用户名: 密码: 验证码:
施用微生物有机肥调控棉花黄萎病土壤微生物区系及效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花土传黄萎病是世界上毁灭性的植物病害之一,它由大丽轮枝菌Verticillium dahliae Kleb. (Vd)引起,施用生物有机肥或氨基酸有机肥可以达到一定程度的防治效果。本研究探讨防治棉花黄萎病的微生物有机肥和氨基酸有机肥在新疆南、北疆的防病效果及生物效应,并通过土壤酶学法、稀释平板法、绿色荧光蛋白(GFP)标记法、高效液相色谱法(HPLC)、聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)等研究拮抗菌防治棉花土传黄萎病的可能机制及其对土壤微生物区系的调控作用,获得如下主要结果:
     施用氨基酸有机肥在2006年和2007年分别降低棉花枯萎病发病率18.0%-37.3%和2.9%-4.2%;降低病情指数14.3%-29.4%和9.4%-11.9%,防病效果达到9.8%-50.3%;增加棉花皮棉产量8.9%-17.9%和6.8%-12.7%。棉花纤维5项指标分析表明,施用氨基酸有机肥在2006年对纤维品质没有显著影响,但2007年对断裂比强度和伸长率有显著影响。施用氨基酸有机肥不但增加土壤各类微生物的数量,还能提高细菌的比例。根际细菌数量明显高于非根际土壤,且感病品种新陆早8号根际细菌数量和放线菌比例低于耐病品种新陆早12号。棉花根际土壤过氧化氢酶、蔗糖酶、磷酸酶、脲酶、纤维素酶活性均高于非根际土壤,且脲酶、纤维素酶活性达到显著差异。施用氨基酸有机肥能增加棉花根际和非根际土壤酶活性。土壤pH随着氨基酸有机肥施用量的增加呈下降趋势,且根际低于非根际。施用氨基酸有机肥能增加土壤碱解氮、速效磷、速效钾含量。
     土培试验结果表明,微生物有机肥1号肥料品种在促进棉花生长、增加棉花苗期干物质积累、降低染病土壤真菌数量方面要优于微生物有机肥2号。健康土壤接菌和连作染病土壤上施用微生物有机肥均能降低两个棉花品种的黄萎病发病率和病情指数,增加棉花干物质,防病效果达到28%-55%。施用微生物有机肥处理使新陆早8号土壤真菌、放线菌、细菌数量分别比对照增加2.7倍、0.9倍和4.9倍,而新陆早12号土壤上,真菌略有减少、放线菌略有增加,细菌则增加1.8倍。
     棉花黄萎病圃地试验结果表明,施用微生物有机肥和氨基酸有机肥可以明显降低棉花黄萎病的病情,防治效率分别达到49.5%和29.8%,增产率分别为66.4%和47.1%。三个生育时期中,与对照相比,施用微生物有机肥和氨基酸有机肥处理土壤蔗糖酶活性分别增加32%-35%和26%~32%;多酚氧化酶活性分别增加89%-155%和60%-130%;蛋白酶活性分别增加317%-845%和160%-344%;碱性磷酸酶活性分别增加19%-23%和22%-43%;脲酶活性分别增加17%-28%和14%-26%;施肥对过氧化氢酶活性没有明显影响。
     不同有机质含量土壤(40.9 g·kg-1、18.9 g·kg-1、10.1 g·kg-1)上生物有机肥用量的土培试验结果表明,高有机质含量土壤上施用10 g-kg-1微生物有机肥,中有机质含量土壤和低有机质含量土壤施用20~30 g·kg-1微生物有机肥,棉花苗期干物质和防病效果较好。土壤脲酶、蔗糖酶活性随着微生物有机肥施用量增加而增加,蛋白酶和过氧化氢酶活性变化不明显,而多酚氧化酶活性出现先增加后降低的趋势。蛋白酶、蔗糖酶和过氧化氢酶活性随着土壤有机质的增加而增加,而多酚氧化酶活性随着土壤有机质的增加而降低。
     多点大田试验结果表明,施用微生物有机肥能够明显降低棉花土传黄萎病发病率和病情指数,防病效果达到20%%-79%,棉花产量增加4.9%-21.4%。在棉花盛花期,施用微生物有机肥处理的新陆早8号土壤碱解氮、速效磷、速效钾分别比对照增加47.4%、35.6%、5.5%;而新陆早12号分别增加20.4%、45.5%、2.6%。
     GFP标记观察结果表明,拮抗细菌枯草芽孢杆菌菌株ZJ-6主要定殖在棉花根系侧根部位较老的根毛区,其次在主根系,在新生根及根冠处定殖很少。接种拮抗菌培养1d后,再接种病原菌的处理,根系定殖的拮抗菌明显多于先接种病原菌再接种拮抗菌的处理。棉花子叶期和4片真叶期接入拮抗菌对定殖没有明显影响。接种30 d后,拮抗菌在棉花根系定殖量大量减少。土培试验结果表明,拮抗细菌在15-35℃范围内随着土壤温度升高定殖量增加,而棉花黄萎病病原菌在25℃数量最多。拮抗细菌在土壤相对含水量50%左右定殖量较多。两株拮抗菌分别与有机肥配合直接施用(没有通过二次发酵),生物效应较差,表明拮抗菌对有机肥(发酵基质)有选择性;而施用经过二次发酵的微生物有机肥生物效应较好,表明微生物有机肥中的拮抗菌在土壤中更容易定殖而发挥作用。
     在三种不同有机质含量土壤上施用不同量微生物有机肥,土壤放线菌的数量在三种土壤上均是随着微生物有机肥施用量的增加而增加,但真菌和细菌的数量随着微生物有机肥施用量的增加,三种土壤上均呈现先上升后下降的趋势,高有机质含量土壤在施用10 g·kg-1左右微生物有机肥时,细菌和真菌的数量最高;中等和低有机质含量土壤在20 g·kg-1左右微生物有机肥时,细菌和真菌的数量最高。DGGE图谱结果表明,随着微生物有机肥施用量的增加,三种土壤中真菌多样性均有降低的趋势,中等有机质含量土壤的土壤真菌多样性明显高于高有机质土壤和低有机质土壤。多样性指数分析表明,在高有机质土壤上施用微生物有机肥,土壤真菌群落多样性指数有下降趋势,中等有机质土壤和低有机质土壤真菌群落多样性指数随着微生物有机肥施肥量的增加呈现先增加后降低的规律,中等有机质土壤高峰值出现在20~30 g·kg-1,而低有机质土壤高峰值出现在10~20 g·kg-1。施用微生物有机肥或拮抗细菌与有机肥混施,能增加细菌种群结构,保持物种丰富度,提高均匀度;增加土壤真菌均匀度指数和稳定性指数,相似性接近于健康土壤。所以,施用微生物有机肥使土壤中的细菌和真菌种群向健康的微生物区系方向发展。
     拮抗菌的发酵产物中,粗提蛋白对棉花黄萎病菌有明显的抑制作用。HPLC分析表明,感病品种新陆早8号子叶期正常生长的棉花根系分泌物中酚酸类物质种类和含量较4叶期少。接病原菌后,子叶期没食子酸、对羟基苯甲酸、对羟基苯甲醛含量升高,4叶期肉桂酸含量或比例增加。与正常生长的棉花根系分泌物比较,接入拮抗菌后,无论子叶期还是4叶期,酚酸类物质种类减少、肉桂酸含量或比例降低。接入拮抗菌后,棉花根系分泌物中氨基酸种类下降,增加能抑制黄萎病菌孢子萌发和菌丝体生长的精氨酸含量,降低具有促进黄萎病菌孢子萌发和菌丝体生长的氨基酸的比例。这种根系分泌物的差异可能是拮抗菌促使棉花提高抗病性的一种途径。
     综上所述,在新疆施用微生物有机肥能够使拮抗菌在棉花根系和土壤定殖,减少自毒酚酸物质和氨基酸的分泌,改善土壤微生物区系,增加土壤生物活性,活化土壤养分,提高土壤供肥能力,维持棉花叶片较高的叶绿素含量,使棉花有较强的抗病能力,能较好的防治棉花土传黄萎病,保持和增加棉花产量。施用微生物有机肥是克服连作土壤障碍的一种较好途径,值得推广应用。
Virticillium wilt of cotton (Gossypium hirsutum L.) is one of the most destructive diseases of cotton in the world. The disease is caused by the cosmopolitan soilborne fungal pathogen Verticillium dahliae Kleb. (Vd) and can be controlled by some special bio-organic fertilizers (BIO) or amino acid fertilizer (AAF) applied into soils. Field and greenhouse experiments were conducted to evaluate effects of the BIO and AAF on disease control in Xingjiang. Mechanisms and soil microbial community diversity after application of BIO and AAF against Vd were explored by using biological and biochemical methods such as soil enzyme activity measurement, plate culture, green fluorescent protein (GFP) labelling, high performance liquid chromatography (HPLC) analysis, polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE). Main results were showed as follows.
