用户名: 密码: 验证码:
自生固氮菌对玉米、小麦根际微生态调控机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究运用RFLP、BIOLOG、PCR-T-RFLP、巢式PCR-DGGE、傅立叶红外光谱和根系扫描等技术主要从根际微生态特征方面探索了自生固氮菌(Azotobacter)与玉米(Zea mays L.)、小麦(Triticum aestivum L.)互作机制。首先从陕西周至秦岭南坡土壤分离得到62株自生固氮菌,采用RFLP技术进行菌株16S rDNA指纹图谱分析,并测定固氮酶活性,确定3株高效自生固氮菌分别为褐球固氮菌(Azotobacter chroococcumYCYS)、芸苔叶杆菌(Phyllobacterium brasssicacearum QL54)和类芽孢杆菌(Paenibacillus sabinae MX31)。盆栽实验条件下,接种3株自生固氮菌对玉米(Z. maysL.)、小麦(T. aestivum L.)生长、根际土壤酶活性和微生物群落多样性的调控过程;在不同氮水平/盐浓度条件下,研究接种自生固氮菌对玉米(Z. mays L.)根系形态和根际细菌群落多样性的影响;分析了大田实验条件下接种菌剂和施加氮素、微生物酶制剂对小麦(T. aestivum L.)根际微生态特征的影响。研究结论为自生固氮菌资源利用和菌剂开发以及菌剂与氮素肥料合理配施提供科学依据,研究得到主要结论如下:
     1.本研究共分离得到62株自生固氮菌,采用RFLP技术进行菌株16S rDNA指纹图谱分析、测定菌株固氮酶活性,并对代表菌株进行鉴定。结果表明,62株自生固氮菌具有丰富的遗传多样性,YCYS菌株固氮酶活性最高为47.74±1.02nmol/mg·h;3株具有高固氮酶活性的代表菌株分别为褐球固氮菌(Azotobacter chroococcum YCYS)、芸苔叶杆菌(Phyllobacterium brasssicacearum QL54)和类芽孢杆菌(Paenibacillus sabinaeMX31)。
     2.在盆栽实验条件下,研究了3株自生固氮菌—褐球固氮菌(Azotobacterchroococcum YCYS)、芸苔叶杆菌(Phyllobacterium brasssicacearum QL54)和类芽孢杆菌(Paenibacillus sabinae MX31)接种盆栽玉米(Z. mays L.)之后,玉米(Z. mays L.)生长、植株氮含量、根际土壤酶活性、细菌群落功能多样性和遗传多样性的响应过程。结果表明,随接种时间延长,接种自生固氮菌显示出良好的促生效果,接种42天,MX31处理显著高于对照,地上部分鲜重的大小顺序为:MX31>QL54>YCYS>Control。接种7天,接种褐球固氮菌(A. chroococcum YCYS)和类芽孢杆菌(P. sabinae MX31)玉米根际土壤脲酶活性分别比对照高20.55%和9.58%。BIOLOG结果显示,接种自生固氮菌可以提高细菌总代谢活性。
     3.在盆栽实验条件下,探索了接种自生固氮菌对小麦(Triticum aestivum L.)生长、根际土壤酶活性和微生物群落功能多样性的影响。结果表明,接种35天时,接种QL54处理小麦苗高极显著高于对照(P<0.01)。根系活力在接种20天时,接种处理显著高于对照。接种YCYS和QL54显著提高小麦籽粒百粒重,分别比对照高22.05%和20.56%,差异达到显著性水平(P<0.05)。接种YCYS、QL54和MX31处理小麦麦粒吸氮量分别比对照高7.58%、16.76%和1.78%。傅里叶红外光谱表明,接种自生固氮菌对小麦籽粒物质组成无影响。BIOLOG主成分分析(PCA)表明接种自生固氮菌小麦根际细菌和真菌群落功能多样性特征存在时间差异。
     4.研究了不同施氮水平对小麦(Triticum aestivum L.)根际土壤酶活性和真菌分子群落多样性的影响。结果表明,随着氮素添加量的增加,脱氢酶活性降低,其中低氮素处理为22.93±4.89μg TPF/(g·24h),是高氮素的3.74倍(P<0.05);蛋白酶和蔗糖酶活性4个处理间差异不显著(P>0.05)。巢式PCR-DGGE图谱显示小麦根际土壤真菌DGGE图谱有58种条带类型。真菌群落丰富度指数(S)和多样性指数(H)均为:对照>中氮>低氮>高氮处理。
     5.不同氮水平条件下,研究接种褐球固氮菌(Azotobacter Chroococcum YCYS)对玉米植株吸氮量、根际土壤酶活性和细菌群落多样性的影响。结果表明,低氮条件下(0.05g/kg),接种YCYS处理的玉米植株吸氮量为59.78±0.18mg/株,极显著高于其他处理(F=237.39,P<0.01)。低氮条件下(0.05g/kg),接种褐球固氮菌(A. chroococcum)可以极显著提高玉米根际脱氢酶活性,接种比不接种高53.16%。BIOLOG和T-RFLP结果的主成分分析(PCA)表明说明在高氮素条件下,接种褐球固氮菌(A. chroococcum)对玉米根际细菌群落多样性影响不显著。
     6.研究了大田实验条件下接种微生物菌剂和施加酶制剂对小麦(Triticum aestivumL.)根际土壤脱氢酶和微生物群落多样性的影响。结果表明,接种菌剂和施加酶制剂有利于提高小麦根际的脱氢酶活性,脱氢酶活性范围从26.14±3.30TF/(g·24h)到48.13±17.39TF/(g·24h)。细菌群落BIOLOG结果表明,接种处理小麦根际细菌的AWCD最高为0.77±0.05,对照处理最低为0.56±0.03,差异达到极显著性水平(P<0.01);主成分分析(PCA)结果表明各个处理土壤微生物种群多样性存在显著差异。
     7.探索不同盐浓度条件下,接种褐球固氮菌(A. chroococcum YCYS)和芸苔叶杆菌(P. brasssicacearum QL54)对玉米(Zea mays L.)的影响。结果表明,接种可以降低玉米叶片丙二醛含量;在氯化钠浓度为1.0g/kg条件下,接种YCYS处理的SOD酶活性为23.26U/mg protein,极显著高于非盐胁迫条件下的SOD活性;在盐浓度为1.0g/kg条件下,接种YCYS处理CAT酶活性为12.76U/mg protein,显著高于对照。T-RFLP的主成分分析表明盐胁迫使玉米根际微生物群落趋于一致,多样性降低。
In this work, RFLP, BIOLOG, PCR-T-RFLP, nested PCR-DGGE, FTIR and root scanningtechniques were employed to explore the mechanisms of interaction between Azotobacter and wheat(Triticum aestivum L.), maize (Zea mays L.) seedlings. Firstly, sixty-two Azotobacter strains wereisolated from the soils collected from Qinling Mountains, Zhouzhi County, Shaanxi Province.PCR-RFLP technology was employed to determine the fingerprinting of isolated Azotobacter strains.Nitrogenase activity was examined, and three strains with high nitrogenase activity were identified asAzotobacter chroococcum YCYS, Phyllobacterium brasssicacearum QL54and Paenibacillussabinae MX31. Whilst, we investigated the effects of Azotobacter inoculation on the growth, soilenzyme activities and microbial community diversity associated with the rhiosphere of maize (Z. maysL.) and wheat (T. aestivum L.) seedlings under pot cultural conditions. After that, we alsoinvestigated responses of Azotobacter inoculated with maize seedlings to different nitrogen levels andsalt concentrations. Finally, we examined the effects of inoculation with microbial inoculants, nitrogenaddition and utilization of enzyme preparations on the soil enzyme activities and microbialcommunities associated with the rhizosphere of wheat (T. aestivum L.) seedlings in the fieldexperimental conditions. Thus, these results providing a scientific evaluation for the Azotobacterresources utilization, microorganism inoculant development and the combined application ofAzotobacter inoculant and nitrogen fertilizer with reasonable ratio in agricultural process. The mainresults of this dissertation are as follows:
     1. In the present work, sixty-two strains were isolated from the soils located in Qinling Mountains,Zhouzhi County, Shaanxi Province. RFLP technology was employed to determine the fingerprintingof isolated Azotobacter strains. Nitrogenase activities were also examined, and the highest nitrogenaseactivity was observed in YCYS strain with47.74±1.02nmol/(mg·h). The three strains YCYS, QL54and MX31with higher nitrogenase activities were identified as Azotobacter chroococcum YCYS,Phyllobacterium brasssicacearum QL54and Paenibacillus sabinae MX31, respectively.
     2. To explore the responses of growth, nutrition status of maize (Z. mays L.), soil enzymeactivities and bacterial community functional and genetic diversity in the rhizosphere soils of maizeseedlings inoculated with Azotobacter isolates including Azotobacter chroococcum YCYS,Phyllobacterium brasssicacearum QL54and Paenibacillus sabinae MX31, the pot experiment was examined. The results showed that the inoculation of Azotobacter could improve the growth of maizeseedlings with the extension of inoculation, the shoot fresh weight was ordered as:MX31>QL54>YCYS>Control after42days inoculation. The urease activities of A. chroococcumYCYS and P. sabinae MX31treatments were increased by20.55%and9.58%compared with thecontrol after7days inoculation, respectively. The BIOLOG results showed that the Azotobacterinoculation could increase the total bacterial community metabolic activity.
     3. To explore the effects of Azotobacter inoculation on the growth of wheat (Triticumaestivum L.) seedlings, soil enzyme activities and functional diversity of microbialcommunities, the pot experiment was conducted. The results showed that the height ofseedlings inoculated with QL54was significantly higher than that of uninoculated control(p<0.01). The root activities of inoculated treatments were significantly higher than that ofuninoculated control in20days after inoculation process. Whilst, the hundred grain weight ofwheat inoculated with YCYS and QL54, increased22.05%and20.56%compared withcontrol(p<0.05). The nitrogen uptake of wheat grain inoculated with YCYS、QL54and MX31were higher than uninoculated control by7.58%、16.76%and1.78%, respectively. There wasno effect of Azotobacter inoculation on composition of grains among four treatments used byFTIR spectrometer. The BIOLOG principle component analysis (PCA) suggested that therewere changes in bacterial and fungal communities in the rhizosphere of wheat (T. aestivum L.)seedings inoculated with Azotobacter.
     4. To explore the effects of nitrogen addition on soil enzyme activities and the diversity of fungalcommunity associated with the rhizosphere of wheat (T. aestivum L.), a field experiment wasconducted. The results showed that dehydrogenase activity was decreased with the increased nitrogenaddition, the dehydrogenase activity of low nitrogen treatment was22.93±4.89μg TF (g.24h)-1, and itwas3.74times compared with high nitrogen treatment (P<0.05). Meanwhile, there was no significantdifferences of protease activity and sucrase activity among four treatments (P>0.05).58band typeswere viewed in nested PCR-DGGE profile of fungal18S rDNA V3region. Fungal Species Richness(S) and Shannon Diversity (H) index were ordered as: control>middle nitrogen>low nitrogen>highnitrogen.
