用户名: 密码: 验证码:
流域泥沙动力学机理与过程模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从雨滴降落到地面接触土壤并产生地表径流起,土壤侵蚀和产沙开始发生,之后被剥离的土壤作为泥沙随水流运动,并由沿程冲刷和淤积补充或削减,汇入大江大河,并到达河口进入海洋。泥沙从在地表被剥离到进入海洋的这个生命周期在一个流域中是连续的物理过程。流域泥沙动力学指包括流域面的土壤侵蚀和不同级别沟道河道的泥沙运动在内的流域内泥沙产生、输移和沉积的连续全过程的动力学理论体系与模拟方法。本文以黄河中游多沙粗沙区为例,采用基于动力学的分析与建模方法,实现了流域内泥沙运动全过程模拟。
     首先,借鉴相关学科已有成果,对多沙粗沙区流域泥沙过程机理进行分析。指出区分不同地貌组成和侵蚀产沙过程,分别建立相应模拟模型并合理集成是完成具有动力学意义的泥沙过程模拟的基础。在所研究区域,这些模型应包括坡面产流产沙模型、沟道水沙演进模型和重力侵蚀模型等。
     论文将坡面作为基本单元建立了以描述超渗产流过程为主的降雨径流模型,改进并进一步验证了一种基于过程的坡面土壤侵蚀模型。这个土壤侵蚀模型将地表径流作为侵蚀过程的驱动力,考虑了水流强度、土壤可蚀性和微地貌形态的影响。为计算无断面资料沟道中的水流演进和泥沙冲淤过程,提出了采用扩散波方法和悬移质不平衡输沙模式的模拟方法。同时,明确了已有重力侵蚀模型在流域中的运用方式。
     为使这些模型按水沙运动的顺序集成运行,并提供其在流域尺度应用时需要的计算能力,提出了一种基于二叉树的树状河网编码方法,并在其基础上实现了计算机集群上的流域并行计算。
     最后,将模型在流域中率定和检验,证明了其模拟流域水沙过程的有效性,并得到了坡面侵蚀、重力侵蚀和沟道侵蚀在流域中的分布及三者的比例关系。进一步,使用模型模拟结果初步解释了流域泥沙过程中尺度现象的形成原因,指出重力侵蚀对尺度现象的贡献最为显著;设定不同情景分析了土壤侵蚀在不同降雨变化下的响应,指出在流域内降雨量减少的情景下,径流量减少的幅度大于侵蚀量的减少幅度。
Soil erosion and sediment yield start when rain drops reach ground surface and then runoff yields. Splash detached particles are then carried by flow discharge as sediment, which is replenished or reduced by scouring or deposition along hillslopes, different orders of channels and rivers, and finally enter the sea. The life cycle of sediment from detachment in highlands to deposition in rivers or the sea is a continuous physical process. The subject of river basin sediment dynamics aims at the mechanism and integrated simulation of the whole process of sediment yield, transport and deposition, including soil erosion in highlands, non-equilibrium sediment transport in channels and rivers, etc. Taking the coarse sediment source region in the middle Yellow River as the example, this dissertation achieved the simulation of continous sediment processes based on dynamic principles and modeling approaches.
     Firstly, the mechanism of sediment processes in the coarse sediment source region was analysed on the basis of existing researches. The fundamental of dynamic modeling of sediment processes was pointed out that different geomorphological positions and different sub-processes must be identified and be modeled separately. In the studied region, the sub-models consist of rainfall- runoff-soil erosion model for hillslopes, flow routing and non-equilibrium sediment transport model for channels, and gravitational erosion model for gully regions.
     The proposed rainfall-runoff model mainly simulates infiltration-excess runoff in hillslopes, and a process-oriented soil erosion model was improved to simulate hydraulic erosion process by taking surface flow intensity, soil erodibility, and micro relief into account. Flow discharge in channels was routed by using a 1D diffusive wave method, and sediment transport was simulated according to non-equilibrium transport of suspended load. An existing gravitational erosion model was integrated in simulation for river basins by proposing several adptive treatments.