     Field experiment with application of amino acid fertilizer (AAF) was carried out in Shihezi, Xinjiang, China. The results showed that disease incidences of treatment with application of AAF were decreased by 2.9%~18.0% in 2006 and 4.2%~37.3% in 2007. Disease index were decreased by 9.4%~14.3% in 2006 and 11.9%~29.4% in 2007. Controlling percentage of the disease was 9.8%~50.3%. Fibre yields were increased by 8.9%~17.9% in 2006 and 6.8%~12.7% in 2007. Fibre quality analysis indicated that fibre quality was not significantly affected by application AAF in 2006, but fibre strength and elongation were significantly affected in 2007. AAF aplication increased numbers of soil fungi, actinomycetes, and bacteria as well as the ratio of bacteria to fungi. Numbers of bacteria in rhizosphere were significantly higher than those in bulk soil. Numbers of bacteria in rhizosphere of Xinluzao-8 (RS-8), which was sensitive to Vd, were less than those in rhizosphere of Xinluzao-12 (RS-12), which was resistant to Vd. Activities of catalase, catalase, alkaline phosphatase, urease and cellulase, urease and cellulase were significantly higher in rhizosphere soils than those in bulk soils. Thus, application of AAF had potential to increase activities of soil enzymes and contents of available nutrients either in rhizosphere or bulk soils but to decreased soil pH in rhizosphere soil when high application rate of the fertilizer was applied.
     Results of pots experiment showed that BIO No.1 was better than BIO No.2 in promoting cotton growth and reducing population of soil fungi. BIOs were applied into two soils, a health soil inoculated with Vd and a Vd-infected soil caused by continuous cotton cropping. Application of BIO decreased cotton Verticillium wilt incidence and disease index of Xinluzao-8 (XLZ-8, susceptible cultivar) and Xinluzao-12 (XLZ-12, resistant cultivar), increased biomass of cotton shoot. Cotrolling percentage of the Verticillium wilt by the application of BIOs were 28%~55%. Numbers of soil fungi, actinomycetes and bacteria of the BIO treatment were 2.7 times,0.9 times and 4.9 times higher than control for soil grown with XLZ-8, respectively; and no more,0.3 times and 1.8 times higher than control for soil grown with XLZ-12, respectively.
     Field experiments were conducted in soil that was inoculated with Vd about 5 years. Results showed that application of BIO and AAF decreased cotton Verticillium wilt disease index, enhanced controlling efficiencies by 49.5%and 29.8%, respectively, and increased yields by 66.4%and 47.1%, respectively. Compared with CK in three growth stages, application of the BIO and AAF increased soil invertase activity by 32%~35%and 26%~32%, polyphenol oxidase activity by 89%~155%and 60%~130%, protease activity by 317%~845%and 160%-344%, alkaline phosphatase activity by 19%~23%and 22%~43%, urease activity by 17%~28%and 14%~26%, respectively. There were no differences of catalase activity in the different treatments.
     Different application rates of BIO were applied into three soils which contained different organic matter(40.9 g·kg-1,18.9 g·kg-1,10.1 g·kg-1). According to cotton biomass and controlling efficiency to Virticillium wilt, application 10 g·kg-1 BIO to soil with higher content of organnic matter was a better choice,20~30 g·kg-1 for middle or lower content of organnic matter soil. Soil urease and invertase activity were increased with the increase of BIO application rates, but no significant changes were found in terms of protease and catalase activity; polyphenol oxidase activity was increased at the beginning then decreased with the increase of BIO application rates. High content of soil organic matter increased activities of protease, invertase and catalase, but decreased activity of polyphenol oxidase.
     Bio-organic fertilizers were applied in field at rate of 1500 kg·hm-2 in different locations of Xinjiang. Results showed that application of BIO reduced disease incidence and disease index and increased disease controlling effectivness by 20%~79%compared to CK. In BIO treatments, cotton yield incresed about 4.9%~21.4%and chlorophyll SPAD value of cotton leaf were increased. In flowering period, application of BIO increased the content of soil available nitrogen, phosphorous and potassium by 47.4%,35.6%and 5.5%, repectively, in XLZ-8 growing soils, and by 20.4%,45.6%and 2.6%, respectively, in XLZ-12 growing soil.
     GFP labelled Bacillus subtilis ZJ-6 could colonize cotton root. Most of ZJ-6 cells were on the hair roots of older lateral roots, some were on taproot, but few were on calyptrogen. Numbers of ZJ-6 were higher in the treatment, where ZJ-6 was inoculated one day before Vd was inoculated, than in the treatment, where Vd was inoculated one day before ZJ-6 was inoculated. No difference of colonization rates was observed between the inoculation in cotyledon unwinded period and the inoculation in 4 leaves period. Few of ZJ-6 could colonize cotton root 30 days after inoculation. The optimum temperature to colonize soil for the antagonists was in the range from 15℃to 35℃, while that for Vd was in 25℃. When soil field water capacity was maintained at 50%, the functional antagonists could colonize soils at the highest density. There was not obvious biocontrolling efficiency when the two antagonists were mixed with OF without secondary solid fermetation and immediately applied into soil. This indicated that proper organic carriers and nutrients were needed for the functional antagonists to suvive after applied into soils. Antagonists in the BIO with secondary solid fermentation easily colonized soil and functioned well with high biocontrol efficiency.
     Soil microbial community was significantly influenced by the application of BIO. Soil actinomycetes were increased with increase of BIO application rates in the three soils which contained different organic matter, but soil fungi and bacteria numbers were increased at the beginning and then decreased, and proper rates of BIO applied were 10 g·kg-1 for high organic matter soil and 20 g·kg-1 for middle or low level of organic matter soil. PCR-DGGE analysis showed that application of BIO decreased fungal bands when BIO application rates were increased. Fungal diversity of the soil with middle level of organic matter was higher than that of the soil with high or low organic matter. Fungal structrue indices of the soil with high organic matter were decreased with increase of BIO application rate, but the indices of the soil with middle or low organic matter were increased at the beginning then decreased, and maximum indices of the rates were 20~30 g·kg-1 for middle organic matter soil and 10~20 g·kg-1 for low level of organic matter soil. Application of BIO or the mixture of Bacillus antagonists and organic fertilizer increased bacteria community diversity, maintained a stable bacterial and fungal structrue indices, and led soil microbial diversity to a healthy status.
     Growth of Vd in plate was inhibited by concentrated protein from ZJ-6 fermentation liquids. Cotton root exudates were detected by HPLC. The species and amount of phenolic acids from the root exudates of susceptible cultivar XLZ-8 in 4 leaves period were higher than those in cotyledon unwinded period. Inoculating plant with Vd in cotyledon unwinded period increased contents of gallic acid,4-hydrobenzoic acid and 4-hydroxybenzaldehyde. However, content or ratio of cinnamic acid was increased when plant was inoculated with Vd in 4 leaves period. The species and amount of phenolic acids were decreased when plants were inoculated with ZJ-6 either in cotyledon unwinded period or in 4 leaves period. Inoculation with ZJ-6 reduced some amino acids in root exudates, which stimulated germination of Vd spores and mycelium growth of Vd, and increased arginine in root exudates, which inhibited Vd growth.