     5. To explore the effects of Azotobacter chroococcum YCYS inoculation with differentnitrogen levels on nitrogen uptake of maize plant, soil enzyme activities and diversity ofbacterial community in the rhizosphere of maize (Z. mays L.) seedlings. The results showedthat the nitrogen uptake of Z. mays L. plant inoculation with YCYS reached59.78±0.18mg/plant at0.05nitrogen level, significantly higher than other treatments (F=237.39,P<0.01). The dehydrogenase activity in A. chroococcum treatment was significantly higherthan that of uninoculated treatment by53.16%with0.05g/kg nitrogen level. The principle component analysis (PCA) of BIOLOG and T-RFLP also revealed that A. chroococcuminocualation had no significant influence on bacterail community diversity.
     6. In this study, the effects of microbial fertilizer on dehydrogenase activity and microbialcommunity diversity in the rhizosphere of wheat (Triticum aestivum L.) were investigated in the fieldconditions. The results showed that significant differences were observed in dehydrogenase activityamong the tested soils, arranging from26.14±3.30to48.13±17.39TF/(g·24h). The AWCD of MI(0.77±0.05) was higher than that of other treatments, whereas the AWCD for control (0.56±0.03) wasthe lowest (P<0.01). Principal component analysis (PCA) of BIOLOG data further revealed thatlarge differences in microbial diversity (metabolic diversity) from treatments soils.
     7. Effects of Azotobacter chroococcum YCYS and Phyllobacterium brasssicacearum QL54inoculation on maize (Z. mays L.) seedlings exposed to different salt concentrations wereexplored. The results showed that inoculation with Azotobacter could decrease MDA content.The activity of SOD reached23.26U/mg protein at YCYS treatment with1.0g/kg NaCl, wassignificantly higher than the treatments with no salt, and CAT activity reached12.76U/mgprotein compared with the control. The principle component analysis (PCA) of T-RFLPrevealed that salt stress reduced the diversity of soil bacterial community.
引文
Aaregu A A, Leena A R, Fassil A, Asfaw H, Kristina L.2012. Phylogeny and genetic diversity of nativerhizobia nodulating common bean (Phaseolus vulgaris L.) in Ethiopia. Systematic and AppliedMicrobiology,35:120~131
    Abdelmagid H M, Tabatabai M A.1987. Nitrate reductase activity of soils. Soil Biology and Biochemistry,19(4):421~427
    Abdul-Kadir S, Paulsen G.1982. Effect of salinity on nitrogen metabolism in wheat. Journal of PlantNutrition,5(9):1141~1151
    Acosta-Martinez V, Acosta-Mercado D, Sotomayor-Ramirez D, Cruz-Rodriguez L.2008. Microbialcommunities and enzymatic activities under different management in semiarid soils. Applied SoilEcology,38(3):249~260
    Acosta-Martinez V, Dowd S E, Sun Y, Wester D, Allen V.2010. Pyrosequencing analysis forcharacterization of soil bacterial populations as affected by an integrated live stock-cotton productionsystem. Applied Soil Ecology,45(1):13~25
    Acosta-Martinez V, Dowd S, Sun Y, Allen V G.2008. Tag-encoded pyrosequencing analysis of bacterialdiversity in a single soil type as affected by management and land use. Soil Biology and Biochemistry,40(11):2762~2770
    Adachi M, Matsubara T, Okamoto R, Nishijima T, Itakura S, Yamaguchi M.2002. Inhibition of cystformation in the toxic dinoflagellate Alexandrium (Dinophyceae) by bacteria from Hiroshima Bay,Japan. Aquatic Microbial Ecology,26(2):223~233
    Ali S, Hamid N, Nagina N, Malik K A.1998. Screening of phosphate solublizing microorganisms usingdifferent original and modified culture media. Biologia,44(102):110~122
    Andersen K S, Winding A.2004. Non-target effects of bacterial biological control agents on soil Protozoa,Biology and Fertility of Soils,40(4):230~236
    Andersona C R, Condrona L M, Cloughb T J, Fiers M, Stewart A, Hill R A, Sherlock R R.2011. Biocharinduced soil microbial community change: Implications for biogeochemical cycling of carbon,nitrogen and phosphorus. Pedobiologia,54(5-6):309~320
    Angus J F.2001. Nitrogen supply and demand in Australian agriculture. Australian Journal ofExperimental Agriculture,41:277~288
    Anuar A R, S Shamsuddin Z H, Yaacob O.1995. Contribution of legume-N by nodulated groundnut forgrowth of maize on an acid soil. Soil Biology and Biochemistry,27(4-5):595~601
    Apse M P, Aharon G S. Snedden W A, Bumwald E.1999. Salt tolerance conferred by overexpression of avacuolar Na+/H+antiport in Arabidopsis. Science,285(5431):1256~1258
    Aquilantia L, Favillib F, Clementi F.2004. Comparison of different strategies for isolation and preliminaryidentification of Azotobacter from soil samples. Soil Biology and Biochemistry,36(9):1475~1483
    Arkhipova T N, Veselov S Y, Melentev A I, Martynenko E V, Kudoyarova G R.2006. Comparison ofeffects of bacterial strains differing in their ability to synthesize cytokinins on growth and cytokinincontent in wheat plants. Russian Journal of Plant Physiology,53(4):507~513
    Arzanesh M H, Alikhani H A, Khavazi K,. Rahimian H A, Miransari M.2011. Wheat (Triticum aestivum L.)growth enhancement by Azospirillum sp. under drought stress. World Journal of Microbiology andBiotechnology,27(2):197~205
    Axelrood P E, Chow M L, Arnold C S, Lu K, McDermott J M, Davies J.2002. Cultivation-dependentcharacterization of bacterial diversity from British Columbia forest soils subjected to disturbance.Canadian Journal of Microbiology,48(7):643~654
    Bahrani A, Pourreza J, Joo M H.2010. Response of winter wheat to co-inoculation with Azotobacter andarbuscular mycorrhizal fungi (AMF) under different sources of nitrogen fertilizer. American–EurasianJournal of Agriculture and Environment Science,8(1):95~103
    Bais H P, Weir T L, Perry L G, Gilroy S, Vivanco J M.2006. The role of root exudates in rhizosphereinteractions with plants and other organisms. Annual Review of Plant Biology,57:233~266
    Banerjee M R, Burton D L, Grant C A.1999. Influence of urea fertilization and urease inhibitor on the sizeand activity of soil microbial biomass under conventional and zero tillage at two sites. CanadianJournal of Soil Science,79(2):255~263
    Barassi C A, Ayrault G, Creus C M, Sueldo R J, Sobrero M T.2006. Seed inoculation with AzospirillumMitigate NaCl effects on lettuce. Scientia Horticulturae,109(1):8~14
    Bardgett R D, Hobbs P J, Frostegard A.1996. Changes in soil fungal: bacterial biomass ratios followingreductions in the intensity of management of an upland grassland. Biology and Fertility of Soils,22(3):261~264
    Bastida F, Kandeler E, Moreno J L, Ros M, Garcia C, Hernandez T.2008. Application of fresh andcomposted organic wastes modifies structure, size and activity of soil microbial community undersemiarid climate. Applied Soil Ecology,40(2):318~329
    Baudoin E, Nazaret S, Mouge C, Ranjard L, Moenne-Loccoz Y.2009. Impact of inoculation with thephytostimulatory PGPR Azospirillum lipoferum CRT1on the genetic structure of the rhizobacterialcommunity of field-grown maize. Soil Biology and Biochemistry,41(2):409~413
    Beauregard M S, Hamel C, St-Arnaud M.2010. Long-term phosphorus fertilization impacts soil fungal andbacterial diversity but not AM fungal community in Alfalfa. Microbial Ecology,59(2):379~389
    Benintende S M, Benintende M C, Sterren M A, Battista J J.2008. Soil microbiological indicators of soilquality in four rice rotations systems. Ecological Indicators,8(5):704~708
    Benizri E, Amiaud B.2005. Relationship between plants and soil microbial communities in fertilizedgrasslands. Soil Biology and Biochemistry,37(11):2055~2064
    Berezova E F.1963. The effectiveness of bacterial fertilizers. Microbiologiya (USSR),32:358~361
    Bijay-Singh, Yadvinder-Singh, Sekhon G S.1995. Fertilizer-N use efficiency and nitrate pollution ofgroundwater in developing countries. Journal of Contaminant Hydrology,20(3):167~184
    Boddey R M, Doterreiner J.1988. Nitrogen fixation associated with grasses and cereals recent results andperspectives future research. Plant and Soil,108(1):53~65
    Boivin M E Y, Breure A M, Posthuma L, Rutgers M.2002. Determination of field effects of contaminants:significance of pollution-induced community tolerance. Human and Ecological Risk Assessment,8(5):1035~1055
    Boschker H T S, Middelburg J J.2002. Stable isotopes and biomarkers in microbial ecology. FEMSMicrobiology Ecology,40(2):85~95
    Bossio D A, Scow K M, Gunapala N, Graham K J.1998. Determinants of soil microbial communities:effects of agricultural management, season, and soil type on phospholipid fatty acid profiles.Microbiology Ecology,36(1):1~12
    Bowen G, Rovira A.1999. The rhizosphere and its management to improve plant growth. Advances inAgronomy,66:1~102
    Boyer J S.1982. Plant productivity and environment. Science,218(4571):443~448
    Briar S S, Fonte S J, Park I, Six J, Scow K, Ferris H.2011. The distribution of nematodes and soilmicrobial communities across soil aggregate fractions and farm management systems. Soil Biologyand Biochemistry,43:905~914
    Brock V A, Vanderleyden J.1995. Review: genetics of the Auspeirillum-plant root association. CriticalReviews in Plant Science,14(5):445~466
    Broughton L C. Gross K L.2000. Patterns of diversity in plant and soil microbial communities along aproductivity gradient in a Michigan old-field. Oecologia,125(3):420~427
    Butler J L, Williams M A, Bottomley P J, Myrold D D.2003. Microbial community dynamics associatedwith rhizosphere carbon flow. Applied and Environmental Microbiology,60(11):6793~6800
    Buyer J S, Roberts D P, Russek-Cohen E.1999. Microbial community structure and function in thespermosphere as affected by soil and seed type. Canadian Journal of Microbiology,45(2):138~144