     To integrate and run the sub-models following the sequence of flow routing and sediment transport among simulation units, a binary tree-based methodology of drainage network codification was proposed. Based on the methodology, a PC cluster-based parrellel computing scheme was achieved following the MPI standard to provide sufficient computing capacity for simulation of large-scale basins.
     Further more, the integrated model system was calibrated and applied in a watershed and a river basin. The results of hydrographs and sediment graphs in hydrological stations proved effectiveness of the model, and more results were provided including the distributions of hillslope erosion, gravitational erosion, and channel erosion, and their propotions.
     Finally, simulated results were used to explain the cause of scale effects in sediment processes, and such was revealed that gravitational erosion occurs in specific scales and contributes most to scale effects. Different scenarios were set to analyze the responses of soil erosion and sediment dynamics on the change of rainfall pattern, and it was found out that if rainfall amount decreases and intensity increases, runoff will decrease with amplitude larger than that of the decrease of soil erosion.
引文
[1] Abbott M. B., Bathurst J. C., Cunge J. A., O’Connell P. E. and Rasmussen J. 1986. An introduction to the European hydrological system– Systeme Hydrologique Europeen,“SHE”, 2: structure of a physically-based, distributed modeling system. Journal of Hydrology. 87: 61-77
    [2] Allen, M.R. and Ingram, W.J., Constraints on future changes in climate and the hydrologic cycle. Nature, 2002, 419: 224-232
    [3] Asselman, N.E.M., Middlekoop, H., and Dijk, P.M., The impact of changes in climate and land use on soil erosion, transport and deposition of suspended sediment in the River Rhine. Hydrological Processes, 2003, 17: 3225-3244
    [4] Bingner, R.L. and Theurer, F.D. 2005. AnnAGNPS technical processes documentation, Version 3.2, USDA-ARS National Sedimentation Laboratory & USDA-NRCS National Water and Climate Center
    [5] Britton, P. 2002. Review of Existing River Coding Systems for River Basin Management and Reporting, WFD GIS Working Group: European Coding Systems Task Group, http://193.178.1.168/River_Coding_Review.htm
    [6] Cao, Z.X., Pender, G., and Meng, J. 2006. Explicit formulation of the Shields diagram for incipient motion of sediment, Journal of Hydraulic Engineering, 132(10), 1097-1099
    [7] Cappelaere, B. 1997. Accurate diffusive wave routing. Journal of Hydraulic Engineering. 123(3): 174-181.
    [8] Chen, C.N., Tsai, C.H., and Tsai, C.T. 2006. Simulation of sediment yield from watershed by physiographic soil erosion–deposition model. Journal of Hydrology. 327: 293– 303.
    [9] Chu, S.T. 1978. Infiltration during an unsteady rain. Water Resources Research. 14(3): 461-466.
    [10] Claps, P., Fiorentino, M., and Oliveto, G. 1996. Informational entropy of fractal river networks. Journal of Hydrology. 187: 145-156.
    [11] Cui, G., Williams, B., and Kuczera, G. 1999. A stochastic Tokunaga model for stream networks. Water Resources Research. 35(10): 3139-3147.
    [12] Dabral, S. and Cohen, M. 2001. ANSWERS-2000: Areal Non-point Source Watershed Environmental Response Simulation with Questions graphical user Interface. Simulation of Small Agricultural Watersheds Project Report. http://www.agen.ufl.edu/klc/abe6254/ answers01.pdf.
    [13] De Roo, A.P.J., et al. 1996. LISEM: a single event physical based hydrologic and soilerosion model for drainage basins: Theory, input and output. Hydrological Processes. 10(8): 1107-1117.
    [14] Flangan, D. C. and Nearing, M. A. 1995. USDA - Water Erosion Prediction Project: hillslope profile and watershed model documentation. USDA-ARS, NSERL, Report no.10. USDA-ARS, Indiana, USA.
