用户名: 密码: 验证码:
油茶主要病害检测和生物控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油茶炭疽病(Camellia oleifera anthracnose)和根腐病(root rot disease)是我国油茶产区的主要病害。油茶炭疽病常引起落果、落蕾,落果率一般在20%-40%,严重时达80%以上;油茶根腐病使受害油茶根部腐烂,导致植株不能正常生长而死亡,它们给油茶生产带来巨大经济损失。当前主要通过化学防治来控制这些病害,但易引发病原菌产生抗药性和环境污染,直接或间接危害人体健康。本研究对这两种病原菌的分子快速检测、高效拮抗菌株分离筛选及鉴定、拮抗菌株对病原菌的抑菌机理、发酵工艺优化、菌剂配制与田间防治等技术进行了系统地研究,以期为油茶主要病害可持续控制提供理论依据和奠定应用基础。
     (1)从病原菌的形态特征、致病性测定、rDNA ITS序列测定、系统发育树构建等方面鉴定油茶炭疽病菌为胶孢炭疽菌(Colletotrichum gloeosporioides),油茶根腐病菌为层生镰刀菌(Fusarium proliferatum)。根据油茶炭疽病菌ITS的序列差异设计了特异性引物YT1和YT2,对胶孢炭疽菌进行检测,可扩增出约330bp的特异性条带,对炭疽菌属胶孢炭疽菌以外的16种炭疽菌进行检测,均未扩增出特异性条带。用引物YT1和YT2进行常规PCR方法扩增,可检测含量为1pg/25μL的胶孢炭疽菌,进行巢式PCR方法扩增,可检测含量为10ag/25μL的胶孢炭疽菌,检测灵敏度提高了100000倍;根据油茶根腐病菌ITS的序列差异设计了特异性引物GF1和GF2,对层生镰刀菌进行检测,可扩增出约400bp的特异性条带,对镰刀菌属层生镰刀菌以外的16种镰刀菌进行检测,均未扩增出特异性条带。用引物GFl和GF2进行常规PCR方法扩增,可检测含量为1pg/25μL的病原菌,进行巢式PCR方法扩增,可检测含量为100ag/25μL,检测灵敏度提高了10000倍。以YT1、YT2和GF1、GF2分别为油茶炭疽病菌和油茶根腐病菌的特异性引物,用巢式PCR方法并结合油茶组织总DNA的提取方法,可在病害发生潜育期,发病初期进行病原菌DNA的PCR扩增,快速、灵敏地检测油茶炭疽病菌和油茶根腐病菌。
     (2)采用稀释分离法从健康油茶组织中分离得到75株内生细菌,从不同来源的38份土壤中分离得到223株土壤细菌和194株土壤放线菌,以油茶炭疽病菌和根腐病菌为靶标,通过平板对峙试验以447株分离菌株进行初筛.共筛选出抑菌圈大于5mm的内生细菌6株,土壤细菌21株,抑菌圈大于10mm的放线菌14株,以8种植物病原菌为靶标复筛,筛选出对油茶主要病害有良好拮抗作用的3株拮抗细菌(菌株R6、菌株Z17、菌株Z26)和2株拮抗放线菌(菌株F10、菌株CF17)。通过形态特征、生理生化特征及16S rDNA序列分析,鉴定菌株R6为枯草芽孢杆菌(Bacillus subtilis),菌株Z17为科本类芽孢杆菌(Paenibcillus kribbens),菌株Z26为短短芽孢杆菌(Brevibacillus brevis),菌株F10为球孢链霉菌球孢亚种(Streptomvces globisporus subsp.globisporus),菌株CF17为小白链霉菌(Streptomyces albulus)。
     (3)菌株F10和菌株CF17能影响油茶炭疽菌和根腐病菌菌丝正常生长和分生孢子萌发,菌丝出现节间变短、变粗、扭曲变形、菌丝严重交联、细胞质聚集、外溢等现象,能产生抗菌活性物质,在常温下稳定,多次传代后对油茶炭疽病菌和根腐病菌仍有较强拮抗效应,与拮抗细菌菌株Z26无抑菌性,但不耐高温和抗紫外线,对强酸、强碱不够稳定:菌株F10能分泌蛋白酶和纤维素酶,能耐可杀得、代森锰锌等杀菌剂,对水稻、蚕豆、白菜种子萌发有促生作用。菌株CF17能分泌蛋白酶,能耐可杀得、敌克松等杀菌剂,对水稻种子萌发有促生作用
     (4)综合考虑菌株CF17的菌体生长量(菌体干量)和对油茶炭疽病菌的抑菌率两个指标,研究不同发酵培养基、不同碳源、氮源等营养因子,以及接种量、装液量、初始pH值等非营养因子对菌株CF17发酵液生物活性的影响。结果表明:菌株CF17的优化培养液为:葡萄糖15g、酵母膏10g、NaCl1g、KH2P041g、CaCO33g、蒸馏水1000mL.pH7.0,在300mL三角瓶中装入发酵培养液100mL,接入种子发酵液的接种量为100%,在30℃、140r/min的条件下振荡培养7d。
     (5)以过80目细筛的米糠按1:2的料液比与菌株CF17的发酵液混合配成原粉,经抑菌活性测定,润湿性、分散性、悬浮性综合评价测定,菌剂最优配方为原粉40%,高岭土38%,木质素磺酸钠10%,十二烷基硫酸钠7%,腐植酸5%。此菌剂在盆栽防治中表明对油茶炭疽病防治效果很明显,500倍的菌剂稀释液的防治效果可达80%以上,优于对照药剂多菌灵的防治效果,对油茶根腐病也有较好的防治效果,而且可以促进油茶幼苗的生长。
Camellia oleifera anthracnose and root rot disease are major diseases in the major producing areas of C. oleifera of China. C. oleifera anthracnose usually causes fruit drop and flower-bud abscission with the percentage of fruit drop20%-40%in normal case and even more than80%in serious case, while C. oleifera root rot disease can rot roots of the infected trees, which results into abnormal growth and death, leading to enormously economic losses. At present, chemical pestieides are employed to control the diseases, which can easily induce pathogen to produce drug resistance, pollute environment and damage human health both directly and indirectly. This paper has studied the rapid detection of molecular techniques, antagonistic stains screening, identification, inhibitory mechanism, optimization of fermentation, formula of inocula and field experiment, which hopes to provide theoretical basis for sustainable control and lay a foundation for application.