    Buyer J S, Zuberer D A, Nichols K A, Franzluebbers A J.2011. Soil microbial community function,structure, and glomalin in response to tall fescue endophyte infection. Plant and Soil,339(1-2):401~412
    Caballero-Mellado J, Carcano-Montiel M G, Mascarua-Esparza M A.1992. Field inoculation of wheat(Triticum aestivum) with Azospirillum brasilense under temperate climate. Symbiosis,13(1-3):243~253
    Cantrell I C, Linderman R G.2001. Preinoculation of lettuce and onion with VA mycorrhizal fungi reducesdeleterious effects of soil salinity. Plant and Soil,233(2),269~281
    Casida Jr L E.1977. Microbial metabolic activity in soil as measured by dehydrogenase determinations.Applied and Environmental Microbiology,34(6):630~636
    Castro-Sowinski S, Herschkovitz Y, Okon Y, Jurkevitch E.2007. Effects of inoculation with plantgrowth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiology Letters,276(1):1~11
    Chaperon S, Sauve S.2007. Toxicity interaction of metals (Ag, Cu, Hg, Zn) to urease and dehydrogenaseactivities in soils. Soil Biology and Biochemistry,39(9):2329~2338
    Chelius M K, Triplett E W.2000. Diazotrophic endophytes associated with maize. In: Triplett, E.W.,(Ed.),Prokaryotic Nitrogen Fixation: A model system for the analysis of a biological process. HorizonScientific Press, Wymondham, pp.779~791
    Chen S K, Subler S, Edwards C A.2002. Effects of agricultural biostimulants on soil microbial activity andnitrogen dynamics. Applied Soil Ecology,19(3):249~259
    Chen S N, Gu J, Gao H, Qin Q J.2011. Effect of microbial fertilizer on microbial activity and microbialcommunity diversity in the rhizosphere of wheat growing on the Loess Plateau. African Journal ofMicrobiology Research,5(2):137~143
    Choi K H, Dobbs F C.1999. Comparison of two kinds of Biolog micro plates (GN and ECO) in theirability to distinguish among aquatic microbial communities. Journal of Microbiological Methods,36(3):203~213
    Choudhury T, Khanif Y.2001. Evaluation of effects of nitrogen and magnesium fertilization on rice yieldand fertilizer nitrogen efficiency using15N tracer technique. Journal of Plant Nutrition,24(6):855~871
    Chu H, Lin X, Fujiib T, Morimotob S, Yagi K, Hu J, Zhang J.2007. Soil microbial biomass, dehydrogenaseactivity, bacterial community structure in response to long-term fertilizer management. Soil Biologyand Biochemistry,39(11):2971~2976
    Clarkin K L, Lauter D J, Munns D N.1981. Salt response of chickpea as influenced by N supply.Agronomy Journal,73(6):961~966
    Classen A T, Boyle S I, Haskins K E, Overby S T, Hart S C.2003. Community-level physiological profilesof bacteria and fungi: plate type and incubation temperature influence on contrasting soil. FEMSMicrobiology Ecology,44(3):319~328
    Clegg S, Gobran G R.1997. Rhizospheric P and K in forest soil manipulated with ammonium sulfate andwater. Canadian Journal of Soil Science,77(4):525~533
    Compton J E, Watrud L S, Arlene Porteous L, De Grood S.2004. Response of soil microbial biomass andcommunity composition to chronic nitrogen additions at Harvard forest. Forest Ecology andManagement,196(1):143~158
    Constantino M, Gomez-Alvarez R, Alvarez-Solis J D, Geissen V, Huerta E, Barba E.2008. Effect ofinoculation with rhizobacteria and arbuscular mycorrhizal fungi on growth and yield of Capsicumchinense Jacquin. Journal of Agriculture and Rural Development in the Tropics and Subtropics,109(2):169~180
    Cordier C, Alabouvette C.2009. Effects of the introduction of a biocontrol strain of Trichoderma atrovirideon non-target soil microorganisms. European Journal of Soil Biology,45(3):267~274
    Cornejo P, Azcon-Aguilar C, Barea J M, Ferrol N.2004. Temporal temperature gradient gel electrophoresis(TTGE) as a tool for the characterization of arbuscular mycorrhizal fungi. FEMS Microbiology Letters,241(2):265~270
    Creus C M, Sueldo R J, Barassi C A.1997. Shoot growth and water status in Azospirillum-inoculated wheatseedlings grown under osmotic and salt stresses. Plant Physiology and Biochemistry,35(12):939~944
    Crouch I J, Smith M T, Van Staden J, Lewis M J, Hoad G V.1992. Identification of Auxins in acommercial seaweed concentrate. Journal of Plant Physiology,139(5):590~594
    Dagne W, Maryke T L, Bindiganavile S V.2011. Protein quality and endosperm modification of qualityprotein maize (Zea mays L.) under two contrasting soil nitrogen environments. Field Crops Research,121:408~415
    De-Bashan L E, Hernandez J P, Bashan Y, Maier R M.2010. Bacillus pumilus ES4: Candidate plantgrowth-promoting bacterium to enhance establishment of plants in mine tailings. Environmental andExperimental Botany,69(3):343~352
    De Brito A M, Gagne S, Antoun H.1995. Effect of compost on rhizosphere microflora of the tomato and onthe incidence of plant-growth-promoting rhizobacteria. Applied and Environmental Microbiology,61(1):194~199
    De Fede K L, Panaccione D G, Sexstone A J.2001. Characterization of dilution enrichment culturesobtained from size-fractionated soil bacteria by BIOLOG community-level physiological profiles andrestriction analysis of16S rRNA genes. Soil Biology and Biochemistry,33(11):1555~1562
    De Fede K L, Sexstone A J.2001. Differential response of size-fractionated soil bacteria in BIOLOGmicrotitre plates. Soil Biology and Biochemistry,33(11):1547~1554
    De Freitas J R, Banerjee M R, Germida J J.1997. Phosphate-solubilizing rhizobacteria enhance the growthand yield but not phosphorus uptake of canola (Brassica napus L.). Biology and Fertility of Soils,24(4):358~364
    De P K.1939. The role of blue-green algae in nitrogen fixation in rice-field. Proceedings of the RoyalSociety of London, Series B, Biological Sciences,127(846):121~l39
    Dean D R, Bolin J T, Zheng L.1993. Nitrogenase metalloclusters: structures, organization and synthesis.Journal of Bacteriology,175(21):6737~6744
    Denarie J, Roche P.1991. Rhizobium nodulation signals. In: Verma D P S.
    Dennis P G., Miller A J, Hirsh P R.2010. Are root exudates more important than other sources ofrhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiology Letters,72(3):313~327
    De Rodriguez D J, Phillips B S, Rodriguez-García R, Angulo-Sánchez J L.2002. Grain yield and fatty acidcomposition of sunflower seed for cultivars developed under dry land condition. Janick J and WhipkeyA.(Ed.), Trends in new crops and new uses. ASHS Press, Alexandria, VA:139~142
    Dey R, Pal K K, Bhatt D M, Chauhan S M.2004. Growth promotion and yield enhancement of peanut(Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. MicrobiologicalResearch,159(4):371~394
    Dick R P.1994. Soil enzyme activities as indicators of soil quality. In: Doran J W, Coleman D C, BezdicekD F, Stewart B A (Eds.), Defining soil quality for a sustainable environment. American Society ofAgronomy, Madison, WI, pp:107~124
    Dick W A, Tabatabai M A, Metting Jr F B.1992. Significance and potential uses of soil enzymes. In:Metting, Jr., F B (Ed.), Soil microbial ecology: applications in agricultural and environmentalmanagement. Marcel Dekker, New York, pp:95~127
    Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C,Caballero-Mellado J, Aguirre J F, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y.2001. Responses of agronomically important crops to inoculation with Azospirillum. AustralianJournal of Plant Physiology,28(9):871~879
    Dobbelaere S, Vanderleyden J. Okon Y.2003. Plant growth-promoting effects of diazotrophs in therhizosphere. Critical Reviews in Plant Sciences,222:107~149
    Dobereiner J, Day J M, Dart P J.1972. Nitrogenase activity and oxygen sensitivity of Paspalumnotatum-azotobacter association. Journal of General Microbiology,71(1):103~116
    Dobereiner J.1987. Nitrogen-fixing bacteria in nonleguminous crop plants. Recherche,67:02
    Dowling D N, O′Gara F.1994. Metabolites of Pseudomonas involved in the biocontrol of plant disease.Trends in Biotechnology,12(4):133~141
    Dunbar J, Ticknor L O, Kuske C R.2000. Assessment of microbial diversity in four southwestern UnitedStates soils by16S rRNA gene terminal restriction fragment analysis. Applied and EnvironmentalMicrobiology,66(7):2943~2950
    Evans H J, Burris R H.1992. Highlights in biological nitrogen fixation during the last50years. BiologicalNitrogen Fixation. New York: Chapman and Hall,1~42
    Fallik E, Sarig S, Okon Y.1994. Morphology and physiology of plant roots associated with Azospirillum.Azospirillum plant associations, Boca Raton: CRC:77~85
    Felici C, Vettori L, Giraldi E, Forino L M C, Toffanin A, Tagliasacchi A M, Nuti M.2008. Single andco–inoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon esculentum: Effectson plant growth and rhizosphere microbial community. Applied Soil Ecology,40(2):260~270
    Fields S.2004. Global nitrogen: cycling out of control. Environmental Health Perspectives,112(10): A556
    Fisk M C, Ruether K F, Yavitt J B.2003. Microbial activity and functional composition among northernpeatland ecosystems. Soil Biology and Biochemistry,35(4):591~602
    Franco W, Martin H, Beat F, Roland K.2006. A novel strategy to extract specific phylogenetic sequenceinformation from community T-RFLP. Journal of Microbiological Methods,66(3):512~520
    Frostegard A, Tunlid A, Baath E.2010. Use and misuse of PLFA measurements in soils. Soil Biology andBiochemistry,43(8):1621~1625
    Fuentes-Ramirez L E, Jimenez-Salgado T, Abarca-Ocampo IR, Caballero-Mellado J.1993. Acetobacterdiazotrophicus, an inddeacetic acid producing bacterium isolated from sugarcane cuhivars of Mexico.Plant and Soil,154(2):145~150
