,徐同.Trichoderma harzianum及其近缘种的分子系统学研究.生物多样性,2003,11(1):10-19.
    [189]张满良.农业植物病理学.世界图书出版西安公司.1997.
    [190] Zhang J X, Xue A G, Tambong J T. Evaluation of seed and soil treatments with novelBacillus subtilis strains for control of soybean root rot caused by Fusarium oxysporum andF. graminearum. Plant Disease,93(12):1317-1323.
    [191]张林夕.有机蔬菜轮作技术.现代农业,2005,4(3):14-15.
    [192]张硕成.木霉菌生态学及其在生防中的应用.应用生态学报,1991,2(1):85-88.
    [193]张伟琼,聂明,肖明.荧光假单胞菌生防机理的研究进展.生物学杂志,2007,(3):9-12.
    [194] Zhang Z.G., Zhang J., Wang Y. and Zheng X.B.,2005. Molecular detection of Fusariumoxysporum f. sp. niveum and Mycosphaerella melonis in infected plant tissues and soil.FEMS Microbiology Letters249:39-47.
    [195]赵蕾.木霉菌的生物防治作用及其应用.生态农业研究,1999,7(1):66-68.
    [196]赵永强,台莲梅,郭永霞.木霉菌T38D对大豆根腐病菌的拮抗机制.黑龙江八一农垦大学学报,2010,22(4):23-26.
    [197]周德庆.微生物学教程.高等教育出版社,北京,2002.
    [198] Zhou J.Z., Bruns M.A. and Tiedje J.M.,1996. DNA recovery from soils of diversecomposition. Applied and Environmental Microbiology62:316-322.
    [199]朱天辉,邱德勋.Trichoderma harzianum对Rhizoctonia solani的抗生现象.四川农业大学学报,1994,12(1):11-15.
    [200] Riggs, R.D., D.P.Schmitt. Optimization of the Heterodera glycines Rrace TestProcedure.Journal of Nematology,1991,23(2):149-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700