     (1)By morphological characteristics of pathogens, determination of the pathogenicity, ITS (internal transcribed space) sequencing, and construction of phylogenetic tree we identified that C. oleifera anthracnose and C. oleifera root rot disease was caused by Colletotrichum gloeosporioides and Fusarium proliferatum respectively. Based on differences in ITS sequences of C. oleifera anthracnose. a pair of species-specific primers(YT1and YT2) was synthesized, with which we could detecte C. gloeosporioides with about amplified330bp band. But for the other16strains, none of them could be amplified. The pathogen with content lpg/25μL could be dectected using general PCR amplification, but it was the only10ag/25μL content that was enough by the nest-PCR, the detection sensitivity had increased100000times. According to differences in ITS sequences of C. oleifera root rot, a pair of species-specific primers (GF1and GF2) was synthesized, with which we could detecte F. proliferatum with about amplified400bp band. But for the other16strains, none of them could be amplified. The pathogen with content lpg/25μL could be detected using general PCR amplification. but it was the only100ag/25μL content that was enough by the nest-PCR, the detection sensitivity had also increased10000times.Using YT1and YT2specific primers and GF1and GF2specific primers and the nest-PCR technique combined with the DNA extraction methods of C. oleifera tissue we can amplify pathogen DNA at the latent period or incipient stage, through which we can detect pathogens of C. oleifera anthracnose and root rot disease rapidly and sensitively.
     (2) By plate dilution method75endophytic bacterial strains were isolated from healthy C. oleifera and223bacterial strains and194actinomyces strains were isolated from38samples of different sources. Using C. oleifera anthracnose and root rot disease as the target, we screened the447strains primarily by pairing culture, and we obtained6endophytic bacterial strains and21bacterial strains whose inhibitory zone exceeded5mm and14actinomyces strains with inhibitory zone exceeding10mm. We also screened8phytopathogens secondarily and obtained3bacterial strains(strain R6, Z17, Z26) and2actinomyces strains (strain F10, CF17) with high efficient and broad-spectum antagonistic activity against main diseases of C. oleifera. By morphologic, physiological and biochemical characteristics and16S rDNA sequence analysis the strain R6, Z17, Z26. F10and CF17was identified as Bacillus subtilis, Paenibcillus kribbens, Brevibacillus brevis, Streptomyces globisporus subsp. globisporus and St. albulus, respectively.
     (3) The strain F10and CF17could affect the growth of mycelia and conidia germination of C. gloeosporioides and F. proliferatum, resulting into shortened and thick internode, twist deformation, serious cross linking of mycelia, cytoplasmic aggregation and the leak of cytoplasm. They both could secrete antifungal substance which was stable at room temperature but could not resist high temperature, ultraviolet, strong acid and strong base. They still retained antifungal effect on C. gloeosporioides and F. proliferatum after several passages without antagonistic effect on the strain Z26. The strain F10could secrete protease and cellulose which could resist fungicides such as Cupper hydroxide, mancozeb and promote seed germination of rice.
     (4)Based on comprehensive consideration of cell dry weight and inhibitory rate of CF17. we studied the effect of nutritional factors such as fermentation media. carbon and nitrogen and non-nutritional factors like inoculum size, medium volume and initial pH on bioactivity of fermentation broth. The results showed that the optimum fermentation medium of the strain CF17was as follows:glucose15g, yeast extract10g, NaCl lg.KH2PO4lg.CaCO33g. distilled water1000mL,pH7.0. the optimum inoculating quantity10%, flask content100mL/300mL,fermentation time7d, temperature30℃and rotation speed140r/min.
     (5)Raw powder was made up of the rice bran passed through a80mesh sieve and the fermentation broth of strain CF17at ratio of1:2. By determination of the antimicrobial activity and comprehensive assessment of wettability, dispersion and suspensibility we ultimately determine the optimal formula:the raw powder40%, kaolin38%, lignin sulfonate10%, SDS7%, humic acid5%. The potted experiment showed that the agent had good effect on the control of C. oleifera anthracnose, and the control effect of500times dilution could reach more than80%, which was superior to the control effect of carbendazim. In addition, it not only had good effect on the control of root rot disease, but also could promote the growth of C. oleifera seedlings.
引文
[1]何方,胡芳名.经济林栽培学2版.北京:中国林业出版社.2004,,278-288.
    [2]陈永忠,王德斌.油茶综合利用浅析[J].湖南林业科技,1997,,24(4):15-19.
    [3]张日清,吕芳德,王义强,等.我国油茶生产现状、存在问题及发展建议[J].经济林研究,1996,(S2):203-205.
    [4]周薇,吴雪辉.油茶综合利用开发前景[J].中国农村科技,2006,(10):21-22.
    [5]梁雨祥.试谈我国油茶和优质山茶油的产业化开发[J].宏观经济研究2006,(10):25-27.
    [6]徐学兵.茶油研究进展述评[J].中国油脂,1995,20(5):7-9.
    [7]朱彬,钟海雁,曹清明,等.油茶活性成分研究进展与展望[J].经济林研究,2010,28(3):140-145.
    [8]Wikipedia (2008). Camellia oleifera.http://en.wikipedia.org/wiki/Teaoil_Camellia.
    [9]张学卫.开发茶油在化妆品中的应用[J].香料香精化妆品,2006,(10):21-22.
    [10]李文华,黄国勤.论江西油茶产业的发展[J].江西农业大学学报(社会科学版).2005,4(4):1-5.
    [11]曾益坤.茶叶籽制油及综合开发利用[J].中国油脂,2006,18(1):23-24.
    [12]周建斌,张齐生.油茶壳制活性炭的研究[J].林业科技开发,2003,17(5):54-55.
    [13]叶文峰,陈新,剂秀娟,等.树叶中具有生理活性的黄酮类化合物的研究进展[J].江西师范大学学报(自然科学版.2000,24(3):278-282.
    [14]游美红.我国油茶产业化现状与发展前景分析[J].安徽农业科学,2008,36(14):6119-6121.
    [15]林少韩,李桂梅.中国油茶生产现状及发展策略[J].世界林业研究.1989(4):70-75.
    [16]何方,何柏.油茶栽培分布与立地分类的研究[J].林业科学.2002.38(5):64-72.
    [17]油茶产业发展规划出台投入资金达31亿元[J].食品与发酵工业.2009.35(11):67.
    [18]肖元清,胡享荣,黄春元.衡阳市油茶优良单株抗病性研究[J].湖南林业科技.2005.32(3):36-38.
    [19]谭松山.油茶病害初步调查[J].林业实用技术,1959,(33):7.
    [20]湖南省森林病虫普查办公室.湖南省森林病害及病原名录.长沙.1982:57-60.
    [21]刘世琪.安徽油茶病害调查报告[J].安徽农业大学学报.1964:75-86.