     In conclusion, antagonists in BIO efficiently colonized cotton roots, decreased autointoxicants such as phenolic acids and amino acids from cotton root exudates. Application of BIO improved soil microbial community diversity and thus increased activities of soil enzymes. Application of BIO also increased soil available nutrients and cotton leaf chlorophyll. The cotton yields in different soils were significantly improved by application of BIO via successful biocontrol of the Virticillium wilt. Application of BIO is one of best means to remediate continuously cropping obstacles and is worthy to be extended.
引文
1. Asakawa S, Kimura M. Comparison of bacterial community structures atmain habitats in paddy field ecosystem based on DGGE analysis[J]. Soil Biol. Biochem.,2008,40(6):1322-1329
    2. Al-Rawahi A K, Hancock J G. Parasitism and biological control of Verticillium dahliae by Pythium oligandrum[J]. Plant Disease,1998,92:1100-1106
    3. Bailey K L, Lazarovits G. Suppressing soil-borne diseases with residue management and organic amendments[J]. Soil and Tillage Research,2003,72:169-180
    4. Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms [J]. Annual Review of Plant Biology,2006,57:233-266
    5. Balkwill D L, Leaeh F R, Wilson J T. Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate and direct counts in subsurface aquifer sediments[J]. Microbial Eeology,1988,16:73-84
    6. Bell A. Effeets of chitin and chitosan on the incidence and severity of Fusarium yellows of celery[J]. Plant disease,1998,82(3):322-328
    7. Benitez M S. McSpadden G B B. Linking sequence to function in soil bacteria:Sequence-directed isolation of novel bacteria contributing to soilborne plant disease suppression[J]. Appl. Environ. Microbiol.,2009,75:915-924
    8. Berg G, Ballin G. Bacterial antagonists to Verticillium dahliae Kleb[J]. Journal of Phytopathology, 1994,141:99-110
    9. Bertin C, Yang X, Weston L A. The role of root exudates and allelochemicals in the rhizosphere[J]. Plant and Soil,2003,256:67-83
    10. Booth J A. Gossypaum harsutum tolerance to Verticillium dahliae infection. I Amino acids exudation from aseptic roots of tolerantand susceptible cotton[J]. Phytopathology,1969,59:43-46
    11. Butterfield E J, Devay J E. Reassessment of soil assays for Verticillium dahliae[J]. Phytopathology,1977,67:1073-1078
    12. Chaurasia B A, Pandey L M, Palni P, et al. Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro[J]. Microbiological Research,2005,160:75-81
    13. Chen Lihua, Yang Xingming, Waseem Raza, et al. Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers [J]. Appl Microbiol Biotechnol,2010, DOI 10.1007/s00253-010-2948-x
    14. Chin C C, Gorin G. Urease Ⅶ:Some observations on the assay method of Sumner[J]. Analytieal Bioehemistr,1966,17:60-65
    15. De Brito Alvarez M A, Gagne S, Antoun H. Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria[J]. Appl. Environ. Microbiol.,1995,61:194-199
    16. Deshmukh S, Hiickelhoven R, Schafer P, et al. The root endophytic fungus Piriformospora indica requires host cell death forproliferation during mutualistic symbiosis with barley[J]. Proc Natl Acad Sci,2006,103:18450-18457
    17. Dick R P, Myrod D D, Kerle E A. Microbial biomass and soil enzyme activities in compacted and drehabilitated skid trail soils[J]. Soil Sci Soc Am J.,1988,52:512-516
    18. Durrands P K, Cooper R M. The role of pectinase in vascular wilt disease as determined by defined mutants of Verticillium albo-atrum[J]. Physiol Mol Plant Pathol,1988,32:363-370
    19. Earl A M, Losick R, Kolter R. Ecology and genomics of Bacillus subtilis[J]. Trends in Microbiology,2008,16:269-275
    20. Fahima T, Madi L. Ultrastructure and germinability of Verticillium dahliae microsclerotia parasitizedby Talaromyces flavus on agar medium and in treated soil[J]. Biocontrol Science and Technology,1992,2:69-78
    21. Fravel D R. Viability of microsclerotia of Verticillium dahliae reduced by a metabolite produced by Talaromuyces flavus[J]. Phyopathology,1987,77:616-619
    22. Garas N A, Wilhem S, Sagen J E. Relationship of cultivar resistance to distribution of verticillium dahliae in inoculated Cotton plants and to growth of single conidia on excised stem segments[J]. Phytopathology,1986,76:1005-1011
    23. Gianfreda L, Sannino F, Vtoante A. Pesticide effects on the activity of tree immobilized and invertase[J]. Soil Biol. Biochem.,1995,27(9):1201-1208
    24. Han X, Wu F-Z, Pan K. Review on the relation between the root exudatesand soil-spread disease[J]. Chinese Agricultural Science Bulletin,2006,22(2):316-318
    25. Harwood C R, Crawshaw S G, Wipat A. From genome to function:systematic analysis of the soil bacterium Bacillus subtilis[J]. Comparative and Functional Genomics,2001,2:22-34
    26. Hines J, Megonigal P, Denno R. Nutrient subsidies to belowground microbes impact aboveground food web interactions [J]. Eeology,2006,87:1542-1555
    27. Hossain M. Bioehemieal changes of guava fruit due to infection of anthraenose as influenced by soil amendments [J]. Bangladesh Journal of Plant Pathology,1996,12:13-26
    28. Howell C R. Use of enzyme deficient mutants of Verticillium dahliae to assess the importance of pectolytic enzyme in symptom expression of Verticillium wilt of cotton[J]. Physical Plant Pathol, 1976,9:279-283
    29. Huang Jun-li, Li Hong-lian, Yuan Hong-xia. Effect of organic amendments on Verticillium wilt of cotton[J]. Crop Protection,2006,25:1167-1173
    30. Imran A, Siddiqui. Effects of Pseudomonas aeruginosa on the diversity of cultural microfungi and nematodes associated with tomato:inpact on root-knot disease and plant growth[J]. Soil Biol. Biochem.,2003,35:1359-1368
    31. Jennifer L, Kirka Lee A, Beaudettea L, et al. Methods of studying soil microbial diversity[J]. Journal of Microbiological Methods,2004,58:169-188
    32. Kalandarv S. New sources of cotton resistance to Verticillium dahliae Kleb[C]. Prceedings of the Fifth International Verticillium Symposium,1990,105
    33. Keinath A P, Fravel D R, Papavizas G C. Potential of Gliocladium roseum for biocontrol Verticillium dahliae[J]. Phytopathology,1991,81:644-648
    34. Keen N T. Endopolygalacturonase evidence against involvement in Verticillium wilt of cotton[J]. Phytopathology,1971,61:198-203
    35. Kim K K, Fravel D R, Papavizas G C. Identification of a metabolite produced by Talaromgces flavus as glucose oxidise and its role in the biocontrol of Verticillium dahliae[J]. Phytopathology, 1988,78:488-492
    36. Kim K K, Fravel D R, Papavizas G C. Production purification and properties of glucose oxidase from the biocontrol fungus Talaromyces flavus[J]. Canadian Journal of Microbiology,1990,36: 199-205
    37. Kloepper J W. A review of issue related to measurin geolonization of plant roots by bacteria[J]. Can J Moerobiol,1992a,38(6):667-682
    38. Kloepper J W, Turzun S, Kuc J A. Proposed definitions related to induced disease resistance[J]. Biocontrol Science and Teehnology,1992b,2:349-351
    39. Kokalis Burelle N, Kloepper J W, Reddy M.S. Plant growth-promoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms[J]. Applied Soil Ecology, 2006,31:91-100
    40. Kong C H, Wang P, Gu Y, et al. Fate and impact on microorganisms of rice allelochemicals in paddy soil[J]. J Agr Food Chem,2008,56:5043-5049
    41. Lambers H, Chapin F S Ⅲ, Pons T L. Plant physiological ecology,2nd edn[M]. Springer:New York,2008
    42. Lambers H, Christophe Mougel, Benoit Jaillard, et al. Plant-microbe-soil interactions in the rhizosphere:an evolutionary perspective[J]. Plant Soil,2009,321:83-115
    43. Leal J A. Lack of pectic enzyme production by non-pathogenic species of Verticillium[J]. Nature, 1962,195:1328-1329
    44. Ling N, Xue C, Huang QW, et al. Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt[J]. BioControl,2010, DOI 10.1007/s 10526-010-9290-1