    Galloway J N, Dentener F J, Capone D G, Boyer E W, Howarth R W, Seitzinger S P, Asner G P, ClevelandC C, Green P A, Holland E A.2004. Nitrogen cycles: past, present and future. Biogeochemistry,70(2):153~226
    Garcia de Salamone I E, Dobereiner J, Urquiaga S, Boddey R M.1996. Biological nitrogen fixation inAzospirillum strain-maize genotype associations as evaluated by15N isotope dilution technique.Biology and Fertility of Soils,23(3):249~256
    Garcia Salamone I, Hynes R, Nelson L.2006. Role of cytokinins in plant growth promotion by rhizospherebacteria, PGPR. Biocontrol and Biofertilization:173~195
    Garg V K.2011. Effect of non-symbiotic microbial inoculants on growth, yield and quality of fennel(Foeniculum vulgare Mill.) grown in sodic soil. Journal of Spices and Aromatic Crops,16(2):93~98
    Garland J L, Mills A L.1991. Classification and characterization of heterotrophic microbial communitieson the basis of patterns of community level sole-carbon-source utilization. Applied and EnvironmentalMicrobiology,57(8):2351~2359
    Garland J L.1996. Patterns of potential C source utilization by rhizosphere communities. Soil Biology andBiochemistry,28(2):223~230
    Ge G F, Li Z J, Zhang J, Wang L G, Xu M G, Zhang J B, Wang J K, Xie X L, Liang Y C.2009.Geographical and climatic differences in long-term effect of organic and inorganic amendments onsoil enzymatic activities and respiration in field experimental stations of China. Ecological Complexity,6(4):421~431
    Gelsomino A, Keijzer-Wolters A C, Cacco G., van Elsas J D.1999. Assessment of bacterial communitystructure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. Journal ofMicrobiological Methods,38(1):1~15
    Gholami A, Shahsavani S, Nezarat S.2009. The effect of plant growth promoting rhizobacteria (PGPR) ongermination, seedling growth and yield of maize. International Journal of Biological and Life Science,1(1):35~40
    Glenn E P, O′Leary J W.1985. Productivity and irrigation requirements of halophytes grown with seawaterin the Sonoran Desert. Journal of Arid Environments,9(1):81~91
    Glick B R, Liu C, Ghosh S, Dumbrof E B.1997. Early development of canola seedlings in the presence ofthe plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biology andBiochemistry,29(8):1233~1239
    Glick B R.1995. The enhancement of plant growth by free-living bacterial. Canadian Journal ofMicrobiology,41(2):109~117
    Gomez E, Ferreras L, Toresani S.2006. Soil bacterial functional diversity as influenced by organicamendment application. Bioresource Technology,97(13):1484~1489
    Graham J H, Hodge N C, Morton J B.1995. Fatty acid methyl ester profiles for characterization ofglomalean fungi and their endomycorrhizae. Applied and Environmental Microbiology,61(1):58~64
    Grant C A, Clayton G W, Lupwayi N Z, O′Donovan J T.2011. Soil microbial response to nitrogen rate andplacement and barley seeding rate under no till. Agronomy Journal,103(4):1064~1071
    Grayston S J, Griffith G S, Mawdsley J L, Campbell C D, Bardget R D.2001. Accounting for variability insoil microbial communities of temperate upland grassland ecosystems. Soil Biology and Biochemistry,33(4-5):533~551
    Green J L, Holmes A J, Westoby M, Oliver L, Briscoe D, Dangerfield M, Gillings M and Beattie A J.2004.Spatial scaling of microbial eukaryote diversity. Nature,432(7018):747~750
    Griffiths B S, Bonkowski M, Roy J, Ritz K.2001. Functional stability, substrate utilisation and biologicalindicators of soils following environmental impacts. Applied Soil Ecology,16(1):49~61
    Haahtela K, Wartiovaara T, Sundman V, Skujins J.1981. Root-associated N2fixation (acetylene reduction)by Enterobacteriaceae and Azospirillum strains in cold-climate spodosols. Applied and EnvironmentalMicrobiology,41(1):203~206
    Hafeez F Y, Malik K A.2000. Manual on biofertilizer technology. Pakistan: NIBGE,35~37
    Hageman R V and R H Burris.1978. Dinitrogenase and nitro-genase reductase associate and dissociatewith each cata-lytic cycle. Proc. Natl. Acad. Sci. USA,75:2699~2702
    Hamdia M A E S, Shaddad M A K, Doaa M M.2004. Mechanisms of salt tolerance and interactive effectsof Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. PlantGrowth Regulation,44(2):165~174
    Hamdy A.1990. Management practices under saline water irrigation. In symposium on scheduling ofirrigation for vegetable crops under field conditions. Acta Horticulturae,278(2):745~754
    Hammel K E.1997. Fungal degradation of lignin. Driven by nature: plant litter quality and decomposition,CAB International, Wallingford, pp:33~46
    Han H S, Lee K D.2005a. Plant growth promoting rhizobacteria effect on antioxidant status,photosynthesis, mineral uptake and growth of lettuce under soil salinity. Research Journal ofAgriculture and Biological Science,1(3):210~215
    Han H S, Lee K D.2005b. Physiological responses of soybean-inoculation of Bradyrhzobium japonicumwith PGPR in saline soil conditions. Research Journal of Agriculture and Biological Science,1(3):216~221
    Hartmann A, Burris R H.1987. Regulation of nitrogenase activity by oxygen in Azospirillum brasilenseand Azospirillum lipoferum. Journal of Bacteriology,169(3):944~948
    Haryun K, Hojeong K.2011. The impacts of excessive nitrogen additions on enzyme activities and nutrientleaching in two contrasting forest soils. Journal of Microbiology,49(3):369~375
    Hegazi N A, Fayez M, Amin G, Hamza M A, Abbas M, Youssef H, Monib M.1998. Diazotrophs associatedwith non-legumes grown in sandy soils. Developments in Plant and Soil Science,79:209~222
    He J, Shen J, Zhang L, Zhu Y, Zheng Y, Xu M, Di H.2007. Quantitative analyses of the abundance andcomposition of ammonia-oxidizing bacteria and ammoniaoxidizing archaea of a Chinese upland redsoil under long term fertilization practices. Environmental Microbiology,9(9):2364~2374
    Herschkovitz Y, Lerner A, Davidov Y, Okon Y, Jurkevitch E.2005. Azospirillum brasilense does not affectpopulation structure of specific rhizobacterial communities of inoculated maize (Zea mays).Environmental Microbiology,7(11):1847~1852
    Hirsch P R, Mauchline T H, Clark I M.2010. Culture–independent molecular techniques for soil microbialecology. Soil Biology and Biochemistry,42(6):878~887
    Hofman J, Dusek L, Klanova J, Bezchlebova J, Holoubek I.2004. Monitoring microbial biomass andrespiration in different soils from the Czech Republic-a summary of results. Environment Internation,30(1):19~30
    Horz H P, Rotthauwe J H, Lukow T, Liesack W.2000. Identification of major subgroups ofammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCRproducts.Journal of Microbiological Methods,39(3):197~204
    Hoti S L, Sridhar A, Das P K.2003. Presence of wolbachia endosymbionts in microfilariae of wuchereriabancrofti (Spirurida:Onchocercidae) from different geographical regions in India. Memórias doInstituto Oswaldo Cruz,98(8):1017~1019
    Hu J, Lin X, Wang J, Cui X, Dai J, Chu H, Zhang J.2010. Arbuscular mycorrhizal fungus enhances Pacquisition of wheat (Triticum aestivum L.) in a sandy loam soil with long-term inorganic fertilizationregime. Applied Microbiology and Biotechnology,88(3):781~787
    Huse S M, Huber J A, Morrison H G, Sogin M L, Welch D M.2007. Accuracy and quality of massivelyparallel DNA pyrosequencing. Genome Biology,8(7): R143
    Hussain A, Arshad M, Hussain E.1987. Response of maize (Zea mays) to Azotobacter inoculation underfertilized and unfertilized conditions. Biology and Fertility of Soils,4(1):73~77
    Hussain S, Mirza M S, Malik K A.1999. Production of phytohormones by the nitrogen fixation bacteriaisloated from sugarcan. Biohorizons,2(124):61~76
    Ibekwe A M, Kennedy A C.1998. Phospholipid fatty acid profiles and carbon utilization patterns foranalysis of microbial community structure under field and greenhouse conditions. FEMSMicrobiological Ecology,26(2):151~163
    Insam H, Rangger A.1997. A new set of substrates proposed for community characterisation inenvironmental samples. Microbial Communities: Functional versus Structural Approaches:259~260
    Iruthayaraj M R.1981. Let Azotobacter supply nitrogen to cotton. Intensive Agriculture,19(7):23
    Jalal J, Seyed A, Seyed F S, Kamal S A.2012. Effects of the combination of beneficial microbes andnitrogen on sunflower seed yields and seed quality traits under different irrigation regimes. FieldCrops Research,127:26~34
    Jangid K, Williams M A, Franzluebbers A J, Sanderlin J S, Reeves J H, Jenkins M B, Endale D M,Coleman D C, Whitman W B.2008. Relative impacts of land-use, management intensity andfertilization upon soil microbial community structure in agricultural systems. Soil Biology andBiochemistry,40(11):2843~2853
    Kanchikerimath M, Singh D.2001. Soil organic matter and biological properties after26years ofmaize-wheat-cowpea cropping as affected by manure and fertilization in a Cambisol in semiaridregion of India. Agriculture, Ecosystems and Environment,86(2):155~162
    Kader M, Mian M, Hoque M S.2002. Effects of Azotobacter inoculant on the yield and nitrogen uptake bywheat. Journal of Biological Sciences,2(4):259~261
    Karlidag H, Esitken A, Yildirim E, Donmez M F, Turan M.2011. Effects of plant growth promotingbacteria on yield, growth, leaf water content, membrane permeability and ionic composition ofstrawberry under saline conditions. Journal of Plant Nutrition,34(1):34~45
    Karthikeyan A, Sakthivel K M.2011. Efficacy of Azotobacter chroococcum in rooting and growth ofEucalyptus camaldulensis stem cuttings. Research Journal of Microbiology,6(7):618~624