    [22]文凤芝,石升枝.油茶青枯病的初步研究[J].经济林研究,1988,(2):42-46.
    [23]张雄.油茶肿瘤病症状类型的初步调查[J].贵州林业科技,1981,(4):39-41.
    [24]邱守维.油茶根结线虫病及其病原鉴定[J].中南林学院学报,1981.6(2):163-168.
    [25]罗万周,罗万业.油茶炭疽病及其防治方法[J].农技服务.2007,24(6):70-70.
    [26]袁嗣令,张能唐,翁月霞,等.油茶炭疽病的研究[J].植物保护学报,1963,2(3):253-261.
    [27]黄新华.百菌清等3种药剂防治油茶炭疽病药效试验[J].江西林业科技,2000,2:18-19.
    [28]赣州地区林科所.油茶炭疽病的初步研究[J].江西林业科技,]974,(2):14-15.
    [29]袁嗣令,邵力平,李传道.中国乔、灌木病害[M].北京:科学出版社,1997:42.
    [30]Anzalone,L.Jr. & Plakidas, A. G. Control of flower blight of Camellias in Louisiana with fungicides. Plant Disease Reptr.1958,42:804-806.
    [31]Baxter,L.W. & Plakidas, A.G.Disback and canker of Camellias[J]. Phytopathology. 1953,43(9):466.
    [32]Gadd, L. H. Report of the pathologist for the year 1948[J].Bull. Tea Res. Inst. Ceylon.1949,30:27-38.
    [33]Gadd, L. H. The commoner diseases of tea[J]. The Tea Res. Inst. Ceylon.1949.
    [34]陈希芹.胶孢炭疽菌遗传多样性[D].雅安:四川农业大学,2004.1-5.
    [35]Haasis, F. A. & Nelson, E. G. Control of the flower blight disease of camellias with eradicant fungicides[J]. Ann. Camellias Yearbook 1953:119-123.
    [36]Petch,T. The disease of the tea bush[M]. London:Macmillan & Co.1923.
    [37]山本和太郎.日本炭疽病菌种及属名的改变[J].植物防疫,1960,14(2):49-52.
    [38]梁子超,岑炳沾,戴品初.油茶炭疽病菌的有性世代越冬、方式和侵人途径[J].植物保护学报一964,3(4):316-317.
    [39]陈守常,田泽君,郭隆锡.油茶炭疽病的发生与蔓延[J].植物保护学报,1965,(3):207-218.
    [40]傅开睿.修枝防治油茶病虫试验[J].森林病虫通讯,1990,3:23-25.
    [41]杨光道,束庆龙,段琳.等.主要油茶品种对炭疽病的抗性研究[J].安徽农业大学学报,2004,31(4):480-483.
    [42]吴光金,刘志宏.普通汕茶抗炭疽病优株选育[J].林业科技开发,1997,4:22-23.
    [43]段琳.杨光逆,束庆龙,等.汕茶果皮颜色对炭疽病的抗性的影响[J].经济林研究.2005.23(2):9-12.
    [44]陈绍红,孙思,王军.14种杀菌剂对油茶炭疽病的防治研究[J].广东林业技,2007,23(2):42-45.
    [45]杨春城,韦文添,古能平,等.四种杀菌剂对芒果炭疽病和蒂腐病菌的抑制作用[J].广西园艺,2004,15(2):24-25.
    [46]永兴县油茶科研所.土农药防治油茶炭疽病[J].湖南林业科技,1977,(3):22-23.
    [47]茶陵县林科所.大蒜液防治油茶炭疽病试验[J].湖南林业科技.1976,(4):26-27.
    [48]曾大鹏,贺正兴,符绮群.油茶炭疽病生物防治的研究[J].林业科学,1987,23(2):144-150.
    [49]王军,陈绍红,黄永芳,等.水杨酸诱导油茶抗炭疽病的研究[J].林业科学研究.2006,19(5):629-632.
    [50]曹福祥,吴光金,田再荣,等.油茶根腐病病原的研究[J].经济林研究,1993,(S 1):323-326.
    [51]李河,周国英,何末军.油茶根腐病病原菌分子鉴定及其生物学特性研究[J].西南林学院学报,2008,28(5):45-48,56.
    [52]曹福祥,吴光金,田再荣,等.油茶根腐病发生规律和综合防治研究[J].中南林学院学报,1994,14(1):44-49.
    [53]彭伟.油茶幼林根腐病防治试验[J].湖南林业科技,1998.25(4):25-27.
    [54]胡雪文.油茶常见病害及防治[J].安徽林业.2003,(6):25.
    [55]Mullis K B, et al. Specific amplification of DNA in vitro:the polymease chain reaction [J]. Cold Spring Harbor Symmp Biol,1986.51:263-273.
    [56]Joan M H, Royfrench. The polymerase chain reaction and plant disease diagnosis [J]. Ann. Rev. Phytopathol,1993.31:81-109.
    [57]Spiegel S. Scott S W, Bow man Vance V, Tam Y, Galiakparow N N, Rosner A. Improved detection of Prunus necrotic ring spot virus by the polymerase chain reaction[J]. European Journal o f Plant Pathology,1996.102(7):681-685.
    [58]Kinard G R, Scott S W, Barnett O W. Detection of apple chlorotic leaf spot and apple stem grooving viruses using RT-PCR [J]. Plant Disease,1996,80(6) 616-621.
    [59]Kohnen P D, Dougher ty W G, Hampton R O. Detection of pea seedborne mosaic potyvirus by sequence specific enzymatic amplification[J]. J Viro 1 M ethods, 1992.37(3):253-258.
    [60]相宁,周雪荣,孙彤,等RT-PCR检测烟草环斑病毒的研究[J].植物检 疫,1995,9(6):337-339.
    [61]胡勤学,林木兰,张春立,等.利用RT-PCR扩增和1分析柑桔裂皮病类病毒[J].植物学报,1997,39(7):613-617.
    [62]肖火根,胡晋生.香蕉束顶病毒PCR检测技术研究[J].华南农业大学学报,1999,20(1):5-8.
    [63]魏兰芳,姬广海,张世光.云南马铃薯青枯病菌的PCR检测[J],西南农业大学学报,2002,24(1):72-74.
    [64]任毓忠,李晖,李国英,等.哈密瓜细菌性果斑病种了带菌的PCR检测.新疆农业科学,2004,41(5):329-332.
    [65]谢云陆.应用聚合酶链反应技术检测梨火疫菌的研究[J].植物检疫,1996,10(5):262-267.
    [66]黄国明,罗加凤,廖芳,等.多年生黑麦草中小麦矮腥黑穗病菌PCR检测方法的建立[J].植物检疫,2008,22(3):144-147.