    45. Liu J G., Li Y B, Jiang G Y, et al. Allelopathic effect of cotton under continuous cropping[J]. Allelopathy Journal,2008,21(2):299-306
    46. Liu Shufen, Tang Wenhua. The study on endophytic Streptomyces of cotton [J]. Advances in Biological Control of Plant Disease,1996,212-213
    47. Manjula K, Podile A R. Production of fungal cell wall degrading enzymes by a biocontrol strain of Bacillus subtilis AF 1 [J]. Indian Journal of Experimental Biology,2005,43:892-898
    48. Markakis E A, Tjamos S E, Chatzipavlidis I, et al. Evaluation of compost amendments for control of vascular wilt diseases[J]. Journal of Phytopathology,2008,156:622-627
    49. Martens D. Identification of phenolic acid composition of alkali-extracted plants and soils[J]. Soil Sci Soc Am J.,2002,66:12-40
    50. Mcknight S F, Rossall S. Root colonization of cotton seedings by Bacillus subtilis(MBI600) [J]. Bulletin SROP,1991,14(8):365-369
    51. Micallef S A, Shiaris M P, Colon-Carmona A. Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates[J]. J Exp Bot.,2009, doi:10.1093/jxb/erp053
    52. Misaghi I J, Donndelinger C R. Endophytic bacteria in symptom-free cotton plants[J]. Phytopathology,1990,80:808-811
    53. Monika GOtz, Newton C M Gomes, Albert Dratwinski, et al. Survival of gfp-tagged antagonistic bacteria in the rhizosphere of tomato plants and their effects on the indigenous bacterial community[J]. FEMS Microbial Ecology,2006,56:207-218
    54. Mougel C, Offre P, Ranjard L, et al. Dynamic of the genetic structure of bacterial and fungal communities at differentdevelopment stages of Medicago truncatula Jemalong J5[J]. New Phytol, 2006,170:165-175
    55. Moynihan J A, John P, Morrissey J P, et al. Evolutionary history of the phl gene cluster in the plant-associated bacterium pseudomonas fluorescens[J]. Appl. Environ. Microbiol.,2009,75:2 122-2131
    56. Mussell H W. Endopoly galacturonase:Evidene for involvement in Vevticillium wilt of cotton[J]. Phytopathology,1973,63:62-71
    57. Muyzer G, Waal E C D, Uitterlinden A G. Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Appl. Environ. Microbiol.,1993,59:695-700
    58. Myers R.M, Fischer S G, Lerman L S, et al. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis[J]. Nucleic Acids Res,1985,13:131-45
    59. Nagorska K, Bikowski M, Obuchowski M. Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta biochimica Polonica,2007,54:495-508
    60. Nayyar A, Hamel C, Lafond G, et al. Soil microbial quality associated with yield reduction in continuous-pea. Appl Soil Ecol,2009,43:115-121
    61. Niisawa C, Oka S, Kodama H, et al. Microbial analysis of a composted product of marine animal resources and isolation of bacteria antagonistic to a plant pathogen from the compost. The Journal of General and Applied Microbiology,2008,54:149-158.
    62. Noble, R., and E. Coventry.2005. Suppression of soil-borne plant diseases with composts:A review. Biocontrol Science and Technology 15:3-20.
    63. Nobrega F M, Santos I S, Cunha M D, et al. Antimicrobial proteins from cowpea rootexudates: Inhibitory activity against Fusarium oxysporum and purification of a chiti-nase-like protein[J]. Plant and Soil,2005,272:223-232
    64. Ouhdouch Y, Barakate M, Finance C. Actinomycetes of moroccan habitats:Isolation and screening for antifungal activities[J]. Eur J Soil Biol,2001,37(2):69-74
    65. Pate J S, Verboom W H, Galloway P D. Co-occurrence ofProteaceae, laterite and related oligotrophic soils:coincidental associations or causative inter-relationships? [J]. Aust J Bot,2001, 49:529-560
    66. Pate J S, Verboom W H. Contemporary biogenic formation of clay pavements by eucalypts:further support for the phytotarium concept[J]. Ann Bot,2009,103:673-685
    67. Puhalla J E, Howell C R. Significance of endopolygalacturonase activity to symptom expression of Verticillium wilt in cotton,assessed by use of mutants of Verticillium dahliae Kleb[J]. Physical Plant Pathol,1975,7:147-152
    68. Riley D, Barber S A. Salt accumulation at the soybean root soil interface[J]. Soil Sci Soc Am J., 1970,34:154-155
    69. Romero D, Vicente A, Olmos J, et al. Effect of lipopeptides of antagonistic strains of Bacillus subtilis on the morphology and ultrastructure of the cucurbit fungal pathogen Podosphaera fusca[J]. Journal of Applied Microbiology,2007,103:969-76
    70. Ryan P R, Richardson A E, Delhaize E. The rhizosphere:an example of plants modifying their environment to benefit their survival[C]. International Conference Rhizosphere "Perspectives and Challenges-A Tribute to Lorenz Hiltner",2004,12-17 September, Munich Germany
    71. Saikkonen K, Faeth S H, Helander M, et al. Fungal endophytes:a continuum of interactions with host plants[J]. Ann Rev Ecol Syst,1998,29:319-343
    72. Schaeffer D J, Henricks E E, Kerster H W. Eeosystem Health:Eeosystem health[J]. Environ. Man.1988,12,445-455
    73. Schnathorst W C. Host rang and differentiation of a severe from of V.albo-atrumin cotton[J]. Phytopathology,1966, (56):1155-1161
    74. Schreiber L R, Green R J. Effect of root exudates on germination of conidia and microsclerotia of Verticillium albo-atrunm inhibited by the soil fungistatic principle[J]. Phytopathology,1963,53: 260-264
    75. Shakeel Ahmad Anjum, Saleem M Farrukh, Wang Long-chang, et al. Varietal comparison of some fibre quality traits of cotton(Gossypium hirsutum L.)under different row spacings[J]. Cotton Science,2010,22(2):181-185
    76. Siegrid S, Roswitha M, Horst V. Germination of Fusarium oxysporum in root exudates from tomato plants challenged with different Fusarium oxysporum[J]. European Journal of Plant Pathology, 2008, DOI 10.1007/s 10658-008-9306-1
    77. Stein T. Bacillus subtilis antibiotics:structures, syntheses and specific functions[J]. Molecular Microbiology,2005,56:845-857
    78. Suarez-Estrella F, Vargas-Garcia C, Lopez M J, et al. Antagonistic activity of bacteria and fungi from horticultural compost against Fusarium oxysporum f. sp. melonis[J]. Crop Protection, 2007,26:46-53
    79. Szczech M, Shoda M. The influence of Bacillus subtilis RB14-C on the development of Rhizoctonia solani and indigenous microorganisms in the soil[J]. Canadian Journal of Microbiology,2005,51:405-411
    80. Taboys PW. Association of tylosis and hyperplasia of the xylem with vascular invasion of the hop by Verticillium albo atrum[J]. Trans Brit Mycol Soc,1958,41(2):249-260
    81. Taylor J P, Wilson M, Mills S, et al. Comparison of microbial numbers and enzym aticaetivities in surfaee soils and subsoils using various techniques[J]. Soil Biol. Biochem.,2002,34:387-401
    82. Taylor L L, Leake J R, Quirk J, et al.7Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm[J]. Geobiology,2009,7: 171-191
    83. Termorshuizen A, Rijn van J E, Gaag van der D J, et al. Suppressiveness of 18 composts against 7 pathosystems:variability in pathogen response[J]. Soil Biol. Biochem.,2006,38:2461-2477
    84. Thies J E. Soil microbial community analysis using terminal restriction fragment length polymorphisms[J]. Soil Sci.,2007,71:579-591
    85. Weisburg W W, Barns S M, Pelletler D A, et al.16S ribosomal DNA amplification for phylogenetic study[J]. Journal of Bacteriology,1991,173:697-703
    86. Weller D M. Colonization of wheat roots by a fluorescent pseudomonada Suppressive to take-all[J]. Phytopathology,1983,73:1548-1553
    87. Weller R. Nitric oxide:a key mediator in cutaneous physiology[J]. Clinical and Xperimental Dermatology,2003,28(5):511-515
    88. Wihelm S. Longevity of the Verticillium wilt fungus in the laboratory and field[J]. Phytopathology,1955,45:180-181
    89. Whipps J M. Microbial interactions and biocontrol in the rhizosphere[J]. Journal of Experimental Botany,52, Root Special Issue,2001,487-511
    90. Will M. Evalution of paecilomyces lilacinus, chitin, and cellulose amendments in the biological control of Aspergillus flavus fungi[J]. Biol Fertil Soils,1994,17(4):281-284.