    [15] Garbrecht, J. and Martz, L.W. 1999. TOPAZ overview. Oklahoma: USDA ARS, Grazinglands Research Laboratory: 1-22.
    [16] Gupta, V. K., Waymire, E., and Wang, C. T. 1980. A representation of an instantaneous unit hydrograph from geomorphology. Water Resources Research. 16(5): 855-862.
    [17] Haynes, R.J. 2000. Interactions between soil organic matter status, cropping history, method of quantification and sample pretreatment and their effects on measured aggregate stability. Biology and Fertility of Soils. 30: 270-275.
    [18] Heppner, C.S., Ran, Q., VanderKwaak, J.E., and Loague, K. 2006. Adding sediment transport to the integrated hydrology model (InHM): Development and testing. Advances in Water Resources. 29: 930-943.
    [19] Heppner, C.S., Loague, K., and VanderKwaak, J.E. 2007. Long-term InHM simulations of hydrologic response and sediment transport for the R-5 catchment. Earth Surface Processes and Landforms. 32: 1273–1292.
    [20] Horton, R.E. 1945. Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Geol. Soc. Am. Bull. 56: 275-370.
    [21] Hulme, M. 1995. Estimating global changes in precipitation. Weather, 50(2): 34-42.
    [22] Hung, C.P. and Wang, R.Y. 2005. Coding and distance calculating of separately random fractals and application to generating river networks. Fractals. 13(1): 57-71.
    [23] Jain, M.K., Kothyari, U.C., and Ranga Raju, K.G. 2005. GIS based distributed model for soil erosion and rate of sediment outflow from catchments. Journal of Hydraulic Engineering. 131(9): 755-769.
    [24] Kharin, V.V., Zwiers, F.W., Zhang, X., and Hegerl G.C. 2007. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. Journal of Climate, 20: 1419-1444.
    [25] Kinnell, P.I.A. 2005. Raindrop-impact-induced erosion processes and prediction: a review. Hydrological Processes. 19: 2815-2844.
    [26] Knisel, W. G. 1980. CREAMS: A field?scale model for chemical, runoff, and erosion from agricultural management systems. Conservation Report No. 26. Washington, D.C.: USDA Science Education Administration.
    [27] Kristensen, K. J. and Jensen, S. E. 1975. A model for estimating actual evapotranspiration from potential evapotranspiration. Nordic Hydrology. (6): 70-88.
    [28] Leonard, R. A., Knisel, W. G., and Still, D. A. 1987. GLEAMS: Groundwater loading effects of agricultural management systems. Trans. ASAE 30(5): 1403-1418.
    [29] Loague, K., Heppner, C.S., Abrams, R.H., Carr, A.E., VanderKwaak, J.E., and Ebel, B.A. 2005. Further testing of the Integrated Hydrology Model (InHM): event-based simulations for a small rangeland catchment located near Chickasha, Oklahoma. Hydrological Processes. 19(7): 1373-1398.
    [30] Morgan, R.P.C. 2001. A simple approach to soil loss prediction: a revised Morgan– Morgan– Finney model. Catena. 44: 305–322.
    [31] Morgan, R.P.C. and Duzant J.H. Modified MMF (Morgan–Morgan–Finney) model for evaluating effects of crops and vegetation cover on soil erosion. Earth Surface Processes and Landforms. 32: 90-106.
    [32] Morgan, P.R.C., Quinton, J.N., Smith, R.E., Govers, G., Poesen, J.W.A., Auerswald, K., Chisci, G., Torri, D., and Styczen, M.E. 1998. The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms. 23: 527–544.
    [33] New, M., Hulme, M., and Jones, P. 2000. Representing twentieth-century space–time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. Journal of Climate. 13: 2217-2238.
    [34] Oberg-Hogsta. 1998. Comparison of Matrix Suction Values with Water Retention Curves at Three Test Sites, Proceeding of the Second International Conference on Unsaturated Soils, Beijing, (2): 368-373.