    [67]朱有勇,王云用.大丽轮枝菌核糖体基因ITS区段的特异扩增[J].植物病理学报,1999.29(3):250-255.
    [68]杨佩文,李家瑞,杨勤忠,等.根肿病菌核糖体基因ITS区段的克隆测序及其在检测中的应用[J].云南农业大学学报,,2003,18(3):228-233.
    [69]贺水山,闻伟刚,杨兰英,等.松材线虫PCR快速检测方法研究[J].植物检疫,2002,16(6):321-324.
    [70]Henson J M, French R. The polymerase chain reaction and plant disease diagnosis [J]. Ann Rev Plant Pathol,1993,31:81-109.
    [71]Demeke T, Adams R P. The effects of plant polysaccharides and buffer additives on PCR [J]. Biotechniques,1992,12:332-334.
    [72]陈继峰,李绍华.病毒的分子生物学检测方法在果树上的应用[J].中国南方果树,2005,34(4):77-80.
    [73]鹿连明,胡秀荣,张利平,等.常规和巢式PCR对柑橘黄龙病菌的检测灵敏度比较[J].热带作物学报,2010.31(8):1280-1287.
    [74]王茂华,胡白石,卢玲,等.利用巢式PCR检测玉米细菌性枯萎病菌[J].南京农业大学学报,2005.28(2):37-40.
    [75]李韬,柯冲.应用PCR技术检测柑桔木虱及其寄主九里香的柑桔黄龙病带菌率[J].植物保护学报,2005.34(4):31-35.
    [76]周业琴,刘素萍,周国梁.水稻腥黑粉病菌的单孢检测[.J].植物检疫.2006. 20(ZK):38-41.
    [77]Edwards K, Logan J, Saunder N. Real-time PCR:anessential guide[M]. London: Horizon Bioscience.2004.
    [78]程颖慧,章桂明,王颖.小麦印度腥黑穗病菌实时荧光PCR检测[J].植物检疫.2002,16(6):321-325.
    [79]高强,吴品珊,朱水芳,等.实时荧光PCR技术对小麦矮腥黑穗病菌的检测[J].微生物学通报,2005,32(6):74-77.
    [80]Tiany-N,Kes,Kec.Detection and quantization of citrus Huanglongbing pathogen by polymerase chain reaction[J]. Acta Phytopathologica Sinica,1996,26:243-250.
    [81]廖晓兰,朱水芳,赵文军,等.柑桔黄龙病病原16S rEINA克隆、测序及实时荧光PCR检测方法的建立[J].农业生物技术学报,2004,,12(1):80-85.
    [82]吴兴海,邵秀玲,邓明俊,等,番茄溃疡病菌实时荧光PCR快速检测方法研究.江西农业学报,2007,19(3):34-36.
    [83]殷幼平,黄冠军,赵云,等.柑桔溃疡病菌实时荧光定量PCR检测与应用[J].植物保护学报,2007,34(6):607-613.
    [84]钱国良,胡白石,卢玲,等.梨火疫病菌的实时荧光PCR检测[J].植物病理学报,,2006,36(2):123-128.
    [85]漆艳香,肖启明,朱水芳.玉米细菌性枯萎病菌16S rDNA基因克隆及TaqMan探针实时荧光PCR[J].湖南农业大学学报:自然科学版.2003,29(3):183-187.
    [86]郑耘,杨伟东,陈枝楠,等.烟草环斑病毒DB-RT-Real-time PCR检测方法研究[J].植物保护学报.2007,33(1):117-119.
    [87]廖晓兰,朱水芳,陈红运,等.植原体TaqMan探针实时荧光PCR检测鉴定方法的建立[J].植物病理学报,2002,32(4):361-367.
    [88]Caoa X, Liu X Z, Zhu S F, et al. Detection of the pinewood nematode, Bwsaphelenchus xylophilus, using a real-time PCR assay[J]. Phytopathology, 2005.95(5):566-571.
    [89]王明旭,朱水芳,罗宽,等.松材线虫rDNA-ITS2的TaqMan探针实时荧光PCR检测[J].林业科学,2005,41(2):82-85.
    [90]Guthrie P A I. Differentiation of Fusaruim solani f.sp. cucurbitae races 1 and 2 by random amplification of polymorphic DNA[J]. Curr Genet,1991.20(5):391-396.
    [91]白万明,吴建宇,胡先奇.等RAPD-PCR技术在植物根结线虫分类鉴定中的应用[J].云南农业大学学报.1996,11(4):216-220.
    [92]Hu X, Nazar R N, Robb J. Quantification of Verticillium biomass in wilt disease development [J]. Physiol. Mol. Plant Pathol,1993, (43):238-245.
    [93]Ham mond-Kosack K E, Jones J P G. Plant disease resistance genes [J]. Ann Rev Plant Physiol Plant Mol Biol,1997. (48):575.
    [94]Reuber T, Ausubel F M. Isolatio n of Arabidopsis genes that differentiate between resistance mediated by the RPS2 and ROM1 disease resistance genes[J]. The Plant Cell,1996(1):241-249.
    [95]周建明,朱群,白永延.稻瘟病菌侵染诱导的水稻早期反应基因的cDNA片段克隆与序列分析[J].植物生理学报,1999,25(2):115-120.
    [96]Handelsman J, Stabb E.V, Biocontrol of soilborne plant pathogens [J]. Plant Cell.19968:1855-1869.
    [97]Garret S.D, Toward biological control of soil-borne plant pathogens [M]. Ecology of Soil-borne Plant Pathogens. Prelude to Biological Control. K.F. Baker and W.C Snyder eds. University of Carlifonia Press, Barkeley.1965.
    [98]Baker, K.F.植物病原的生物防治[M].北京:农业出版社,1984.
    [99]Baker K.F. Evolving concepts of biological control of plant pathogens [J].Annu. Rev. Phytopathol.1987,26:67-85.
    [100]葛毅强,张唯一.果蔬采后病害的生物防治[J].世界农业,1997,7:37-38.
    [101]王文静.我国生物农药的现状与发展建议[J].农药研究与应用,2010,14(2):7-9.
    [102]Tanalca,Y.s.6mura,Agroactive compounds of microbial origin[J].Annu.Rev. Mivrobiol.1993,47:57-87.
    [103]杨文博.链霉菌ST-01菌株儿丁质酶对植物病原真菌的拮抗作用[J].微生物学报,1997.24(4):25-30.