    Kemmitt S J, Wright D, Goulding K W T, Jones D L.2006. pH regulation of carbon and nitrogen dynamicsin two agricultural soils. Soil Biology and Biochemistry,38(5):898~911
    Kennedy I R, Choudhury A, Kecskes M L.2004. Non-symbiotic bacterial diazotrophs in crop-farmingsystems: can their potential for plant growth promotion be better exploited? Soil Biology andBiochemistry,36(8):1229~1244
    Kennedy I R, Islam N.2001. The current and potential contribution of asymbiotic nitrogen fixation tonitrogen requirements on farms: a review. Australian Journal of Experimental Agriculture,41(3):447~457
    Khan K, Singh B.2011. Response of wheat crop to nitrogen and azotobactor inoculation in alluvial soils ofUP. Trends in Biosciences,4(1):109~111
    Khan M S, Zaidi A.2007. Synergistic effects of the inoculation with plant growth-promoting rhizobacteriaand an arbuscular mycorrhizal fungus on the performance of wheat. Turkish Journal of Agricultureand Forestry,31(6):355~362
    Khosravi H, Samar S M, Fallahi E, Davoodi H, Shahabian M.2009. Inoculation of ‘Golden Delicious’apple trees on M9rootstock with azotobacter improve nutrient uptake and growth indices. Journal ofPlant Nutrition,32(6):946~953
    Kim J, Rees D C.1992. Structural models for the metal centers in the nitrogenase molybdenum-iron protein.Science,257(5077):1677~1682
    Kirk J L, Beaudette L A, Hart M, Moutoglis P, Klironomos J N, Lee H, Trevors J T.2004. Methods ofstudying soil microbial diversity. Journal of Microbiological Methods,58(2):169~188
    Kizilkaya R.2008. Yield response and nitrogen concentrations of spring wheat (Triticum aestivum)inoculated with Azotobacter chroococcum strains. Ecological Engineering,33(2):150~156
    Kloepper J W, Lifshitz R, Zablotowicz R M.1989. Free-living bacterial inocula for enhancing cropproductivity. Trends in Biotechnology,7(2):39~44
    Kloepper J W, Metting Jr F B.1993. Plant growth-promoting rhizobacteria as biological agents. SoilMicrobial Ecology: Applications in Agricultural and Environmental Management:255~274
    Knowles R.1982. Denitrification. Microbiological Reviews,46(1):43~70
    Kohler J, Caravaca F, Carrasco L, Roldan A.2006. Contribution of Pseudomonas mendocina and Glomusintraradices to aggregates stabilisation and promotion of biological properties in rhizosphere soil oflettuce plants under field conditions. Soil Use and Management,22(3):298~304
    Kohler J, Hernández J A, Caravaca F, Roldána A.2009. Induction of antioxidant enzymes is involved in thegreater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce tosevere salt stress. Environmental and Experimental Botany,65(2-3):245~252
    Kornelia S, Oros-Sichler M, Annett M.2007. Bacterial diversity of soils assessed by DGGE, T-RFLP andSSCP fingerprints of PCR-amplified16S rRNA gene fragments: Do the different methods providesimilar results? Journal of Microbiological Methods,69(3):470~479
    Kraigher B, Stres B, Hacin J, Ausec L, Mahne I, Van Elsas J D, Mandic-Mulec I.2006. Microbial activityand community structure in two drained fen soils in the Ljubljana Marsh. Soil Biology andBiochemistry,38(9):2762~2771
    Kumagai H, Kinoshita E, Robert W, Kouchi H.2006. RNAi Knock-Down of ENOD40s leads to significantsuppression of nodule formation in Lotus japonicus. Plant and Cell Physiology,47(8):1102~1111
    Kumar V, Aggarwal N K, Singh B P.2000. Influence of P-solubilizing analogue resistant mutants ofAzotobacter chroococcum on yield and quality parameters of Helianthus annus. Folia Microbiologica,45:347~352
    Kumar V, Kumar Behl R, Narula N.2001a. Effect of P-solubilizing Azotobacter chroococcum on yieldtraits and their survival in the rhizosphere of wheat genotypes under field conditions. Acta AgronomicaHungarica,49(2):141~149
    Kumar V, Kumar Behl R, Narula N.2001b. Establishment of P-solubilizing analogue resistant strains ofAzotobacter chroococcum in rhizosphere and their effect on wheat under green house conditions.Microbiological Research,156(1):87~93
    Kumar V and Narula N.1999. Solubilization of inorganic phosphates by Azotobacter chroococcum mutantsand their effect on seed emergence of wheat. Biology and Fertility of Soils,28(3):301~305
    Kumar V, Punia S S, Lakshminarayana K, Narula N.1999. Studies on interaction of phosphate solubilizingAzotobacter chroococcum and Sorghum bicolor. Indian Journal of Agricultural Sciences,69:30~32
    Kumar V, Solanki A S, Sharma S.2009. Yield and economics of Withania somnifera influenced by dualinoculation of Azotobacter chroococcum and Pseudomonas putida. Turkish Journal of Biology,33:219~223
    Larcher M, Muller B, Mantelin S, Rapior S, Cleyet-Marel J C.2003. Early modifications of Brassica napusroot system architecture induced by a plant growth-promoting Phyllobacterium strain. NewPhytologist,160(1):119~125
    Lauber C L, Hamady M, Knight R, Fierer N.2009. Pyrosequencing-based assessment of soil pH as apredictor of soil bacterial community structure at the continental scale. Applied and EnvironmentalMicrobiology,75(15):5111~5120
    Lerner A, Herschkovitz Y, Baudoin E, Nazaret S, Moenne-Loccoz Y, Okon Y, Jurkevitch E.2006. Effect ofAzospirillum brasilense inoculation on rhizobacterial communities analyzed by denaturing gradientgel electrophoresis and automated ribosomal intergenic spacer analysis. Soil Biology and Biochemistry,38(6):1212~1218
    Lioussanne L, Perreault F, Jolicoeur M, St-Arnaud M.2010. The bacterial community of tomatorhizosphere is modified by inoculation with arbuscular mycorrhizal fungi but unaffected by soilenrichment with mycorrhizal root exudates or inoculation with Phytophthora nicotianae. Soil Biologyand Biochemistry,42(3):473~483
    Liu B R, Jia G M, Chen J, Wang G.2006. A review of methods for studying microbial diversity in soils.Pedosphere, l6(1):18~24
    Liu W T, Marsh T L, Cheng H, Forney L J.1997. Characterization of microbial diversity by determiningterminal restriction fragment length polymorphisms of genes encoding16S rRNA. Applied andEnvironmental Microbiology,63(11):4516~4522
    Liu W, Hao Lu H, Wu W, Kun Wei Q, Xu Chen Y, Thies J E.2008. Transgenic Bt rice does not affectenzyme activities and microbial composition in the rhizosphere during crop development. Soil Biologyand Biochemistry,40(2):475~486
    Liu Z Z, Lozupone C, Hamady M, Bushman F D, Knight R.2007. Short pyrosequencing reads suffice foraccurate microbial community analysis. Nucleic Acids Research,35(18):120~130
    Loper J E, Buyer J S.1991. Siderophores in microbial interaction on plant surfaces. MolecularPlant-Microbe Interactions,4(1):5~13
    Lu C, Huang B L.2010. Isolation and characterization of Azotobacteria from pine rhizosphere. AfricanJournal of Microbiology Research,4(12):1299~1306
    Lu Y, Murase J, Watanabe A.2004. Linking microbial community dynamics to rhizosphere carbon flow ina wetland rice soil. FEMS Microbiology Ecology,48(2):179~186
    Lupwayi N Z, Clayton G W, O’Donovan J T, Grant C A.2011. Soil microbial response to nitrogen rate andplacement and barley seeding rate under no till. Agronomy Journal,103(4):1064~1071
    Lupwayi N Z, Clayton G W, O′Donovan J T, Harker K N, Turkington T K, Rice W A.2004. Soilmicrobiological properties during decomposition of crop residues under conventional and zero tillage.Canadian Journal of Soil Science,84(4):411~419
    Lupwayi N Z, Grant C A, Soon Y K, Clayton G W, Bittman S, Malhi S S, Zebarth B J.2010. Soil microbialcommunity response to controlled-release urea fertilizer under zero tillage and conventional tillage.Applied Soil Ecology,45(3):254~261
    Lupwayi N Z, Rice W A, Clayton G W.1998. Soil microbial diversity and community structure underwheat as influenced by tillage and crop rotation. Soil Biology and Biochemistry,30(13):1733~1741
    Maarit-Niemi R, Heiskanen I, Wallenius K, Lindstrom K.2001. Extraction and purification of DNA inrhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. Journal of MicrobiologicalMethods,45(3):155~165
    MacNaughton S J, Stephen J R, Venosa A D, Davis G A, Chang Y J, White D C.1999. Microbialpopulation changes during bioremediation of an experimental oil spill. Applied and EnvironmentMicrobiology,65(8):3566~3574
    Malik K A, Bilal R, Mehnaz S, Rasul G, Mirza M S, Ali S.1997. Association of nitrogen-fixing plantgrowth promoting rhizobateria (PGPR) with Kallar grass and rice. Plant and Soil,194(1):37~44
    Malik K A, Rasul G, Hassan U, Mehnaz S, Ashraf M.1993. Role of N2fixation and growth hormonesproducing bateria in improving growth of wheat and rice. Nitrogen fixation with non-legumes. Eds.Hegazi NA, Fayez M and Monib,409~422
    Martin P, Glatzle A, Kolb W, Omay H, Schmidt W.1989. N2-fixing bacteria in rhizosphere: Quantificationand hormonal effects on root development. Zeitschrift fur Pflanzenernahr and Bodenk,152(2):237~245
    Mayak S, Tirash T, Glick B R.2004. Plant growth-promoting bacteria confer resistance in tomato plants tosalt stress. Plant Physiology and Biochemistry,42(6):565~572
    McCaig A E, Phillips C J, Stephen J R, Kowalchuk G A, Harvey S M, Herbert R A, Embley T M, Prosser JI.1999. Nitrogen cycling and community structure of proteobacterial β-subgroup ammonia-oxidizingbacteria within polluted marine fish farm sediments. Applied and Environmental Microbiology,65(1):213~220
    Miller K M, Ming T J, Schulze A D, Withler R E.1999. Denaturing Gradient Gel Electrophoresis (DGGE):a rapid and sensitive technique to screen nucleotide sequence variation in populations. Bio Techniques,27:1016~1031