    [35] Osman, A. M. and Thorne, C. R. 1988. Riverbank stability analysis I: theory. Journal of Hydraulic Engineering, ,114 (2): 134-150
    [36] Parlange, J.Y., Lisle, I., Braddock, R. D. and Smith, R. E. 1978. The three-parameter infiltration equation. Soil Science. 133(6): 337-341
    [37] Peckham, S.D. New results for self-similar trees with applications to river networks, Water Resources Research, 1995, 31(4): 1023-1029
    [38] Pfafstetter, O. 1989. Classification of hydrographic basins: coding methodology. unpublished manuscript. Brazil: Departamento Nacional de Obras de Saneamento.
    [39] Rachman, A., Anderson, S.H., Gantzer, C.J., and Thompson, A.L. 2003. Influence of long-term cropping systems on soil physical properties related to soil erodibility. Soil Science Sociaty of America Journal. 67(2): 637-644.
    [40] Ran, Q., Heppner, C.S., VanderKwaak, J.E., and Loague, K. 2007. Further testing of the integrated hydrology model (InHM): multiple-species sediment transport. Hydrological Processes. 21: 1522–1531.
    [41] Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., and Yoder, D.C. 1997.Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook Number 703, USDA Agricultural Research Service.
    [42] Salles, C. and Poesen, J. 2000. Rain properties controlling soil splash detachment. Hydrological Processes. 14: 271-282.
    [43] Schumm, S.A. 1977. The fluvial system[M]. John Wiley & Sons. New York: 1-10
    [44] Strahler, A.N. 1964. Quantitative geomorphology of drainage basins and channel networks. In Handbook of Hydrology, Ed. Chow, V.T. McGraw-Hill, New York: Chapter 4-11.
    [45] Tang, X. Knight, D. W. and Samuels, P. G. 1999. Volume conservation in variable parameter Muskingum-Cunge Method. Journal of Hydraulic Engineering. 125(6): 610-620.
    [46] Torri, D. 1996. Slope, Aspect and surface storage. In: Menachem Agassi, ed. Soil Erosion, Conservation, and Rehabilitation, New York, USA: Marcel Dakker Inc, 77-106.
    [47] Van Dijk, A.I.J.M., Bruijnzeel, L.A., and Eisma, E.H. 2003. A methodology to study rain splash and wash processes under natural rainfall. Hydrological Processes. 17: 153-167.
    [48] Van Dijk, A.I.J.M. and Bruijnzeel, L.A. 2003. Terrace erosion and sediment transport model: a new tool for soil conservation planning in bench-terraced steeplands. Environmental Modelling & Software. 18: 839–850.
    [49] VanderKwaak, J.E. 1999. Numerical simulation of flow and chemical transport in integrated surface–subsurface hydrologic systems. PhD dissertation, Department of Earth Sciences, University of Waterloo, Ontario, Canada.
    [50] VanderKwaak, J.E. and Loague, K. 2001. Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model. Water Resources Research. 37(4): 999-1013.
    [51] Veitzer, S.A. and Gupta, V.K. Random self-similar river networks and derivations of generalized Horton laws in terms of statistical simple scaling, Water Resources Research, 2000, 36(4): 1033-1048.
    [52] Verdin, K.L. and Verdin, J.P. 1999. A topological system for delineation and codification of the Earth's river basins. Journal of Hydrology. 218: 1-12.
    [53] Visser, S.M., Sterk, G., and Karssenberg, D. 2005. Modelling water erosion in the Sahel: application of a physically based soil erosion model in a gentle sloping environment. Earth Surface Processes and Landforms. 30: 1547–1566.
    [54] Wang, Z.G., Zheng, H.X., Liu, C.M., Wu, X.F., and Zhao, W.M. 2004. A distributed hydrological model with its application to the Jinghe watershed in the Yellow River Basin. Science in China Ser. E. 47(supp. I): 60-71.