    [104]Manulis S,Zutra D.Kleitman F, Dror O,Zilberstaine M,shabi E, Distribution of streptomycin-resistant strains of Erwinia amylovora in Israel and occurrence of blossom blight in the autumn [J].Phytoparasitica.1998,26:223-230.
    [105]张穗,郭永霞,唐文华,等.井冈霉素对水稻纹枯病的毒力和作用机理研究[J].农药学学保,2001.3(4):31-39.
    [106]李炜,刘志恒.链霉菌分类研究进展[J].微生物学报,2001,41(1):123-125.
    [107]Okcamiy, Hotta K. Search and discovery of new antibiotics[J].In Goodfellow M..Williams S.T.Mordaslci(ed.) M, Actinomycetes in biotechnology. Academic Press. London. United Kingdom.1988.33-67.
    [108]Coombs J.T. and Franco C.M.M. Isolation and identification of actinobacteria from surface-sterilized wheat roots [J]. Applied and Environmental Microbiology. 2003, (69):5603-5608.
    [109]EL-Abyard M S.EL-Bayed M A.EL-shanshoury A R.et al.,Towards the biological control of fungal and bacterial deseases of tomato using antagonistic Streptomyces spp[J]. Plant and Soil.1993,149:185-195.
    [110]仝赞华,王学士.大豆根腐病拮抗菌的室内筛选及温室测定[J].中国生物防治,1998,14(1):25-27.
    [111]崔云龙.S-921菌株及其发酵液对苹果树腐烂病原菌作用的试验研究[J].生物防治通报,1992,8(1):26-28.
    [112]Makoto Shoda. Bacterial control of plant diseases[J]. Journal of Bioscience and Bioengineering.2000.89 (6):515-521.
    [1J3]程亮,游春平,肖爱萍.拮抗细菌的研究进展[J].江西农业大学学报.2003,25(5):732-737.
    [114]Krebs B, Hoding B, Kubart S, et al. Use of Bacillus subtilis an biological control agent. I.Activities and characterization of Bacillus subtilis strains [J]. Journal of Plant Disease and Protection,1998,105(3):181-197.
    [115]Wulf E G, Mguni C M. Mansfeld-Giese K, et al. Biochemical and molecular characterization of Bacillus amyloliquefaciens, B. subtils and B. pumilus isolates with distinct antagonistic potential against Xanthomonas campestris[J]. Campestris. Plant Pathology.2002,51(5):574-584.
    [116]Compant S, Duffy B, Nowak J, et al. Use of plant promoting bacteria for biocontrol of plant disease:Principles, mechanisms of action and future prospect[J].Appl Environ Microbiol,2005,71(9):4951-4959.
    [117]Utkhede. R. S.:Antagonism of isolates of Bacillus subtilis to Phytophthora cactonun [J].Can. Bot..1984.62:1032-1035.
    [118]Silo-suh L. A, Lethbridge B. J, raltel S. J, He H, Clardy J, Handelsman J. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85[J].Appl. Environ. Microbial.1994.60:2023-2030.
    [119]Knox, O G G, Killham K, Leifert C. Effects of increased nitrate availability on the control of plant pathogenic fungi by the soil bacterium Bacillus subtilis[J] Applied Soil Ecology.2000.15(2):227-231.
    [120]林福呈.枯草芽孢杆菌产生的拮抗物质对西瓜枯萎孢于萌发的影响[J].浙江农业大学学报,1990,16(增刊2):235-240.
    [121]陈志谊.枯草芽孢杆菌B-916防治水稻纹枯病的田间试验[J].中国生物防治,1997,13(2):75-78.
    [122]De Freitas J.R,Germida J. J, Pseudomonas cepacia and Pseudomonas putida as winter wheat inoculants for biocontrol of Rhizoctonia solani[J]. Can. J. Microbial. 1991,37:780-784.
    [123]De la Cruz A. R, Poplawsky A. R, Wiese M.V, Biological suppression of potato ring rot by fluorescent pseudomonads[J].Appl. Environ. Microbial.1992.58: 1986-1991.
    [124]Anuratha C.S. and Gnanamanickam S.S.Biological control of bacterial wilt caused by Pseudomonas solanacearum in India with antagonistic bacteria [J]. Plant and Soil,1990,124:109-116.
    [125]Weindling R. Trichoderma lignorum as a parasite of other soil fungi. Phytopathology,1932,22:837-845.
    [126]杨洪强.绿色无公害果品生产全编[M].北京:中国农业出版社.2003.
    [127]Prasad-R.D, Rangeshwaran-R, An improved medium for mass production of the biocontrol fungus Trichoderma harzianum [J]. Journal of Mycology and Plant Pathology.2000.30(2):233-235.
    [128]Mathivanan N, Srinivasan K,Chelliah-S, Gray and Pseudomonas fluorescens Migula against foliar diseases of groundnut and sunflower [J]. Field evaluation of Trichoderma viride Pers. Ex. S. F.2000,14(1):31-34.
    [129]Chet 1. Baker R. Isolation and biocontrol potential of Trichoderma hamntum from soil naturally suppressive to Rhizoctonia solani[J]. Phytopathology.1981.71: 286-290.
    [130]Chet I, Trichoderma-Application, mode of action, and potential as a biocontrol agent of soilborne plant pathogenic fungi [M]. In:Innovative approach to plant diseases control(ed:Chet I), nowyork, John Wiley and Sons.1987.137-156.
    [131]Ram D, Kusum M, Lodha B.C. Webster J. Mathur K. Evaluation of resident biocontrol agents as seed treatments against ginger rhizome rot [J].Indian-Phytopathology.2000,53(4):450-454.
    [132]Biswas-KK. Chitreswas-Sen,Sen-C. Management of stem rot of groundnut caused by Sclerotium rolfsii through Trichoerma harzaanum [J]. Indian Phytopathology. 2000,53(3):290-295.
    [133]王艳丽,沈瑛.哈茨木霉防治水稻纹枯病研究[J].植物保护学报,2000,27(2):97-101.
    [134]Bhuyan, S. A. Das, B. C. Bora, L. C. Antagonistic effect of Trichoderma viride, Trichoderma harzianum and Aspergillus terreus on Rhizoctonia solani causing sheath blight of rice [J]. Journal of the Agricultural Science Society of North East India.1994,7:1,125-127
    [135]项存梯,高克祥.杨树烂皮病生物防治的研究[J].东北林业大学学报,1991,19(6):15-25.
    [136]茹振川,侯桂凤.木霉菌对侵染苹果枝条的轮纹病菌的抑制作用[J].落叶果树,1996,28(3):6-7.