    91. Wu F, Wang X. Effect of p-hydroxybenzoic and cinnamic acids on soil fungi (Fusarium oxysporum f. sp. cucumerinum) growth and microbial population[J]. Allelopathy J,2006,18:129-140
    92. Wu Hongsheng, Yang Xingming, Fan Jiaqin, et al. Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer [J]. BioControl,2009,54(2):287-295
    93. Yu JQ, Matsui Y. Extraction and identification of phytotoxic substances accumulated in nutrient solution for the hydroponic culture of tomato[J]. Soil Sci Plant Nutri,1993,39(4):671-700
    94. Yu J Q, Matsui Y. Phytotoxic substances in root exudates of cucumber(Cucumis sativus L) [J]. J Chem Eeol,1994(20):21-31
    95. Zhang Shusheng, Raza Waseem, Yang Xingming, et al. Control of Fusarium wilt disease of cucumber plants with the application of a bio-organic fertilizer [J]. Biol Fertil Soils,2008,44: 1073-1080
    96.鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000
    97.蔡燕飞,廖宗文.土壤微生物生态学研究方法进展[J].土壤与环境,2002,11(2):167-171
    98.蔡燕飞,廖宗文.FAME法分析施肥对番茄青枯病抑制和土壤健康恢复的效果[J].中国农业科学,2003a,36:922-927
    99.蔡燕飞,廖宗文,章家恩,等.生态有机肥对番茄青枯病及土壤微生物多样性的影响[J].应用生态学报,2003b,14:349-353
    100.柴友荣.植物抗大丽轮枝菌受体类蛋白基因及甘露糖结合型凝集素基因的克隆与表达[D].重庆:西南农业大学,2003
    101.曹慧,崔中利,周育,等.甲基对硫磷对红壤地区土壤微生物数量的影响[J].土壤,2004,36(6):654-657
    102.陈兵林,高璆,金桂红,等.有机肥分期配施对创棉花高产群体生产力的影响[J].棉花学报,2002a,14(5):318-320
    103.陈兵林,高璆,金桂红,等.连续分期配施有机肥对棉花超高产及土壤肥力的影响[J].江西棉花,2002b,(4):7-10
    104.陈旭升,陈永萱,黄骏麟.黄萎病菌致萎毒素引起棉苗维管束系统变化的电镜观察[J].棉花学报,1998a,10(2):111-112
    105.陈旭升,陈永萱,黄骏麟.棉花黄萎病菌株Vd 8外泌毒素蛋白的生化特性[J].江苏农业学报,1998b,14(2):126-128
    106.董金皋.农业植物病理学[M].北京:中国农业出版社,2001
    107.杜良成,王钧.稻瘟菌诱导的水稻儿丁质酶和β-1,3-葡聚糖酶活性分布[J].植物生理与分子生物学学报,1992,18(1):29-36
    108.段维军,李国英,张莉,等.新疆棉花黄萎病菌致病性分化监测研究[J].新疆农业科学,2004,41(5):324-328
    109.范丙全.不同农业措施影响下土壤微生物多样性演化规律研究[D].北京:中国农业科学院博士后研究工作报告,2003
    110.范君华,刘明.膜下滴灌与沟灌海岛棉土壤微生物特性的比较[J].节水灌溉,2005,1:9-11
    111.范尉尉.大丽轮枝菌毒素对棉花黄萎病抗性的诱导[D].石家庄:河北师范大学,2006
    112.房慧勇,张桂寅,马峙英.转基因抗虫棉抗黄萎病鉴定及黄萎病发生规律[J].棉花学报,2003,15(4):210-214
    113.方中达.植病研究法(第三版)[M].北京:中国农业出版社,1998
    114.裴炎,李先碧,彭红卫,等.抗真菌多肤的分离纯化与特性分析[J].微生物学报,1999,39:344-349
    115.冯洁,陈其瑛,石磊岩.棉花幼苗根系分泌物与枯萎病关系的研究[J].棉花学报,1991,3(1):89-96
    116.高子勒,张淑香.连作障碍与根际微生态研究Ⅰ根系分泌物及其态效应[J].应用生态学报,1998,9(5):549-554
    117.戈峰.我国化学药使用现状、问题及减少对策[M].北京:中国农业出版社,1998:53-55
    118.弋良朋,马健,李彦.荒漠盐生植物根际土壤酶活性的变化[J].中国生态农业学报,2009,17(3):500-505
    119.顾本康,夏正俊,陆迅,等.江苏省大丽轮枝菌营养亲和性研究[J].棉花学报,1993,5(2):79-80
    120.官会林,杨建忠,陈煜君,等.三七设施栽培根际微生物菌群变化及其与三七根腐病的相关性研究[J].土壤,2010,42(3):378-384
    121.关松荫.土壤酶与土壤肥力[J].土壤通报,1980(6):41-44
    122.关松荫.土壤酶及其研究法[M].北京:农业出版社,1986
    123.郭继勋,姜世成,林海俊,等.不同草原植被被碱化草甸土的酶活性[J].应用生态学报,1997,8(4):412-416
    124.郭天财,宋晓,马冬云,等.氮素营养水平对小麦根际微生物及土壤酶活性的影响[J].水土保持学报,2006,20(3):129-132
    125.郭朝晖,黄子蔚.棉花氮磷营养的根际效应[J].土壤,1999,6:109-112
    126.和文祥,来航线,武永军,等.培肥对土壤酶活性影响的研究[J].浙江大学学报(农业与生命科学版),2001,27:265-268