    [55] West, T.O. 1999. Modeling Carbon and Nitrogen Dynamics in Disturbed Ecosystems: ACase Study of Coal Surface-Mined Lands in Eastern Ohio, Ph. D. Thesis, The Ohio State University, Columbus, OH, U.S.A.
    [56] West, T.O. and Wali, M.K., Modeling regional carbon dynamics and soil erosion in disturbed and rehabilitated ecosystems as affected by land use and climate. Water, Air, and Soil Pollution, 2002, 138: 141-163
    [57] Wicks, J.M. and Bathurst, J.C. 1996. SHESED: A physically based, distributed erosion and sediment yield component for the SHE hydrological modelling system. Journal of Hydrology. 175: 213–238.
    [58] Williams, J.R. and LaSeur W.V. 1976. Water yield model using SCS curve numbers. J. Hydraulics Division, ASCE 102(HY9): 1241?1253.
    [59] Williams, J.R., Shaffer, J.M., Renard, K.G., Foster, G.R., Laflen, J.M., Lyles, L., Onstad, C.A., Sharpley, A.N., Nicks, A.D., Jones, C.A., Richardson, C.W., Dyke, P.T., Cooley, K.R., and Smith, S.J. 1990. EPIC ? erosion/productivity impact calculator: 1. Model documentation. Technical Bulletin No. 1768. Washington, D.C.: USDA?ARS.
    [60] Wischmeier, W.H., and Smith, D.D. 1978. Predicting rainfall erosion losses—a guide to conservation planning. U.S. Department of Agriculture, Agriculture Handbook No. 537.
    [61] Woolhiser, D.A., Smith, R.E. and Goodrich, D.C. 1990. KINEROS: A kinematic runoff and erosion model: documentation and user manual. USDA Agricultural Research Service.
    [62] Yang, D., Kanae, S., Oki, T., Koike, T., and Musiake, K. 2003. Global potential soil erosion with reference to land use and climate changes. Hydrological Processes. 17: 2913-2928.
    [63] Young, R.A., Onstad, C.A., Bosch, D.D., and Anderson, W.P. 1989. AGNPS: A nonpoint-source pollution model for evaluating agriculture watersheds. Journal of Soil and Water Conservation. 44:168-173.
    [64]安文芝,祝玲敏,周文强,高丽莉. 2006.西北地区降水特征及变化规律分析.干旱地区农业研究. 24(4): 194-199.
    [65]蔡强国,陈浩. 1989.降雨历史和前期土壤含水量对溅蚀的影响.黄河粗泥沙来源及侵蚀产沙机理研究论文集.北京:气象出版社
    [66]蔡强国,陆兆熊,王贵. 1996.黄土丘陵沟壑区典型小流域侵蚀产沙过程模型.地理学报. 51(2): 108-117.
    [67]陈浩,陆中臣,李忠艳,周金星. 2003.流域产沙中的地理环境要素临界.中国科学(D辑). 33(10): 1005-1012
    [68]陈浩,陆中臣,周金星,黄建国,梁广林. 2004.黄河中游环境要素对流域产沙影响的交互作用.泥沙研究. (2): 40-46
    [69]陈彰岑,于德广等. 1998.黄河中游多沙粗沙区快速治理模式的实践与理论.郑州:黄河水利出版社
    [70]程琴娟,蔡强国,胡霞. 2007.不同粒径黄绵土的溅蚀规律及表土结皮发育研究.土壤学报. 44(3): 392-396
    [71]党进谦,李靖. 2001.非饱和黄土的结构强度与抗剪强度.水利学报. (7): 79-83.
    [72]党进谦,李靖. 1996.含水量对非饱和黄土强度的影响.西北农业大学学报. 24(1): 57-60.
    [73]邓利,李铁键,刘家宏,王光谦. 2007.数字流域河网编码方法应用实例.泥沙研究. (3): 68-72
    [74]窦国仁. 1960.论泥沙起动流速.水利学报. (4): 44-60.