    [137]Harman G E, Latorre B, Agosin A, et al. Biological and integrated control of Botrytis bunch rot of grape using Trichoderma spp. [J]. Biological control:theory and applications in pest management.1996,7(3):259-266.
    [138]Wisniewski M E, Wilson C L.Biological control of postharvest disease of fruits and vegetables:recent advance [J].hortscience,1992.27:94-98.
    [139]Wilson C L,Wisniewslti M E(eds).Biological control of postharvest diseases of fruits and vegetables-theory and practice[M].Boca Raton, Florida, USA CRC Press,1994.182.
    [140]于帅,刘天明,魏渱.拮抗酵母菌对果蔬采后病害生物防治的研究进展[J].食品工业科学.2010,(9):402-405.
    [141]Fravel D.R. Commercialization and implementation of biocontrol [J]. Annual Review of Plant Biology.2005,43:336-359.
    [142]Lima G, De Curtis F, Castoria R. De Cicco V. Activity of the yeasts Cryptococcus laurentii and Rhodotorula glutinis against post-harvest rots on different fruits [J]. Biocontrol Science and Technology.1998,8:257-267.
    [143]Maclaughlin R. J, Wilson C.L. Droby S. Ben-Arie Chalutz E. Biological control of postharvest diseases of grape, peach. and apple with yeasts Kloeckera apiculata and Candida guilliermondii [J]. Plant Dis.1992.76:470-473.
    [144]Arran G. Mode of action of an isolate of Candida famata in biological control of Penicillium digitatum in orange fruits[J]. Postharvest bioand Technol. 1996,8:191-198.
    [145]Dipietro A, Lorito Mand Hayes CK, Endochitinase from Gliocladium virens: Isolation, characterization and synergistic antifungal activity in combination with gliotoxin [J]. Phytopathology.1993,83:308-313.
    [146]Benitez T, Limon C, Delagado-Jrana J, Rey M., Glucanolytic and other enzymes and their genes [M].1998,101-127. In G. E. Harman and C.Kubicek (ed.). Tirichoderma and Gliocladium:enzymes, biological control and commercial applications, vol.2.Taylor and Francis, Ltd., London, United kingdom.
    [147]Haran S, Schickler H, and Chet I, Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum [J]. Microbiology. 1996,142:2321-2331.
    [148]Castoria, et al. (3-1,3-glucanase activity of two saprophytic yeasts and possible mode action as biocontrol agents against postharvest diseases[J]. Postharvest Biol Technol,1997,12:297-300.
    [149]Imada C, Maeda M.Journal of Applied Bacteriology [J].1986,60:469-476.
    [150]Wakayama S, Ishikawa F, Eishi K. Mycocerein. a novel antifungal peptide antibiotic produced by Bacillus cereus[J]. Antimicrobiol Agents and Chemotherapy,1984,26(6):936-940.
    [151]余凤玉,李振华,曾会才.抗真菌农用抗生素的研究进展[J].热带农业科学,2005.25(1):60-65.
    [152]Ghisalberti E. L, Rowland G.Y, Antifungal metabolites from Trichoderma harzianum [J]. J Nat. Prod.1993.56:1799-1804.
    [153]Davies J.E. What are antibiotics Archaic functions for modern activities [J]. Mol.Microbiol.1990,4:1227-1232.
    [154]Kim K.K. Fravel D.R. Papavizas G.C. Glucose oxidase as the antifungal principle of taloron from Talaro myces flavus [J]. Can J Microbiol.1990.36:760-764.
    [155]Droby S, Chalutz E. Mode of action of biocontrol agents for postharvest diseases[J]. Biological Control of Postharvest Diseases of fruits and Vegetables-Theory and Practice.1994.63-75.
    [156]Filonow. Role of competition of sugars by yeasts in the biocontrol of gray mold of apple [J]. Biocontrol Science and Technology.1998.8:243-256.
    [157]Droby S. Hofstein R. Wilson C.L.. et al.. Pilot testing of Pichia guilliermondii:a biocontrol agent of posthavest diseases of citrus fruit [J]. Biol. Control,1993,3: 46-52.
    [158]Chet I, Inbar J. Biological of fungal pathogens. Appl Biochem Biotechnol, 1994.48:37-43.
    [159]Ciampi P.L., Femandez C, Bustamante P, et al. Biological control of bacterial wilt of potatoes caused by Pseudomonasso lanacearum [J]. Am. Potato J.1989,66: 315-332.
    [160]Pozo MJ, Baek JM, Garcia JM, et al. Functional analysis of tvspl, a serine protease encoding gene in the biocontrol agent Trichoderma virens[J]. Fungal Genet Biol,2004,41:336-348.
    [161]Djonovic S, Pozo MJ, Kenerley CM. Tvbgn3, a beta-1,6-glucanase from the biocontrol fungus Trichoderma virens, is involved in mycoparasitism and control of Pythium ultimum[J]. Appl Environ Microbiol,2006,72:7661-7670.
    [162]杨合同,唐文华,Maarten Ryder.等.木霉对棉花枯萎病原菌和黄萎病原菌的作用机理(英文)[J].山东科学,2005,(3):9-15.
    [163]王革,周晓罡,方敦煌,等.木霉拮抗烟草赤星病原菌菌株的筛选及其生防机制[J].云南农业大学学报,2000,15(3):216-218.
    [164]宗兆锋.乔宏萍,何杞真.2株重寄生菌的分离和对靶标菌的抑制作用[J].西北农业学报,2002,11(4):1-3.
    [165]Howell CR. Mechanisms employed by Trichoderma species in the biological control of plant diseases:the history and evolution of current concepts [J]. Plant Dis.2003,87:4-10.
    [166]Yedidia I, Shoresh M, Kerem Z, et al. Concomitant induction of systemic resistance to Pseudomonas syringae pv lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins[J]. Appl Env Microbiol.2003.69:7343-7353.
    [167]Meyer GDe, Bigirimana J. Elad Y. Induced resistance in Trichoerma harzianum T39 biocontrol of Botiytis cinerea[J].Eur. J. Plant Pathol.1998,104(3):279-286.
    [168]童蕴慧.郭桂萍,徐敬友.等.拮抗细菌对番茄植株抗灰霉病的诱导[J].中国生物防治.2004.20(3)187-189.
    [169]阎逊初.放线菌的分类和鉴定[M].北京:科学出版社,1992.
    [170]Hain T. Ward R N. Kroppenstedt R M. Stackerbrandt E. Rainey F A. Discrimination of Streptomyces albidoflavus strains based on the size and number of 16S-23S ribosomal DNA intergenic spacers. Int J Syst Bacteriol.,1997, 47:202-206.