    Mirzakhani M, Ardakani M R, Band A A, Rejali F, Rad A H S.2009. Response of spring safflower toco-inoculation with Azotobacter chroococum and Glomus intraradices under different levels ofnitrogen and phosphorus. American Journal of Agricultural and Biological Sciences,4(3):255~261
    Mishra A, Nautiyal C S.2009. Functional diversity of the microbial community in the rhizosphere ofchickpea grown in diesel fuel–spiked soil amended with Trichoderma ressei using sole–carbon–sourceutilization profiles. World Journal of Microbiology and Biotechnology,25(7):1175~1180
    Moeseneder M M, Arrieta J M, Muyzer G, Winter C, Herndl G J.1999. Optimization of terminal-restrictionfragment length polymorphism analysis for complex marine bacterioplankton communities andcomparison with denaturing gradient gel electrophoresis. Applied and Environmental Microbiology,65(8):3518~3525
    Moreno B, Vivas A, Nogales R, MacCi C, Masciandaro G, Benitez E.2009. Restoring biochemical activityand bacterial diversity in a trichloroethylene contaminated soil: the reclamation effect ofvermicomposted olive wastes. Environmental Science and Pollution Research,16(3)253~264
    Muhammad K J, Tasneem G K, Muhammad B A, Hassan I A, Nusrat J, Ghulam A K, Abdul Q S, Jameel AB.2009. Heavy metal accumulation in different varieties of wheat (Triticum aestivum L.) grown insoil amended with domestic sewage sludge. Journal of Hazardous Materials,164(2-3):1386~1391
    Munns R.1993. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses.Plant, Cell and Environment,16(1):15~24
    Muralev E, Nazarenko P I, Poplavskij V M, Kuznetsov I A.1997. Seawater desalination. In nucleardesalinization of seawater. Proceedings of a symposium in Taejon, Republic of Korea. pp355~366.International Atomic Energy Agency, Austria, Vienna
    Murcia R, Rodelas B, Salmertn V, Martlnez-Toledo M V, Gonzalez-Lopez J.1997. Effect of the herbicidesimazine on vitamin production by Azotobacter chroococcum and Azotobacter vinelandii. Applied SoilEcology,6(2):187~193
    Muyzer G, de Waal E C, Uitterlinden A G.1993. Profiling of complex microbial populations by denaturinggradient gel electrophoresis analysis of polymerase chain reaction-amplified gene coding for16SrRNA. Applied and Environmental Microbiology,59(3):695~700
    Muyzer G., Smalla K.1998. Application of denaturing gradient gel electrophoresis (DGGE) andtemperature gradient gel electrophoresis in microbial ecology. Antonie van Leeuwenhock,73(1):127~141
    Muyzer G.1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinionin Microbiology,2(3):317~322
    Naiman A D, Latronico A, Garcia de Salamone I E.2009. Inoculation of wheat with Azospirillumbrasilense and Pseudomonas fluorescens: Impact on the production and culturable rhizospheremicroflora. European Journal of Soil Biology,45(1):44~51
    Nain L, Yadav R C, Saxena J.2011. Characterization of multifaceted Bacillus sp. RM-2for its use as plantgrowth promoting bioinoculant for crops grown in semi arid deserts. Applied Soil Ecology,doi:10.1016/j.apsoil.2011.08.001, in press
    Nannipieri P, Grego S, Ceccanti B, Bollag J M, Stotzky G.1990. Ecological significance of biologicalactivity in soil. Soil Biology and Biochemistry,6:293~355
    Narula N, Behl K, Dudi H R.2002. Response of wheat genotypes to azotobacter inoculation under rainedconditions. Rachis,42(17):66~67
    Narula N, Kumar V, Behl R K, Deubal A, Gransee A, Merbach W.2000. Effect of P-solubilizingAzotobacter chroococcum on N, P, K uptake in P-responsive wheat genotypes grown under greenhouse conditions. Journal of Plant Nutrition and Soil Science,163(4):393~398
    Nautiyal C S, Chauhan P S, Bhatia C R.2010. Changes in soil physico-chemical properties and microbialfunctional diversity due to14years of conversion of grassland to organic agriculture in semi-aridagroecosystem. Soil and Tillage Research,109(2):55~60
    Nezarat S, Gholami A.2009. Screening plant growth promoting rhizobacteria for improving seedgermination, seedling growth and yield of maize. Pakistan Journal of Biological Science,12(1):26~32
    Nounjan N, Nghia P T, Theerakulpist P.2012. Exogenous proline and trehalose promote recovery of riceseedlings from salt-stress and differentially modulate antioxidant enzymes and expression of relatedgenes. Journal of Plant Physiology,169(6):596~604
    Obbard J P.2001. Ecotoxicological assessment of heavy metals in sewage sludge amended soils. AppliedGeochemistry,16(11-12):1405~1411
    Ogut M, Akdag C, Duzdemir O, Sakin M A.2005. Single and double inoculation with Azospirillumtrichoderma: the effects on dry bean and wheat. Biology and Fertility of Soils,41(4):262~272
    Okon Y.1994. Azospirillum/Plant Association, CRC Press, Boca Raton, Florida, USA
    Oliverira A L M, Urquiaga S, Dobereiner J, Baldani J L.2002. Biological nitrogen fixation (BNF) inmicropropagated sugarcane plants inoculated with different endophytic diazotrophic bacteria. NitrogenFixation: From Molecules to Crop Productivity,425
    Oros D, Pavlecic M, Santek B, Novak S.2011. Cultivation of the bacterium Azotobacter chroococcum forpreparation of biofertilizers. African Journal of Biotechnology,10(16):3104~3111
    Osborn A M, Moore E R B, Timmis K N.2000. An evaluation of terminal-restriction fragment lengthpolymorphisms (T-RFLP) analysis for the study of microbial community structure and dynamics.Environmental Microbiology,2(1):39~50
    Pagariya M C, Devarumath R M, Kawar P G.2012. Biochemical characterization and identification ofdifferentially expressed candidate genes in salt stressed sugarcane. Plant Science,184:1~13
    Pandey D K, Banik R M.2009. The influence of dual inoculation with Glomus mossae and Azotobacter ongrowth and barbaloin content of Aloe Vera. American-Eurasian Journal of Sustainable Agriculture,3(4):703~714
    Parvin S, Wang C, Li Y, Nishino N.2010. Effects of inoculation with lactic acid bacteria on the bacterialcommunities of Italian ryegrass, whole crop maize, guinea grass and rhodes grass silages. AnimalFeed Science and Technology,160(3-4)160~166
    Patil P L, Patil S P.1984. Uptake of nitrogen by cotton inoculated with Azotobacter. Journal ofMaharashtra Agricultural University,9(2):171~172
    Pessarakli M, Huber J T, Tucker T C.1989. Dry matter yield, nitrogen absorption, and water uptake bysweet corn under salt stress. Journal of Plant Nutrition,12(3):279~290
    Piromyou P, Buranabanyat B, Tantasawat P, Tittabutr P, Boonkerd N, Teaumroong N.2011. Effect of plantgrowth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphereof forage corn cultivated in Thailand. European Journal of Soil Biology,47(1):44~54
    Prof N N, Saharan B S, Kumar V, Bhatia R, Bishnoi L K, Lather B P S, Lakshminarayana K.2005. Impactof the use of biofertilizers on cotton (Gossypium hirusutum) crop under irrigated agro-ecosystem.Archives of Agronomy and Soil Science,51(1):69~77
    Qadir M, Ghafoor A, Murtaza G.2000. Amelioration strategies for saline soils: a review. LandDegradation and Development,11(6):501~521
    Qureshi M A, Ahmad M J, Naveed M. lqbal A, Akhtar N, Niazi K H.2009. Co-inoculation withMesorhizobium ciceri and Azotobacter chroococcum for improving growth, nodulation and yield ofchickpea (Cicer arietinum L.). Plant Soil and Environment,28(2):124~129
    Rai R, Prasad V.1983. Salinity tolerance of Rhizobium mutants: growth and relative efficiency of symbioticnitrogen fixation. Soil Biology and Biochemistry,15(2):217~219
    Ramsey P W, Rillig M C, Feris K P, Holben W E, Gannon J E.2006. Choice of methods for soil microbialcommunity analysis: PLFA maximizes power compared to CLPP and PCR-based approaches.Pedobiologia,50(3):275~280
    Rejili M, Mahdhi M, Fterich A, Dhaoui S, Guefrachi I, Abdeddayem R, Mars M.2012. Symbiotic nitrogenfixation of wild legumes in Tunisia: Soil fertility dynamics, field nodulation and nodules effectiveness.Agriculture, Ecosystems and Environment, in press
    Ribbe M, Gadkari D, Meyer O.1997. N2fixation by Streptomyces thermoautotrophicus involves amolybdenum-dinitrogenase and a manganese-superoxide oxidoreductanse that couple N2reduction tothe oxidation of superoxide produced from O2by a molybdenum-CO dehydrogenase. Journal ofBiological Chemistry,272(42):26627~26633
    Rodriguez H, Mendoza A, Antonia Cruz M, Holguin G, Glick B R, Bashan Y.2006. Pleiotropicphysiological effects in the plant growth-promoting bacterium Azospirillum brasilense followingchromosomal labeling in the clpX gene. FEMS Microbiology Ecology,57(2):217~225
    Rojas A, Holguin G, Glick B R, Bashan Y.2001. Synergism between Phyllobacterium sp.(N2-fixer) andBacillus licheniformis (P-solubilizer), both from a semiarid mangrove rhizosphere. FEMSMicrobiology Ecology,35(2):181~187
    Rojas-Tapias D, Moreno-Galvan A, Pardo-Diaz S, Obando M, Rivera D, Bonilla R.2012. Effect ofinoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize(Zea mays). Applied Soil Ecology, doi:10.1016/j.apsoil.2012.01.006
    Rossini M A, Maddonni G A, Otegui M E.2011. Inter-plant competition for resources in maize cropsgrown under contrasting nitrogen supply and density: Variability in plant and ear growth. Field CropsResearch,121:373~380
    Sachin D N.2009. Effect of Azotobacter chroococcum (PGPR) on the growth of bamboo (Bambusa bambo)and maize (Zea mays) plants. Biofrontiers,24(1):24~31
    Saul-Tcherkas V, Steinberger Y.2009. Substrate utilization patterns of desert soil microbial communities inresponse to xeric and mesic conditions. Soil Biology and Biochemistry,41(9):1882~1893
    Sauviac L, Niebel A, Boisson-Dernier A, Barker D G, de Carvalho-Niebel F.2005. Transcript enrichment ofnod factor-elicited early nodulin genes in purified root hair fractions of the model legume Medicagotruncatula. Journal of Experimental Botany,56(419):2507~2513