    [75]费祥俊. 1988.伪均质浆体的层流阻力与过滤流速.泥沙研究. (3): 76-85
    [76]费祥俊. 1991.黄河中下游含沙水流粘度的计算模型.泥沙研究. (2): 1-13
    [77]费祥俊,邵学军. 2004.泥沙源区沟道输沙能力的计算方法.泥沙研究. (1):1-8
    [78]傅抱璞. 1981.土壤蒸发的计算.气象学报. 39(2): 226-236
    [79]傅伯杰,陈利顶,邱扬,王军,孟庆华. 2002.黄土丘陵沟壑区土地利用结构与生态过程.北京:商务印书馆
    [80]高清竹,江源,李立业.黄河中游砒砂岩地区皇甫川流域气候变化特征分析.干旱区资源与环境, 2005, 19(1): 116-121
    [81]郭生练,程肇芳. 1992.平原水网区陆面蒸发的计算.水利学报. (10): 68-72
    [82]贺莉,王光谦,李铁键. 2007.黄河流域产水产沙系统的划分及中游重点区的编码.泥沙研究.已接收
    [83]黄河水利委员会. 1961.黄河流域子洲径流实验站水文实验资料(1959年).
    [84]黄河水利委员会. 1963.黄河流域子洲径流实验站水文实验资料(1960年至1962年).
    [85]黄河水利委员会. 1971.黄河流域子洲径流实验站水文实验资料(1967年至1969年).
    [86]黄河水利委员会. 1979.黄河流域水文资料(1977年).
    [87]黄河水利委员会. 1989.黄河流域地图集.北京:中国地图出版社.
    [88]贾晓红,李新荣,肖洪浪,张景光,李珂. 2005.干旱沙区春小麦灌溉量研究.干旱地区农业研究. 23(4): 159-164.
    [89]贾仰文,王浩,王建华,罗翔宇,周祖昊,严登华,秦大庸. 2005.黄河流域分布式水文模型开发和验证.自然资源学报. 20(2): 300-308.
    [90]蒋定生. 1997.黄土高原水土流失与治理模式.北京:中国水利水电出版社: 52-53.
    [91]景可,李钜章,李凤新. 1997.黄河中游粗沙区范围界定研究.土壤侵蚀与水土保持学报. 3(3): 10-15.
    [92]李景玉,张楠,王荣彬. 2006.黄河流域土壤侵蚀产沙模型研究进展.地理科学进展. 25(2): 103-111.
    [93]李铁键,刘家宏,和杨,王光谦. 2006.集群计算在数字流域模型中的应用.水科学进展. 17(6): 841-846
    [94]李雪梅,杨汉颖,林银平等. 1999.黄河中游多沙粗沙区区域界定.人民黄河. 21(12): 9-11.
    [95]李志,刘文兆,杨勤科,梁伟,李双江,甘卓亭,王锐,王兵. 2006.黄土沟壑区小流域土地利用变化及驱动力分析.山地学报. 24(1): 27-32
    [96]刘春,白世伟,赵洪波. 2003.粘性土土性指标的统计规律研究.岩土力学. (10): 180-184.
    [97]刘东生等. 2985.黄土与环境.北京:科学出版社.
    [98]刘引鸽. 2007.陕北黄土高原降水的变化趋势分析.干旱区研究. 24(1): 49-55.
    [99]刘卓颖,倪广恒,雷志栋,王玲. 2005.黄土高原地区小尺度分布式水文模型研究.人民黄河. 27(10): 19-21.
    [100]刘卓颖,倪广恒,雷志栋,王玲. 2006.黄土高原地区中小尺度分布式水文模型.清华大学学报(自然科学版). 46(9): 1546-1550.
    [101]卢肇钧. 1999.粘性土抗剪强度研究的现状与展望.土木工程学报. 32 (4): 1-9.