    [171]Valois D, Fayad K, Barasubiye T, Garon M. Dery C, Brzezinki R and Beaulieu C. Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Appl Environ Microbiol.,1996,62:1630-1635.
    [172]Cecilia R J and Deborah A S. Biological control of fungi causing alfalfa seedling damping-off with a disease-suppressive strain of Streptomyces. Biol Control,1996, 7:196-204.
    [173]曾文兵,王锦,段学辉.从链霉菌中发现新抗生素的趋势分析[J].江西科学,2004,22(4):293-296,300.
    [174]Ye X Y, Wang H X, Ng T B. Structurally dissimilar proteins with antiviral and antifungal potency from cowpea (Prgna unguiculata) seeds. Life Sci.,2000, 67(3):199-207.
    [175]Ye X Y, Ng TB. Peptides from pinto bean and red bean with sequence homology to cowpealokda protein precursor exhibit antifungal, mitogenic, and HIV 1 reverse transcriptase inhibitory activities. Biochem Biophys Res Commun., 2001,285:424-429.
    [176]中国科学院微生物研究所放线菌分类组.链霉菌鉴定手册[M].北京:科学出版社,1975.
    [177]Lechevalier MP,Lechevalier H. Chemical Composition as a Criterion in the Classification of Aerobic Actinomycetes. Int J Syst Bacteriol.1970,20:435-443.
    [178]Ochi K. Heterogeneity of Ribosomal Proteins Among Streptomyces Species and Its Application to Identification. J Gen Microbiol.1989,135:2635-2642.
    [179]Ochi K. A Taxonomic Study of the Genus Streptomyces by Analysis of Ribosomal Protein AT-L30. Int J Syst Bacteriol,1995,45:507-514.
    [180]Kim D, Chun J, and Sahin N, et al. Analysis of Thermophilic Clades within the Genus Streptomyces by 16S Ribosomal DNA Sequence Comparisons. Int Jyst Bacteriol,1996,46 (2):581-587.
    [181]Mehling A. Wehmeir F. Piepersberg W. Nucleotide sequences of Streptomyces 16S ribosomal DNA:Towards a specific identification system for Streptomyces usina PCR. Microbiol..1995.141:2139-2147.
    [182]Mahadevan B, Crawford D L. Properties of the chitinase of the antifungal biocontrol agent Streptomyces lydicus WYEC-108. Enz Microb Technol,1997,20: 489-493
    [183]Bielecki S, Galas E. Microbial glucanases different from cellulases. Crit Rev Biotechnol.,1991,10:275-304
    [184]Faucher E, Savard T. Beaulieu C. Characterization of actinomycetes isolated from common scab lesions on potato tubers. Can J Plant Pathol,1992,14:197-202
    [185]Godden B, Legon T, Helveinstein P, Penninckx M. Regulation of the production of hemicellulolytic and cellulolytic enzymes by a Streptomyces sp. Growing on lignocellulose. J Gen Microbiol.,1989,135:285-292.
    [186]Williams S T, Goodfellow M, Alderson C, Wellington E M H, Sneath P H A. Sackin M J. Numerical classification of Streptomyces and related genera. J Gen Microbiol.,1983,129:743-813.
    [187]赵蕾.几丁质、壳聚糖在烟草保护中的研究与应用进展[J].植物保护,1999.25(1):43-4412.
    [188]Lloyd A B, Noveroske R L. Lockwood J L. Lysis of fungal mycelium by Streptomyces spp. and their chitinase systems. Phytopathology,1965,55:871-875.
    [189]冯波,郑津辉,魏艳敏.链霉菌S01几丁质酶发酵液对植物病原真菌的拮抗作用[J].河北农业大学学报,1998,21(4):102-103.
    [190]陈红军,郭明,冯建菊.我国生物农药的研究近况[J].植物保护.2000,20(3):21-22.
    [191]尹萃耘.我国利用抗生素防治农作物病害的进展[M].中国生物防治,1984.
    [192]深贝顺.农药试验法——杀菌篇[M].北京:农药出版社.1991.
    [193]顾觉奋,王鲁燕,倪孟祥.抗生素[M].上海:上海科学技术出版社.2001.
    [194]马萍,张玲琪,魏蓉城,等.西双版纳橡胶、咖啡和胡椒根际放线菌的抗菌作用研究[J].云南大学学报(自然科学版),1995.17(3):229-233.
    [195]黎循航,李昆太,刘妹.等.702生物防腐剂对细菌、霉菌和酵母菌类抑菌效果的初步测定[J].江西农业大学学报,2002.24(5):599-602.
    [196]张余良.郭郢.微生物农药应用研究进展[J].天津农业科学.1996,2(4):32-35.
    [197]陈志谊.微生物农药在植物病虫害防治中的应用及发展策略[J].江苏农业科学.2001,4:39-42.
    [198]朱昌雄,孙东园,蒋细良.我国微生物农药产业化标准及产业化对策建议[J].现 代化工,2004.24(3):6-10.
    [199]陈齐斌,季玉玲.化学农药的安全性评价及凤险管理[J].云南农业大学学报.2005,20(1):99-106.
    [200]朱昌雄,杨怀文.我国生物农药产业发展的热点问题分析与建议[J].现代化工,2005.25(12):1-5.
    [201]Brown A E, Sreenivaprased S, Timmer L W. Molecular characterization of slow-growing orange and kelime anthracnose strains of Collelotrichum from citru as C.acutatum[J]. Phytopathology,1996,86(5):523-527.
    [202]Taylor.John W,David J, et al. Phylogenetic species recognition and species concepts on fungi[J].Fungal Genetics and Biology; 2000.31:21-32.
    [203]赵杰.ITS序列分析及其在植物真菌病害分子检测中的应用[J].陕西农业科学,2004,4:35-37.
    [204]Freeman S, Minz D, Jukevitch E. Molecular analyse of Colletotrichum species from almond and other fruit[J]. Phytopathology,2000,90(6):608-614.
    [205]Hillis D M, Moritz C M, Mable B K. Molecular systematics[M]. Massachusetts: Sinauer Associates,1996.407-514.
    [206]Wang H, Qi M Q, Adrian J C. A simple method of preparing plant samples for PCR [J].Nucleic Acids Research,1993,21(17):4153-4154.
    [207]彭慧,郑岳臣rDNA ITS序列在鉴定尖端赛多饱子菌中的应用[J].同济医科大学学报,2000,29(1):26-28.
    [208]邢红梅,丁平,周晓云,等.红掌胶胞炭疽菌的分子检测[J].植物病理学报,2008,38(2):113-119.
    [209]张海峰,任众,刘翔,等.冬生疫霉(Phytophthora hibernalis)的快速分子检测[J].植物病理学报,2008,38(3):231-237.