    127.何欣,郝文雅,杨兴明,等.生物有机肥对香蕉植株生长和香蕉枯萎病防治的研究[J].植物营养与肥料学报,2010,16(4):978-985
    128.侯振安,李品芳,吕新,龚江,王艳娜.不同滴灌施肥方式下棉花根区的水、盐和氮素分布[J].中国农业科学,2007,40(3):549-557
    129.胡诚,曹志平,胡菊,等.长期施用生物有机肥土壤的氮矿化[J].生态学报,2009,29(4):2080-2086
    130.胡保明.新疆棉花资源优势分析[J].新疆农业大学学报,2002,25(3):87-90
    131.黄俊丽.有机改良剂对棉花黄萎病的防治效果及共防病机制研究[D].郑州:河南农业大学,2006
    132.霍向东,李国英,张莉.新疆棉花黄萎病菌营养体亲和性的研究[J].石河子大学学报,1999,3(4)269-273
    133.简桂良,卢美光,仇家山,等.棉花黄萎病防治策略[J].中国植保导刊,2004(4):30-31
    134.简桂良,宋建军,马存.几种有机肥对棉花枯萎病菌抑菌土的影响[J].棉花学报,1996,8(6):30-36
    135.简桂良,邹亚飞,马存,等.棉花黄萎病连年流行的原因及对策[J].中国棉花,2003,30(3):13-14
    136.孔令甲,夏珍芳,毛德新,等.棉花黄萎病的发病程度与旬气温的关系[C].棉花病虫害综合防治及研究进展,北京:中国农业科技出版社,1990:381-385
    137.李刚.棚室黄瓜根际微生物多样性研究[D].黑龙江:东北农业大学,2005
    138.李国英.新疆棉花主要病害发生趋势及对策[J].植物保护,2000,4:23-25
    139.李国英.近年来新疆棉区病虫发生的特点及其原因分析[M].农业生物灾害预防与控制研究.北京:中国农业科学科技出版社,2006,869-873
    140.李国英,霍向东,田新莉,等.新疆棉花黄萎病菌的培养特性及致病性分化的研究[J].石河子大学学报,2000,4(1):9-15
    141.李光友.海洋生境芽孢杆菌(Bacillus spp.)的培养条件及产生的胞外抗菌蛋白[J].海洋学报,2001,23(4):87-92
    142.李红丽,郭夏丽,李清飞,等.抑制烟草青枯病生物有机肥的研制及其生防效果研究[J].土壤学报,2010,47(4):798-801
    143.李洪连,王守正.根际微生物与植物病害[J].河南农业大学学报,1989,23(4):401-408
    144.李洪连,袁红霞,王烨,等.根际微生物多样性与黄萎病抗病性关系研究Ⅰ根际微生物数量与棉花品种对黄萎病抗性的关系[J].植物病理学报,1998,28(4):341-345
    145.李洪连,袁红霞,王烨,等.Ⅱ根际微生物多样性与棉花品种对黄萎病抗性的关系研究[J].植物病理学报,1999,29(3):242-246
    146.李久生,杨风艳,栗岩峰.层状土壤质地对地下滴灌水氮分布的影响[J].农业工程学报,2009,25(7):25-31
    147.李明,马永清,税军峰.南瓜组培根根系分泌物的化感效应研究[J].应用生态学报,2005,16(4):744-749
    148.李社增,马平,Huang H C,等.相对病情指数划分棉花品种抗病性的统计学基础[J].棉花学报,2003,15(6):344-347
    149.李社增,鹿秀云,马平,等.治棉花黄萎病的生防细菌NCD-2的田间效果评价及其鉴定[J].植物病理学报,2005,35(5):451-455
    150.李术娜,马平,胡明,等.棉花黄萎病拮抗细菌筛选与B-101菌株抗菌蛋白分离[J].植物病理学报,2008,38(4):445-448
    151.李孝刚,刘标,刘蔸蔸,等.转基因抗虫棉根系分泌物对棉花黄萎病菌生长的影响[J].应用生态学报,2009,20(1):157-162
    152.李兴红,马峙英,张桂寅.棉花黄萎病抗病机制的研究进展[J].河北农业大学学报,1995,18(4):118-122
    153.李雪玲,厉云,张天宇,等.利用木霉菌防治棉花黄萎病[J].植物保护学报,2003,30(3):284-288
    154.李彦斌.棉花化感物质的初步研究[D].石河子:石河子大学,2006
    155.李延军.中国棉花黄萎病菌营养体亲和性的研究[M].北京:中国农业科技出版社,1990, 364-369
    156.李玉奎.棉花黄萎病化学防治技术研究[J].中国棉花,1997,24(8):14-15
    157.李振高,潘映华,李良谟.不同基因型小麦根际细菌及酶活性的动态研究.土壤学报,1993,30(1):1-8
    158.林天,何园球,李成亮,等.红壤旱地中土壤酶对长期施肥的响应[J].土壤学报,2005,42(4):682-686
    159.林新坚,王飞,蔡海松,等.不同有机肥源对土壤微生物生物量及花生产量的影响[J].中国生态农业学报,2009,17(2):235-238
    160.铃木直治(张际中,齐显章,许泳峰,等译).近代植物病理化学[M].上海:上海科学技术出版社,1985
    161.凌宁,王秋君,杨兴明,等.根际施用微生物有机肥防治连作西瓜枯萎病研究[J].植物营养与肥料学报,2009,15(5):1136-1141
    162.刘大群,杨文香,祁碧淑,等.拮抗链霉菌Men-myco93-63及其发酵液对棉黄萎病菌生长的影响[J].河北农业大学学报,1999,22(4):79-82
    163.刘国伟.长期施用生物有机肥对土壤理化性质影响的研究[D].北京:中国农业大学,2004
    164.刘红彦,王飞,王永平,等.地黄连作障碍因素及解除措施研究[J].华北农学报,2006,21(4):131-132
    165.刘辉,周家澍,肖忠珍,等.棉花黄萎病危害规律及防治策略[J].湖北农业科学,1993,(9):35-367
    166.刘建国,张伟,李彦斌,等.新疆绿洲棉花长期连作对土壤理化性状与土壤酶活性的影响[J].中国农业科学,2009,42(2):725-733
    167.刘润进,裘维藩.YAM对棉花生长和产量的影响[J].北京农业大学学报,1994,20(1):89-91
    168.刘学堂,宋晓轩,郭金城.棉花黄萎病菌的研究及最新进展[J].棉花学报,1998,10(1):6-13
    169.刘颖,徐庆,陈章良.抗真菌多肤的分离纯化与特性分析[J].微生物学报,1999,39:441-447.