    [102]罗文强,龚珏,杨瑞琰. 1998.一次二阶矩方法在斜坡稳定性概率评价中的应用.地球科学. 23(6): 639-642.
    [103]罗文强,黄润秋,张倬元等. 2000.几种边坡可靠性数学模型的对比.山地学报. 18(1): 42-46.
    [104]罗翔宇,贾仰文,王建华,王浩,秦大庸,周祖昊. 2006.基于DEM与实测河网的流域编码方法.水科学进展. 17(2): 259-264.
    [105]彭文英,张科利,江忠善,孔亚平. 2002.黄土高原坡耕地退耕还草的水沙变化特征.地理科学. 22(4): 397-402.
    [106]钱宁,王可钦,阎林德,府仁寿. 1980.黄河中游粗泥沙来源区对黄河下游冲淤的影响.第一次河流泥沙国际学术讨论会论文集: 53-62.
    [107]钱宁. 1989.高含沙水流运动.北京:清华大学出版社.
    [108]人民引洛渠高含沙量浑水淤灌组. 1978.人民引洛渠高含沙量浑水淤灌经验总结.黄河泥沙研究报告选编,第一集上册.
    [109]沙际德,蒋允静. 1995.试论初生态侵蚀性坡面薄层水流的基本动力特性.水土保持学报. 9(4): 29-35
    [110]沙玉清. 1965.泥沙运动学引论.北京:中国工业出版社: 302-310.
    [111]宋连春,张存杰. 20世纪西北地区降水量变化特征.冰川冻土, 2003, 25(2): 143-148
    [112]孙福宝. 2007.基于Budyko水热耦合平衡假设的流域蒸散发研究[博士学位论文].北京:清华大学水利系.
    [113]汤立群,陈国祥,蔡名扬. 1990.黄土丘陵区小流域产沙数学模型.河海大学学报.18(6): 10-16.
    [114]唐存本. 1963.泥沙起动规律.水利学报. (2): 1-12.
    [115]唐政洪,蔡强国. 2002.我国主要土壤侵蚀产沙模型研究评述.山地学报, 2002, 20(4): 466-475.
    [116]王存荣,冉大川,刘斌,罗全华,张志萍.降水偏小对河龙区间晋西北片各支流综合治理减沙量的影响分析.水土保持通报, 2003, 23(5): 6-10.
    [117]王光谦,李铁键,薛海,贺莉. 2006a.流域泥沙过程机理分析.应用基础与工程科学学报, 14(4):455-462.
    [118]王光谦,刘家宏. 2006b.数字流域模型.北京:科学出版社.
    [119]王光谦,张长春,刘家宏,魏加华,薛海,李铁键. 2006c.黄河流域多沙粗沙区植被覆盖变化与减水减沙效益分析.泥沙研究. (2): 10-16.
    [120]王光谦,刘家宏,李铁键. 2005a.黄河数字流域模型原理.应用基础与工程科学学报. 13(1): 1-8.
    [121]王光谦,薛海,李铁键. 2005b.黄土高原沟坡重力侵蚀的理论模型.应用基础与工程科学学报. 13(4): 335-344.
    [122]王光谦,王思远,陈志祥. 2004.黄河流域的土地利用和土地覆盖变化.清华大学学报(自然科学版). 44(9): 1218-1222.
    [123]王浩,王建华,秦大庸,贾仰文. 2006.基于二元水循环模式的水资源评价理论方法.水利学报. 37(12): 1496-1502.
    [124]王腊春,彭鹏,周寅康,都金康. 1997.温润地区平原圩区产流机制研究.南京大学学报(自然科学). 33(1): 156-160.