    [210]Li Ruoyu.Li Dongming,YU Jin.et al. Recent advances in medical mycology[J].J Peking Univ Health Sci.2002,34(5):559-563.
    [211]Schubert R.Bahnweg G.Nechwata J.et al. Detection and quantification of Phytophthora species which are associated with root rot diseases in European deciduous forests by species specific polymerase chain reaction[J]. Eur J For Pathol.1999.29:169-188.
    [212]Bonants P.Weerdt M H.Van Gent-Pelzer M.et al. Detection and identification of Phytophthora fragariae by the polyrnerase chain reaction[J]. Eur J Plant Pathol,1997,103:345—355.
    [213]Volossiouk T,Robb E J,Nazarr N. Direct DNA extraction for PCR-mediated assays of soil organisms[J]. Appl Environ Microbiol.1995.61(11):3972-3976.
    [214]Wu Qiong.Chen Zhinan.Fan Huaizhong,et al. Identification of corn bacterial wilt pathogen by nested-PCR based on 16S rDNA[J]. Acta Phytopathol Sin,2005,35(5): 420-427.
    [215]东秀珠.蔡妙英,常见细菌系统鉴定手册[M].北京:科学出版社.2001.
    [216]肖春玲,肖力,李晓红.黄花夹竹桃内生细菌抑菌活性的初步研究[J].安徽农业科学,,2006,34(23):6246,6248
    [217]王美琴,陈俊美,薛丽,贺运春.番茄内生细菌的分离及拮抗菌的筛选[J].山西农业科学.2007.35(2):55-58.
    [218]Brunel B, Givaudan A. Fast and accurate identification of Xenorhabdus and Photorhabdus species by restriction analysis of PCR-amplified 16S rRNA gene. Applied and Environmental Microbiology,1997,63(2):574-580.
    [219]中国科学院微生物研究所细菌分类组.一般细菌常用鉴定方法.北京:科学出版社,1978.
    [220]R.E.布坎南.N.E吉本斯.等,伯杰细菌鉴定手册(第八版)[M].中国科学院微生物研究所译.北京:科学出版社.1984.
    [221]Weller D.M. Biological control of soilborne plant pathogens in the rhizosphere with bacteria [J]. Annu Rev Phytopathol,1988.26:379-407.
    [222]Jonasson J, Olofsson M and Monstein H.J.Classification.identification and subtyping of bacteria based on pyrosequeneing and signature matching of 16S rDNA fragments[J]. Apmis,2002,110:263-272.
    [223]徐丽华,李文均,张玉琴,等.关于细菌新分类单元描述的标准化[J].微生物学通报,2004,31(6):126-127.
    [224]喻大昭,杨小军,杨立军.等.低聚糖对植物病原真菌的作用[J].湖北农业科学2002,(2):72-74.
    [225]Cook R. J,Making greater use of introduced microorganisms for biological control of plant pathogens[J].Annu.Rev. Phytothol.1993.31:53-80.
    [226]Handelsman J, Stabb E. V. Biocontrol of soilborne plant pathogens[J].Plant Cell. 1996.8:1855-1869.
    [227]姜钰.董怀玉,徐秀德.等.放线菌在植病生防中的研究进展[J].杂粮作物.2005. 25(5):329-331.
    [228]祈碧菽,杨文香,刘大群.放线菌对玉米弯孢霉菌抑制作用的初步研究[J].河北农业大学学报,2000,23(3):76-79.
    [229]Kim J M, Kong I S,Yu J H.Molecular cloning of an endoglucanase gene from an alkalophilic Bacillus sp. and its expression in Escherichia coli. Appl Environ Microbiol,1987,53:2656-2659.
    [230]余贤美,郑服丛.嗜铁素在促进植物生长及病害防治等方面的应用[J].中国农学通报,2007,23(8):507-510.
    [231]Bentley S D, Chater K F, Hopwood D A, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)[J]. Nature,2002,417: 141-147.
    [232]Gunter K, Toupet C, Schupp T. Characterization of an iron-regulated promoter involved in desferrioxamine B synthesis in Streptomyces pilosus: repressor-binding site and homology to the diphtheria toxin gene promoter[J]. J. Bacteriol,1993,175(11):3295-3302.
    [233]Adams P.B. The potential of mycoparasites for biological control of plant diseases[J]. Ann Rev Phytopathol,1990,28:59-72.
    [234]蔡大旺.正确认识化学农药的作用及防止滥用化学农药的对策[J].农业科技通讯,2008,(1):36-38.
    [235]安德荣.抗生素的制备和方法—抗生素的制备[M].北京:中国科学文化出版社,2002.
    [236]杨泽敏,关故章,孙金才.我国生物农药的发展现状及对策[J].安徽农业科学,2004,32(3):556-558.
    [237]王燕鹂,喻国辉,陈远凤,等.化学农药与芽孢杆菌M3、S11菌株对西芹黄萎病的防治效果[J].中国蔬菜,2010,(20):57-61.
    [238]钱铭镛.发酵工程最优化控制[M].南京:江苏科学技术出版设,1998:46-58.
    [239]刘爱民.微生物资源与应用[M].南京:东南大学出版社.2008,223-236.
    [240]曹广丽,陈立梅,徐文静等.番茄叶霉病菌拮抗链霉菌BPS2发酵条件的研究[J].中国农学通报,2006,22(5):341-345.
    [241]阮继生,刘志恒,梁丽糯.放线菌研究与应用[M].北京:科学出版社,1990.
    [242]朱昌雄.丁振华.蒋细良.等.微生物农药剂型研究发展趋势[J].现代化工2003,23 (3):4-8.
    [243]Sabratnam S, Traquair J A. Formulation of a Streptomyces biocontrol agent for the suppression of Rhizoctonia Dampingoff in tomato transplants [J]. Biological Control,2002,23 (3):245-253.
    [244]Hardoim P R. van Overbeek L S, E lsas J Dv. Properties of bacterial endophytes and their proposed role in plant growth [J]. Trend Microbiol,2010.16:463-471.
    [245]Canbolat M Y, BilenS. Cakmakci R, et al. Effect of plant growth promoting bacteria and soil com pact ion on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora[J]. BiolFert. Soils,2006,42:350-357.
    [246]Kantan J. Pathogen weakening as a component of integrated control Advances in control of plant diseases[J].Chn Agr Uni Pre.1996.321-326.
    [247]Kantan J.The weakening effect as trigger for biocontrol and criteria for its evaluation[J].Boil Cont Plan Path Plenum Press N P,1992,55-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700