    170.刘瑜,褚贵新,梁永超,等.不同种植方式对北疆绿洲土壤养分和生物学性状的影响[J].中国生态农业学报,2010,18(3):465-471
    171.陆景陵.植物营养学(上册)[M].北京:中国农业出版社,2000
    172.鹿秀云.棉花黄萎病菌微菌核际拮抗微生物筛选及其作用机理[D].保定:河北农业大学,2002
    173.鲁素云.植物病害生物防治学[M].北京:北京农业大学出版社,1992
    174.鲁小城.一株枯草芽孢杆菌抗植物病原真菌活性物质的研究[D].杭州:浙江大学,2006
    175.陆雅海,张福锁.根系微生物研究进展[J].土壤,2006,38(2):113-121
    176.罗安程,Subedi T B,章永松,等.有机肥对水稻根际土壤中微生物酶活性的影响[J].植物营养与肥料学报,1999,5(4):321-327
    177.罗佳.微生物有机肥防治棉花黄萎病的作用机制[D].南京:南京农业大学,2010
    178.罗文邃,姚政.促进根系健康的土壤微生态研究[J].中国生态农业学报,2002,10(1):44-46
    179.吕金殿,罗家龙.棉花枯、黄萎病及其防治[M].上海:上海科学技术出版社,1983
    180.吕卫光,黄启为,沈其荣,等.不同来源有机肥及有机肥与无机肥混施对西瓜生长期土壤酶活性的影响[J].南京农业大学学报,2005,28(4):68-71
    181.吕泽勋,李久蒂,朱至清.用绿色荧光蛋白基因(gfp)标记产酸克雷伯氏菌SG_11研究其在水稻苗期根部的定殖[J].农业生物技术学报,2001,9(1):13-18
    182.马存,简桂良.荆州棉区棉花黄萎病发生与气象因子关系的研究[J].植物保护,1978,23(1):35-36
    183.马存,简桂良,孙文姬.我国棉花抗黄萎病育种现状、问题及对策[J].中国农业科学,1997,30(2):58-64
    184.马存,简桂良,孙文姬.我国棉花品种抗黄萎病鉴定存在的问题及对策[J].棉花学报,1999,11(3):163-166
    185.马平.棉花黄萎病生物防治研究进展[J].河北农业科学,2003,9:39-43
    186.马平,李社增,Huang H C,等.利用棉花体内非致病镰刀菌防治棉花黄萎病[J].中国生物防治,2001,17(2):71-74
    187.马溶慧,许乃银,张传喜,等.氮素调控棉花纤维蔗糖代谢及纤维比强度的生理机制[J].作物学报,2008,34(12):2143-2151
    188.马溶慧,许乃银,张传喜,等.氮素水平对棉铃干物质积累分配和纤维品质性状的影响[J].棉花学报,2009,21(2):115-120
    189.马宗斌,房卫平,谢德意,等.氮肥和DPC用量对棉花叶片叶绿素含量和SPAD值的影响[J].棉花学报,2009,21(3):224-229
    190.毛达如,申建波.植物营养研究方法(第二版)[M].北京:中国农业大学出版社,2005
    191.孟亚利,王立国,周治国,等.麦棉两熟复合根系群体对棉花根际非根际十壤酶活性和土壤养分的影响[J].中国农业科学,2005,38(5):904-910
    192.缪卫国,田逢秀.新疆棉花枯、黄萎病发生趋势及研究现状[J].新疆农业科学,1999(3):107-109
    193.潘凯,姚友.不同黄瓜品种根系分泌物对根际土壤微生物及土壤养分的影响[J].北方园艺,2008(8):18-20
    194.潘文道.芽孢杆菌B_21_菌株的生物学特性及其拮抗物质分离纯化研究[D].南宁:广西大学,2007,10-19
    195.齐俊生,马存,李红梅,等.冀中南棉区棉花黄萎病发生与气象因子关系分析[J].棉花学报,1998,10(5):263-267
    196.秦旭升,刘学敏,周艳玲.植物病原真菌中DNA分子鉴定技术[J].植物生理学通讯,2000, 36(4):342-347
    197.邱莉萍,刘军,王益权,等.十壤酶活性与土壤肥力的关系研究[J].植物营养与肥料学报,2004,10,277-280
    198.全国棉花枯、黄萎病综合防治研究协作组.棉花枯萎病和黄萎病[M].北京:农业出版社,1976
    199.沈宏,曹志洪,徐本生.玉米生长期土壤微生物量与土壤酶变化及其相关性研究[J].应用生态学报,1999,10,471-474
    200.沈其益.棉花病害—基础研究与防治[M].北京:科学出版社,1992:128-151
    201.石磊岩.我国棉花黄萎病研究进展[J].棉花学报,1995,7(4):243-245
    202.宋晓妍,陈秀兰,孙彩云,等.棉花黄萎病菌拮抗木霉的筛选及其抑菌机制的研究[J].山东大学学报(理学版),2005,40(6):98-102
    203.谭永久,李琼芳,蔡应繁,等.棉枯、黄萎病的发生及防治[J].西南农业学报,1997,10(10):113-117
    204.谭永久,李琼芳,蔡应繁,等.棉花抗黄萎病新抗源种质川 737、川2802的抗性研究[J].棉花学报,1995,7(3):184-188
    205.田黎,王克荣,陆家云.旬柄霉对大丽轮枝菌生长及微菌核形成的影响[J].中国生物防治,1998,14(1):14-17
    206.田涛,亓雪晨,王琦,等.芽孢杆菌绿色荧光蛋白标记及其在小麦体表定殖的初探[J].植物病理学报,2004,34(4):346-351
    207.涂书新,郭智芬,孙锦荷.富钾植物籽粒苋根系分泌物及其矿物释钾作用的研究[J].核农学报,1999,13(5):305-311
    208.涂书新,孙锦荷,郭智芬,等.根系分泌物与根际营养关系评述[J].土壤与环境,2000,9(1):64-67
    209.王春霞,罗景隆,纪好勤,等.棉花枯萎病圃衰退机理初探[J].植物病理学报,1993,23(1):43-46
    210.王飞.生物有机肥和拮抗细菌防治棉花黄萎病的生物效应研究[D].石河子:石河子大学,2010b
    211.王关林.植物基因工程原理与技术[M].北京:科学出版社,1998:1-2
    212.王光华,Jos M. Raaijmakers.生防细菌产生的拮抗物质及其在生物防治中的作用[J].应用生态学报,2004,15(6):1100-1104
    213.王浩,绳志雅,隋新华,等.用gfp基因标记法研究大豆根瘤菌在大豆根部定殖结瘤情况[J].微生物学杂志,2006,26(2):14
    214.王家玉,刘玉涛,张锐华,等.棉花黄萎病农业防治措施[J].中国棉花,1998(6):23
    215.王娟,韩登武,任岗,等.SPAD值与棉花叶绿素和含氮量关系的研究[J].新疆农业科学,2006,43(3):167-170
    216.王克荣,罗向群,孟爱忠.中国大丽轮枝菌营养体亲和群[J].南京农业大学学报,1994,17(增刊):128-133
    217.王兰英,宗兆锋,刘正坪.大丽轮枝孢和灰葡萄孢生防放线菌的分离筛选[J].西北农林科技大学学报(自然科学版),2005,33(8)(ZK):153-156
    218.王林权,周春菊,王俊儒,等.鸡粪中的有机酸及其对土壤速效养分的影响[J].十壤学报,2002,39(2):268-275
    219.王娜,许雷.棉花黄萎病、枯萎病拮抗细菌的筛选及其生长特性的研究[J].植物保护,2007,33(6):39-43
    220.王平,胡正嘉,李阜棣.土壤因子对发光酶基因标记的荧光假单胞菌X16L2在小麦根圈定殖的影响[J].微生物学报,2000,40(3):312-317
    221.王其赞.应用PCR-DGGE方法研究毛竹土壤细菌群落结构及其遗传多样性[D].杭州:浙江林学院,2009
    222.于未名,陈建爱,孙永堂,等.六种土传病原真菌被木霉抑制作用机理的初步研究[J].中国生物防治,1999,15(3):142-143
    223.王学德,俞碧霞,黄秀国,等.影响棉花纤维品质的土壤养分[J].棉花学报,1993,5(2):45-48
    224.王以光.抗生素多学科研究入门[M].北京:人民卫生出版社,1998
    225.王玉萍,赵杨景,邵迪,杨峻山.西洋参根系分泌物的初步研究[J].中国中药杂志,2005,30(3):229-231
    226.王郁铨,李国红,吴峰,等.温室食荚豌豆连作研究[J].天津农业科学,1996(4):10-12
    227.王古哲,赵殿忱,王刚,等.有机肥对黑土耕层土壤养分的影响[J].土壤通报,2009,40(3):555-557