    Scharf P C.2001. Soil and plant tests to predict optimum nitrogen rates for corn. Journal of Plant Nutrition,24(6):805~826
    Schipper L A, Degens B P, Sparling G P, Duncan L C.2001. Changesin microbial heterotrophic diversityalong five plant successional sequences. Soil Biology and Biochemistry,33(15):2093~2103
    Schutter M E, Dick R P.2000. Comparison of fatty acid methyl ester (FAME) methods for characterizingmicrobial communities. Soil Science Society of America Journal,64(5):1659~1668
    Schutter M, Sandeno J, Dick R.2001. Seasonal, soil type, and alternative management influences onmicrobial communities of vegetable cropping systems. Biology and Fertility of Soils,34(6):397~410
    Selmants P C, Hart S C, Boyle S I, Stark J M.2005. Red alder (Alnus rubra) alters community-level soilmicrobial function in conifer forests of the Pacific Northwest, USA. Soil Biology and Biochemistry,37(10):1860~1868
    Shannon D, Sen A M, Johnson D B.2002. A comparative study of the microbiology of soils managed underorganic and conventional regimes. Soil Use and Management,18:274~283
    Shannon M C.1984. Breeding, selection, and the genetics of salt tolerance. In: Staples, R.C., Toenniessen,G.H.(Eds.), Salinity tolerance in plants: strategies for crop improvement. John Wiley, New York, pp.231~254
    Shannon M C.1997. Adaptation of plants to salinity. Advances in Agronomy,60:75~120
    Sharma G D, Mishra R R.1992. Soil microbial population numbers and enzyme activities in relation toaltitude and forest degradation. Soil Biology and Biochemistry,24(8):761~767
    Sharma S D, Kumar P, Bhardwaj S K.2011a. Screening of AM fungi and Azotobacter chroococcum undernatural, solarization, chemical sterilization and moisture conservation practices for commercial mangonursery production in north-west Himalayas. Scientia Horticulturae,28:506~514
    Sharma S D, Kumar P, Bhardwaj S K, Chandel A.2011b. Symbiotic effectiveness of arbuscularmycorrhizal technology and Azotobacterization in citrus nursery production under soil disinfestationand moisture conservation practices. Scientia Horticulturae,132:27~36
    Sharma S D, Kumar P, Bhardwaj S K, Yadav S K.2011c. Screening and selecting novel AM fungi andAzotobacter strain for inoculating apple under soil solarization and chemical disinfestation with mulchpractices for sustainable nursery management. Scientia Horticulturae,130:164~174
    Shaukat K, Affrasayab S, Hasnain S.2006. Growth response of Triticum aestivum to plant growthpromoting rhizobacteria used as a biofertilizers. Reseach Journal of Microbiology,1(4):330~338
    Shen W B, Yang H Q.2008. Effects of earthworm and microbe on soil nutrients and heavy metals.Agricultural Sciences in China,7(5):599~605
    Shrestha R K, Ladha J K.1998. Nitrate in groundwater and integration of nitrogen-catch crop in rice-sweetpepper cropping system. Soil Science Society of America Journal,62(6):1610~1619
    Solanki A S, Kumar V, Sharma S.2011. AM fungi and Azotobacter chroococcum affecting yield, nutrientuptake and cost efficacy of Chlorophytum borivillianum in Indian Arid Region. Journal ofAgricultural Technology,7(4):983~991
    Solbrig O T.1991. From genes to ecosystems: A research agenda for biodiversity. IUBS, Paris:128
    Soliman S, Seeda M A, Aly S S M, Gadalla A M.1995. Nitrogen fixation by wheat plants as affected bynitrogen fertilizer levels and nonsymbiotic bacteria. Egyptian Journal of Soil Science,35:401~413
    Solis-Dominguez F A, Valentin-Vargas A, Chorover J, Maier R M.2011. Effect of arbuscular mycorrhizalfungi on plant biomass and the rhizosphere microbial community structure of mesquite grown inacidic lead/zinc mine tailings. Science of the Total Environment,409:1009~1016
    Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J.2008. Effects of Azospirillum brasilenseindole-3-acetic acid production on inoculated wheat plants. Plant and Soil,312(1):15~23
    Staddon W J, Duchesne L C, Trevors J T.1997. Microbial diversity and community structure ofpostdisturbance forest soils as determined by sole-carbon-source utilization patterns. MicrobialEcology,34(2):125~130
    Stahl P D, Parkin T B.1996. Relationship of soil ergosterol concentration and fungal biomass. Soil Biologyand Biochemistry,28(7):847~855
    Stajner D, Kevresan S, Gasic O, Mimica-Dukic N, Zongli H.1997. Nitrogen and Azotobacter chroococcumenhance oxidative stress tolerance in sugar beet. Biologia Plantarum,39(3):441~445
    Stark C H, Condron L M, O′Callaghan M, Stewart A, Di H J.2008. Differences in soil enzyme activities,microbial community structure and short-term nitrogen mineralization resulting from farmmanagement history and organic matter amendments. Soil Biology and Biochemistry,40(6):1352~1363
    Steenwerth K L, Jackson L E, Calderon F J, Scow K M, Rolston D E.2005. Response of microbialcommunity composition and activity in agricultural and grass land soils after a simulated rainfall. SoilBiology and Biochemistry,37(12):2249~2262
    Sun Y M, Zhang N N, Wang E T, Yuan H L, Yang J S, Chen W X.2009. Influence of intercropping andintercropping plus rhizobial inoculation on microbial activity and community composition inrhizosphere of alfalfa (Medicago sativa L.) and Siberianwild rye (Elymus sibiricus L.). FEMSMicrobiology Ecology,70(2):218~226
    Surange S, Wollum ll A G, Kumar N, Nautiyal C S.1997. Characterization of Rhizobium from root nodulesof leguminous trees growing in alkaline soils. Canadian Journal of Microbiology,43(9):891~894
    Tabatabai M A.1994. Soil enzymes. In: Page, A L Miller, R H Keeney, D R (Eds.), Methods of SoilAnalysis. American Society of Agronomy, Madison, WI, pp:775~833
    Takeda N, Okamoto S, Hayashi M, Murooka Y.2005. Expression of LjENOD40genes in response tosymbiotic and non-symbiotic. Plant Cell and Physiology,46(8):1291~1298
    Terefework Z, Kaijainen S, Lindstrom K.2001. AFLP fingerprinting as a tool to study the genetic diversityof Rhizobium galegae isolated from Galega orientalis and Galega officinalis. Journal ofBiotechnology,91(2-3):169~180
    Theron J, Cloete T E.2000. Molecular techniques for determining microbial diversity and communitystructure in natural environments. Critical Reviews in Microbiology,26(1):37~57
    Tiago T, Favarina J L, Ricardo A A, Luis R F, Paulo M.2012. Coffee is highly tolerant to cadmium, nickeland zinc: plant and soil nutritional status, metal distribution and bean yield. Field Crops Research,125:25~34
    Tiedje J M, Asuming-Brempong S, Nusslein K, Marsh T L, Flynn S J.1999. Opening the black box of soilmicrobial diversity. Applied Soil Ecology,13(2):109~122
    Torsvik V, Daae F L, Sandaa R A, Ovreas L.1998. Novel techniques for analysing microbial diversity innatural and perturbed environments. Journal of Biotechnology,64(1):53~62
    Tourlomousis P, Kemsley E K, Ridgway K P, Toscano M J, Humphrey T J, Narbad A.2010.PCR-denaturing gradient gel electrophoresis of complex microbial communities: A two-step approachto address the effect of gel-to-gel variation and allow valid comparisons across a large dataset.Microbial Ecology,59(4):776~786
    Urakawa H, Kita-Tsukamoto K, Ohwada K.1999. Microbial diversity in marine sediments from Sagamibay and Tokyo bay, Japan, as determined by16S rRNA gene analysis. Microbiology,145(11):3305~3315
    Urakawa H, Yoshida T, Nishimura M, Ohwada K.2000. Characterization of depth-related populationvariation in microbial communities of a coastal marine sediment using16s rDNA-based approachesand quinone profiling. Environmental Microbiology,2(5):542~554
    Uyanoz R, Karaca U.2011. Effects of different salt concentrations and Rhizobium inoculation (native andRhizobium tropici CIAT899) on growth of dry bean (Phaseolus vulgaris L.). European Journal of SoilBiology,47(6):387~391
    van Elsas J D, Duarte G F, Keijzer-Wolters A, Smit E.2000. Analysis of the dynamics of fungalcommunities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gelelectrophoresis. Journal of Microbiological Methods,43(2):133~151
    Vance C P, Heichel G H, Henjium K I, Barnes D K.1984. N2fixation and N and dry matter partitioningduring a4-year alfalfa stand. Crop Science,24(4):811~815
    Vargas Gil S, Meriles J, Conforto C, Basanta M, Radl V, Hagn A, Schloter M, March G J.2011. Responseof soil microbial communities to different management practices in surface soils of soybeanagroecosystem in Argentina. European Journal of Soil Biology,47(1):55~60
    Velagaleti R R, Marsh S.1989. Influence of host cultivars and Bradyrhizobium strains on the growth andsymbiotic performance of soybean under salt stress. Plant and Soil,119(1):133~138
    Vessey J K.2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil,255(2):571~586
    Vitousek P M, Cassman K, Cleveland C, Crews T, Field C B, Grimm N B, Howarth R W, Marino R,Martinelli L, Rastetter E B.2002. Towards an ecological understanding of biological nitrogen fixation.Biogeochemistry,57(1):1~45
    Vitousek P M, Howarth R W.1991. Nitrogen limitation on land and in the sea: How can it occur?Biogeochemistry,13(2):87~115
    Wairiu, M., Lal, R.,2003. Soil organic carbon in relation to cultivation and topsoil removal on slopinglands of Kolombangara, Solon Islands. Soil and Tillage Research,70(1):19~27
    Waldrop M P, Zak D R, Sinsabaugh R L, Gallo M, Lauber C.2004. Nitrogen deposition modifies soilcarbon storage through changes in microbial enzymatic activity. Ecological Applications,14(4):1172~1177
    Waldrop M P, Zak D R, Sinsabaugh R L.2004. Microbial community response to nitrogen deposition innorthern forest ecosystems. Soil Biology and Biochemistry,36(9):1443~1451