    [125]王文龙,莫翼翔,雷阿林,李占斌,唐克丽. 2003b.坡面侵蚀水沙流时间变化特征的模拟实验.山地学报. 21(5): 610-614
    [126]王兴奎,钱宁,胡维德. 1982.黄土丘陵沟壑区高含沙水流的形成及汇流过程.水利学报. (7): 26-35
    [127]王兴奎,徐世涛,李丹勋,王殿常. 2001.黄土丘陵沟壑区降雨产流产沙特性及治理模式.清华大学学报(自然科学版). (8): 107-109
    [128]王占礼,黄新会,牛振华. 2004.国内主要流域侵蚀产沙模型评述.水土保持研究. 11(4): 28-33.
    [129]王兆印,王光谦,李昌志,王费新. 2003.植被—侵蚀动力学的初步探索和应用.中国科学(D辑). 33(10): 1013-1023
    [130]夏清. 2007.集群计算方法在流域水文过程模拟中的应用[硕士学位论文].北京:清华大学水利系.
    [131]徐建华,李光圻,甘枝茂. 2000.黄河中游多沙粗沙区区域界定.中国水利. (12): 37-38.
    [132]徐建华,李雪梅,张培德等. 1998.黄河粗泥沙界限与中游多沙粗沙区区域研究.泥沙研究. (4): 36-46.
    [133]徐建华,林银平,吴成基,喻权刚,左仲国等. 2006.黄河中游粗泥沙集中来源区界定研究.郑州:黄河水利出版社
    [134]徐为群,倪晋仁,徐海鹏,金德生. 1995a.黄土坡面侵蚀过程实验研究——I.产流产沙过程.水土保持学报, 9(3): 9-18
    [135]徐为群,倪晋仁,徐海鹏,金德生. 1995b.黄土坡面侵蚀过程实验研究——II.坡面形态过程.水土保持学报, 9(3): 19-28
    [136]徐卫亚,张志腾. 1995.滑坡失稳破坏概率及可靠度研究.灾害学. 10(4): 33-37.
    [137]徐雪良. 1987.韭园沟流域沟间地、沟谷地来水来沙量的研究.中国水土保持. (08): 23-26
    [138]许继军,杨大文,刘志雨,雷志栋. 2007.长江上游大尺度分布式水文模型的构建及应用.水利学报. 38(2): 182-190
    [139]许炯心. 2004.黄土高原丘陵沟壑区坡面—沟道系统中的高含沙水流(I).自然灾害学报. 13(1): 55-60.
    [140]许炯心,孙季. 2006.无定河水土保持措施减沙效益的临界现象及其意义.水科学进展. 17(5): 610-615.
    [141]薛海. 2006.基于数字流域的产沙模型[博士学位论文].北京:清华大学水利系.
    [142]严蔚敏,吴伟民. 1997.数据结构.北京,清华大学出版社: 126-126.
    [143]杨大文,李翀,倪广恒,胡和平. 2004.分布式水文模型在黄河流域的应用.地理学报. 59(1): 143-154.
    [144]杨国录. 1993.河流数学模型.北京.海洋出版社: 78-80.
    [145]杨树清. 1996.论河渠边界和水流阻力的计算.水利学报. (6): 62-68.
    [146]杨涛,张鹰,陈界仁,何姗. 2005.基于数字平台的黄河多沙粗沙区分布式水文模型研究——以黄河岔巴沟流域为例.水利学报. 36(4): 456-460.
    [147]杨文治,邵明安. 2000.黄土高原土壤水分研究.北京:科学出版社: 32-33, 136-137.
    [148]姚文艺,汤立群. 2001.水力侵蚀产沙过程及模拟.郑州:黄河水利出版社. (10): 132-134.
    [149]张伯平,袁海智,王力. 1994.含水量对黄土结构强度影响的定量分析.西北农业大学学报. 22 (1): 54-60.
    [150]张仁等. 1995.拦减粗泥沙对黄河河道冲淤变化影响.清华大学水利水电工程系.
    [151]张天曾. 1993.黄土高原论纲.北京:中国环境科学出版社.
    [152]赵人俊. 1984.流域水文模型——新安江模型与陕北模型.北京:水利电力出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700