    228.吴蔼民,顾本康,傅正擎,等.内生菌73a防治棉花黄萎病机理[J].江苏农业学报,2002,18(1):48-51
    229.吴洪生.西瓜连作土传枯萎病微生物学机理及其生物防治[D].南京:南京农业大学,2008
    230.吴愉萍.基于磷脂脂肪酸(PLFA)分析技术的土壤微生物群落结构多样性研究[D].杭州:浙江大学,2009
    231.吴玉香,沈晓佳,房卫平,等.陆地棉根系分泌物对黄萎病菌生长发育的影响[J].棉花学报,2007,19(4):286-290
    232.席琳乔,王静芳,马金萍,等.棉花根际解磷菌的解磷能力和分泌有机酸的初步测定[J].微生物学杂志,2007,27(5):70-74
    233.夏正俊,顾本康,吴蔼民,等.棉株植物内生菌诱导棉花抗黄萎病过程中同工酶活性的变化[J].江苏农业学报,1997,13(2):99-101
    234.谢大森,陈家旺.西瓜枯萎病研究进展[J].江西农业大学学报,1997,4:42-45
    235.徐瑞富,陆宁海,李小丽,等.土壤微生物群落对棉花黄萎病的影响[J].棉花学报,2004,16(6):357-359
    236.徐瑞富,陆宁海,张定法,等.土壤不同微生物量对木霉菌定殖的影响和木霉菌生态学习性研究[J].中国生态农业学报,2007,15(1):207-208
    237.杨代刚,周家澍,肖忠珍,等.江汉平原棉花黄萎病危害损失及其防治措施初探[J].中国棉花,2000,27(4):12-14
    238.杨合同,王少杰,许勃.荧光假单胞菌与植物病害生物防治[J].山东科学,1993,6(3):50-56
    239.杨家荣,杨之为.加强棉花黄萎病防治的建议[J].陕西农业科学,1997(6):3643
    240.杨丽娟,须晖,丘忠祥,等.菜园土壤酶活性与黄瓜产量之间的关系[J].植物营养与肥料学报,2000,6,113-116
    241.杨兴明,徐阳春,黄启为,等.有机(类)肥料与农业可持续发展和生态环境保护[J].土壤学报,2008,45(5):925-932
    242.杨之为,王汝贤,宗照锋,等.棉花枯萎病抑菌土成因初探,Ⅰ.棉花根系分泌物对枯萎病菌的影响[J].西北农业学报,1995,4(4):63-68
    243.姚耀文,马存,谭永久,等.长江流域棉区棉花黄萎病发生消长与气象因子关系的研究[J].中国农业科学,1986,19(3):59-64
    244.叶素芬.黄瓜根系自毒物质对其根系病害的助长作用及其缓解机制研究[D].杭州:浙江大学,2004
    245.尹梦婷.阿克苏棉区土壤微生物多样性分析及棉花黄萎病生防菌的筛选[D].石河子:石河子大学,2008a
    246.尹梦亭,赵思峰,张昭泽,等.防治棉花黄萎病生防菌的筛选及其防治效果评价[J].新疆农业科学,2008b,45(6):1126-1129
    247.殷博.几种作物根系分泌物对土壤微生物的影响[D].哈尔滨:黑龙江大学,2009
    248.喻景权,松井佳久.豌豆根系分泌物自毒作用的研究[J].园艺学报,1999,26(3):175-179
    249.喻景权,杜尧舜.蔬菜设施栽培可持续发展中的连作障碍问题[J].沈阳农业大学学报,2000,31(1):124-126
    250.袁虹霞,李洪连,王烨,等.棉花不同抗性品种根系分泌物分析及其对黄萎病菌的影响[J].植物病理学报,2002,32(2):127-131
    251.湛方栋.烤烟根际微生物的群落结构及其动态变化的研究[D].重庆:西南农业大学,2004
    252.张桂寅.棉花黄萎病抗性表现及其基因表达的研究[D].保定:河北农业大学,2005:52
    253.张慧,杨兴明,冉炜,等.土传棉花黄萎病拮抗菌的筛选及其生物效应[J].土壤学报,2008a,45(6):1095-1101
    254.张慧.防治棉花黄萎病微生物有机肥的研制及其生物效应[D].南京:南京农业大学,2008b
    255.张莉.棉花生防芽孢杆菌A57、A178的抑菌机理、拮抗活性物质及防病、促生作用[D].新疆农业大学,2007
    256.张莉.新疆棉花枯、黄萎病菌群体变异监测及分子检测[D].杨凌:西北农林科技大学,2004
    257.张丽娟,周治国.棉纤维品质指标对成纱强力的影响[J].棉花学报,2005,17(1):63,封三
    258.张丽萍.新疆棉花黄萎病发病规律及品种抗性的研究[D].石河子:石河子大学,2006a
    259.张丽萍,李国英,刘政.不同灌水方式对棉花黄萎病发病的影响[J].石河子大学学报,2006b,24(2):191-192
    260.张平究.不同生态条件下土壤微生物生物化学和分子生态变化及其土壤质量指示意义:以太湖地区水稻土和西南喀斯特土壤为例[D].南京:南京农业大学,2006
    261.张秋英.植物根系分泌物的作用及其意义[J].作物杂志,1992(3):37-39
    262.张瑞福,崔中利,李顺鹏.土壤微生物群落结构研究方法进展[J].土壤,2004,36:476-480
    263.张树生,杨兴明,黄启为,等.施用氨基酸肥料对连作条件下黄瓜的生物效应及土壤生物性状的影响[J].土壤学报,2007,44(4):689-694
    264.张伟,吕新,李鲁华,等.新疆棉田膜下滴灌盐分运移规律[J].农业工程学报,2008,24(8):15-19
    265.张信娣,曹慧,徐冬青,等.光合细菌和有机肥对土壤主要微生物类群和土壤酶活性的影响[J].土壤,2008,40(3):443-447
    266.张绪振,张树琴,陈吉隶.我国棉花黄萎病菌“种”的鉴定[J].植物病理学报,1981,11(3):13-18
    267.张学利,杨树军,刘亚萍,等.章古台固沙林主要树种根际土壤性质研究[J].中国沙漠,2004,24(1):72-76
    268.张学利,杨树军,张百习,等.不同感病等级樟子松根际与非根际土壤性质对比研究[J].林业科学研究,2006,19(1):76-79
    269.张玉勋,王道本,彭于发.生防细菌D93菌株在小麦根部定殖的研究[J].华中农业大学学报,1996,15(1):18-23
    270.张玉勋,李光,张光明.拮抗细菌在大棚温室番茄叶片定殖及对灰霉病害的控制效果[J].植物病理学报,2000,30(1):25-27
    271.章元寿,王建新,方中达.大丽轮枝菌毒素致萎活性成分的研究[J].真菌学报,1990,9(1):69-72
    272.赵思峰.滴灌条件下加工番茄根腐病发生原因分析及生防菌防病机制研究[D].杭州:浙江大学,2007
    273.赵小亮,刘新虎,贺江舟,等.棉花根系分泌物对土壤速效养分和酶活性及微生物数量的影 响[J].西北植物学报,2009,29(7):1426-1431
    274.中国农业科学院棉花研究所.中国棉花育种学[M].济南:山东科学技术出版社,2003
    275.钟文辉,蔡祖聪.土壤微生物多样性研究方法[J].应用生态学报,2004,15:899-904
    276.周桂生,封超年,陈后庆,等.气象因子对棉纤维品质影响的研究进展[J].棉花学报,2003,15(6):372-375
    277.周海花.利用PCR-DGGE分析直流电场对土壤微生物群落的影响研究[D].东华大学,2008
    278.周伟.基于PCR-DGGE方法的集约化土壤细菌遗传多样性分析[D].郑州:郑州大学,2007
    279.朱伟光,李德葆,葛起新.植物病原细菌拮抗菌及其拮抗物质测定:Bacillus cereus G35的产素特性与质粒关系[J].浙江农业大学学报,1990,16(4):345-350
    280.庄敬华,杨长城,牟连晓,等.十壤不同处理对木霉菌定殖及其生防效果的影响[J].植物保护,2005,31(6):42-44
    281.甄文超,曹克强,代丽等.连作草莓根系分泌物自毒作用的模拟研究[J].植物生态学报,2004,28(6):828-832
    282.宗兆锋,卫亚红,高利,等.几丁质降解放线菌对棉花枯、黄萎菌的作用[J].西北农林科技大学学报(自然科学版)2003,31(6):63-65
    283.邹丽芸.西瓜根系分泌物对西瓜植株生长的自毒作用[J].福建农业科技,2005(4):30-31
    284.邹勇,周鑫,王落霞,等.江汉植棉区黄萎病发病规律研究初报[J].中国棉花,1997,24(10):10-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700