    Wang A S, Angle J S, Chaney R L, Delorme T A, McIntosh M.2006. Changes in soil biological activitiesunder reduced soil pH during Thlaspi caerulescens phytoextraction. Soil Biology and Biochemistry,38(6):1451~1461
    Wang G H, Jin J, Xu M N, Pan X W, Tang C.2007. Inoculation with phosphate-solubilizing fungidiversifies the bacterial community in rhizospheres of maize and soybean. Pedosphere,17(2):191~199
    Wani S, Chandrapalaih S, Zambre M A, Lee K K.1988. Association between N2-fixing bacteria and pearlmillet plants: Responses, mechanisms and persistence. Plant and Soil,110(2):289~302
    Werker A G, Becker J, Huitema C.2003. Assessment of activated sludge microbial community analysis infull-scale biological waster water treatment plants using patterns of fatty acid isopropyl esters (FAPEs).Water Research,37(9):2162~2172
    Williams M A, Rice C W, Owensby C E.2001. Nitrogen competition in a tallgrass prairie ecosystemexposed to elevated carbon dioxide. Soil Science Society of America Journal,65(2):340~346
    Wintzingerode F V, Gobel U B, Stackebrandt E.1997. Determination of microbial diversity inenvironmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiology Reviews,21(3):213~229
    Woitke M, Junge H, Schnitzler W H.2004. Bacillus subtilis as growth promotor in hydroponically growntomatoes under saline conditions. Acta Horticulturae,659:363~369
    Wu S C, Cao Z H, Li Z G, Cheung K C, Wong M H.2005. Effects of biofertilizer containing N-fixer, P andK solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma,125(1):155~166
    Xu R K, Coventry D R.2003. Soil pH changes associated with lupin and wheat plant materialsincorporated in a red-brown earth soil. Plant and Soil,250(1):113~119
    Yang L, Li T, Li F, Lemcoff J H, Cohen S.2008. Fertilization regulates soil enzymatic activity and fertilitydynamics in a cucumber field. Scientia Horticulturae,116(1):21~26
    Yang R, Tang J, Chen X, Hu S.2007. Effects of coexisting plant species on soil microbes and soil enzymesin metal lead contaminated soils. Applied Soil Ecology,37(3):240~246
    Yanni Y G, EI-Fattah F K A.1999. Towards integrated biofertilization management with free living andassociative dinitrogen fixers for enhancing rice performance in the Nile delta. Symbiosis,27(3):319~331
    Yates M G, De Souza E M, Kahindi J H.1997. Oxygen, hydrogen and nitrogen fixation in Azotobacter, SoilBiology and Biochemistry,29(5-6):863~869
    Yildirim E, Taylor A G, Spittler T D.2006. Ameliorative effects of biological treatments on growth ofsquash plants under salt stress. Scientia Horticulturae,111(1):1~6
    Yildirim E, Turan M, Donmez M F.2008. Mitigation of salt stress in radish (Raphanus sativus L.) by plantgrowth promoting rhizobacteria. Roumanian Biotechnological Lettters,13(5):3933~3943
    Yildirim E, Turan M, Ekinci M, Dursun A, Cakmakci R.2011. Plant growth promoting rhizobacteriaameliorate deleterious effect of salt stress on lettuce. Scientific Research and Essays,6(20):4389~4396
    Zahir Z A, Arshad M, Frankenberger W T.2003. Plant growth promoting rhizobacteria: applications andperspectives in agriculture. Advances in Agronomy,81:97~168
    Zarea M J.2011. Conservation tillage and sustainable agriculture in semi-arid dryland farming.Biodiversity, Biofules, Agroforestry and Conservation Agriculture,5:195~238
    Zarea M J, Hajinia S, Karimi N, Mohammadi Goltapeh E, Rejali F, Varma A.2012. Effect ofPiriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of theeffects of NaCl. Soil Biology and Biochemistry,45:139~146
    Zeng L S, Liao M, Chen C L, Huang C Y.2007. Effects of lead contamination on soil enzymatic activities,microbial biomass, and rice physiological indices in soil-lead-rice (Oryza sativa L.) system.Ecotoxicology and Environmental Safety,67(1):67~74
    Zhang H H, Tang M, Chen H, Zheng C L.2010. Effects of inoculation with ectomycorrhizal fungi onmicrobial biomass and bacterial functional diversity in the rhizosphere of Pinus tabulaeformisseedlings. European Journal of Soil Biology,46(1):55~61
    Zhang H, Zhang L, Liu J.2006. Testing research for assessing suitability of multi-species of treesintroduced in habitats in hilly and gully areas of Loess Plateau. Frontiers of Forestry in China,1(2):201~207
    Zhang N, Wan S, Li L, Bi J, Zhao M, Ma K.2008. Impacts of urea N addition on soil microbial communityin a semi-arid temperate steppe in northern China. Plant and Soil,311(1):19~28
    Zheng H, Ouyang Z Y, Wang X K, Fang Z G, Zhao T Q, Miao H.2005. Effects of regenerating forest coveron soil microbial communities: A case study in hilly red soil region, Southern China. Forest Ecologyand Management.217(2):244~254
    Zornoza R, Guerrero C, Mataix-Solera J, Arcenegu I V, Garcia-Orenes F, Mataix-Beneyto J.2007.Assessing the effects of air-drying and rewetting pre-treatment on soil microbial biomass, basalrespiration, metabolic quotient and soluble carbon under Mediterranean conditions. European Journalof Soil Biology,43(2):120~129
    包建中.1999.中国的白色农业.北京:中国农业出版社:86~113
    鲍士旦.2000.土壤农化分析.北京:中国农业出版社
    蔡晓布,盖京苹,钱成,冯固.2006.西藏高原天然长芒草地丛枝菌根真菌接种效应.应用生态学报,17(11):2121~2126
    陈廷伟,葛诚.1996.我国微生物肥料发展趋向.土壤肥料,6:16~20
    陈晓斌,张炳欣.2000. PGPR菌作用机制的研究进展.微生物学杂志,20(1):38~41
    慈恩,高明.2004.生物固氮的研究进展.中国农学通报,20(1):25~28
    窦新田.1989.生物固氮.北京:农业出版社
    杜大至,王毅岩,汪崇林,原福虎,李荣儿,崔国良,顾德峰,和贵喜,赵发有.1988.几种非豆科植物根瘤内生菌侵染特征的研究.植物学报,30(1):25~32
    樊蕙.1995.乙炔还原法测定固氮作用的限制因素.微生物学通报,22(4):236~238
    樊军,郝明德.2003.黄土高原旱地轮作与施肥长期定位试验研究.植物营养与肥料学报,9(2):146~150
    范秀容,李广武,沈萍.1989.微生物学实验(第二版).北京:高等教育出版社:159~165
    葛源,贺纪正,郑袁明,张丽梅,朱永官.2006.稳定性同位素探测技术在微生物生态学研究中的应用.生态学报,26(5):1574~1582
    关松荫.1983.土壤酶及其研究法.北京:农业出版社:1~339
    郭胜利,高会议,党廷辉.2009.施氮水平对黄土旱塬区小麦产量和土壤有机碳、氮的影响.植物营养与肥料学报,15(4):808~814
    贺学礼,刘媞,赵丽莉.2009.接种丛枝菌根对不同施氮水平下黄芪生理特性和营养成分的影响.应用生态学报,20(9):2118~2122
    黄群策,陈启锋,李志真.1999.生物固氮研究的前景.科技导报,1:26~29
    季天委,方萍,朱日清,周钗美.2003.联合固氮酶活性测定中酶促反应时间的控制方法研究.浙江大学学报(农业与生命科学版),29(4):382~386
    贾伟,周怀平,解文艳,关春林,郜春花,石彦琴.2008.长期有机无机肥配施对褐土微生物生物量碳、氮及酶活性的影响.植物营养与肥料学报,14(4):700~705
    黎尚豪,叶清泉,刘富瑞,王立美,崔希羣.1959.我国的几种固氮蓝藻的固氮作用.水生生物学集刊,4:427~439
    李红梅.2004.植物的共生固氮体系.生物学杂志,21(5):60~61
    李家旺,司民真.2009.傅里叶变换红外光谱法研究核辐照对螺旋藻粉成分的影响.光谱实验室,004:888~892
    李元芳.1994.固氮菌炎肥料的特点及有效使用条件.土壤肥料,001:40~42
    李振高,骆永明,滕应.2008.土壤与环境微生物研究法.北京:科学出版社:56
    连宾,臧金平,袁生.2004.微生物肥料科学研究中几个热点问题.南京师大学报(自然科学版),27(2):65~69
    林凡,宋未.1998.联合固氮菌的应用效益与增产机理.中国农学通报,14(3):32~34
    林敏,尤崇杓.1992.根际联合固氮作用的研究进展.植物生理通讯,28(5):323~329
    林敏.1989.水稻根分泌物与粪产碱菌的相互作用.中国农业科学,22(6):6~12
    刘恩科,赵秉强,李秀英,姜瑞波,李燕婷, Hwat Bing So.2008.长期施肥对土壤微生物量及土壤酶活性的影响.植物生态学报,32(1):176~182
    刘剑君,王豹祥,张朝辉,席淑雅,刘天翔,曹育博,邱立友.2011.一株具有固氮功能的烟草根际微生物的鉴定及其初步效应.植物营养与肥料学报,17(5):1237~1242
    刘小刚,张富仓,杨启良,李志军.2009.玉米叶绿素、脯氛酸、根系活力对调亏灌溉和氮肥处理的响应.华北农学报,24(4):106~111
    刘永秀,张福锁,毛达如.1999.根际微生态系统中豆科植物-根瘤菌共生固氮及其在可持续农业发展中的作用.中国农业科技导报,1(4):28~33
    卢秉林,王文丽,李娟,郭天文.2009.自生固氮菌的固氮能力及其对春小麦生长发育的影响.中国生态农业学报,17(5):895~899
    栾敏,胡江,杨兴明,徐阳春,沈其荣,冉炜.2009.土壤叶杆菌和红球菌菌株的分离鉴定及其自生固氮作用.土壤学报,46(3):541~546
    栾敏.2007.土壤自生固氮菌的分离鉴定及生物固氮与促进植物生长效应研究.[硕士学位论文].南京:南京农业大学
    罗海峰,齐鸿雁,薛凯,张洪勋.2003. PCR-DGGE技术在农田土壤微生物多样性研究中的应用.生态学报,23(8):1570~1575
    马红梅,谢英荷,洪坚平,李楠.2011.固氮菌与氮配施对生菜及油菜产量和品质的影响.应用与环境生物学报,17(3):376~378
    马红梅,谢英荷.2010.不同氮水平下固氮菌肥对油菜施用效果研究.山西农业大学学报(自然科学版),30(2):117~121
    孟瑶,徐凤花,孟庆有,顾万荣.2008.中国微生物肥料研究及应用进展.中国农学通报,24(6):276~283
    祁永青,刁治民,刘涛,高晓杰.2008.联合固氮菌对植物促生作用的研究进展.青海草业,17(4):22~30
    任得元,李建康,李莉.2009.秦岭山区人工纯林土壤微生物群落特征研究.陕西林业科技,2:26~36
    沈世华,荆玉祥.2003.中国生物固氮研究现状和展望.科学通报,48(6):535~540
    宋勇春,冯固,李晓林.2000.泡囊丛枝菌根对红三叶草根际土壤磷酸酶活性的影响.应用与环境生物学报,6(2):171~175
    孙建光,徐晶,胡海燕,张燕春,刘君,王文博,孙燕华.2009.中国十三省市土壤中非共生固氮微生物菌种资源研究.植物营养与肥料学报,15(6):1450~1465
    孙建光,张燕春,徐晶,胡海燕.2009.高效固氮芽孢杆菌筛选及其生物学特性.中国农业科学,42(6):2043~2051
    孙建光,张燕春,徐晶,胡海燕.2010.玉米根际高效固氮菌Sphingomonas sp. GD542的分离鉴定及接种效果初步研究.中国生态农业学报,18(1):89~93
    唐景春, Katayama.2004.醌类图谱分析在环境微生物生态测定中的应用.应用与环境生物学报,10(4):530~536
    唐丽杰.2004.微生物学实验.哈尔滨:哈尔滨工业大学出版社:89~92
    田呈明,杨俊秀,梁英梅,莫延德.1995.秦岭药用真菌资源与生态分布.西北林学院学报,10(4):36~41
    田宏,张德罡,姚拓.2004.土壤联合固氮菌的研究进展.草原与草坪,2:3~6
    王洪媛,管华诗,江晓路.2004.微生物生态学中分子生物学方法及T-RFLP技术研究.中国生物工程杂志,24(8):42~47
    王绍友,李季伦.2000.固氮酶催化机制及化学模拟生物固氮研究进展.自然科学进展,10(6):481~490
    邬飞波.2000.固氮菌接种对棉苗氮磷钾吸收,某些酶活性及产量的影响.植物生理学报,26(4):273~279
    吴良欢,陶勤南.1999.水稻叶绿素计诊断追氮法研究.浙江农业大学学报,25(2):135~138
    吴薇,葛诚.1995.我国微生物肥料生产和应用现状的调查研究.微生物学通报,22(2):104~106
    席劲瑛,胡洪营,钱易.2003. Biolog方法在环境微生物群落研究中的应用.微生物学报,43(1):138~141
    夏雪,谷洁,高华,秦清军,刘磊,解媛媛.2011.不同配肥方案对土酶活性和小麦产量的影响.植物营养与肥料学报,17(2):472~476
    颜慧,蔡祖聪,钟文辉.2006.磷脂脂肪酸分析方法及其在土壤微生物多样性研究中的应用.土壤学报,43(5):851~859
    杨荣仲,谭裕模,桂意云,谭芳,李杨瑞.2008.15N测定甘蔗生物固氮能力研究.农业科学和技术,19(2):155~156
    杨永华,姚健.2000.农药污染对土壤微生物群落功能多样性的影响.微生物学杂志,20(2):23~25
    姚拓,龙瑞军,王刚,胡自治.2004.兰州地区盐碱地小麦根际联合固氮菌分离及部分特性研究.土壤学报,41(3):444~448
    姚拓.2004.高寒地区燕麦根际联合固氮茵研究-Ⅱ固氮菌的溶磷性和分泌植物生长素特性测定.草业学报,13(3):85~90
    尹瑞龄.1990.自生固氮菌的溶磷作用.土壤,251~253
    袁红朝,秦红灵,刘守龙,童成立,魏文学,吴金水.2011.长期施肥对红壤性水稻土细菌群落结构和数量的影响.中国农业科学,44(22):4610~4617
    张多英,雒江菡,刘红,戴宗仁.2009.联合固氮的研究进展.微生物学杂志,29(6):55~60
    张多英,张淑梅,蔡柏岩.2010.玉米内生联合固氮菌的分离与鉴定.东北农业大学学报,41(2):6~10
    张丽梅,方萍,季天委.2002.高效固氮菌株W12对环境因子的适应性研究.浙江大学学报(农业与生命科学版),28(6):664~668
    赵斌,何绍江.2002.微生物学实验.北京:科学出版社
    赵花荣,王晓燕,陈冠华,温树敏.2004.利用傅里叶变换红外光谱法鉴定小麦品种.光谱学与光谱分析,24(11):1338~1341
    赵俊晔,于振文,李延奇,王雪.2006.施氮量对土壤无机氮分布和微生物量氮含量及小麦产量的影响.植物营养与肥料学报,12(4):466~472
    郑贺云,冯姝,李超,赵夏博,龚明福.2010.新疆棉田土壤固氮菌遗传多样性分析.微生物学通报,37(4):503~507
    郑洪元,张德生.1981.土壤蛋白酶活性的测定及其性质.土壤通报,12(3):32~34
    郑华,欧阳志云,王效科.2004.不同森林恢复类型对土壤微生物群落的影响.应用生态学报,15(11):2019~2024
    郑有飞,石春红,吴芳芳,吴荣军,刘宏举,赵泽,胡程达.2009.大气臭氧浓度升高对冬小麦根际土壤酶活性的影响.生态学报,29(8):4387~4391
    朱哲燕,鲍一丹,黄敏,冯雷.2006.油菜叶绿素与氮含量关系的试验研究.浙江大学学报(农业与生命科学版),32(2):152~154

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700