用户名: 密码: 验证码:
现代黄河三角洲沉积物波浪动力响应过程对其再悬浮控制作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋动力作用下现代黄河三角洲沉积物再悬浮对于黄河入海泥沙远距离输运及其命运归宿的解读具有重要作用。目前对于沉积物再悬浮过程及其动力发生机制的研究更多关注于浪、流边界层的相互作用,往往忽略底床沉积物内部发生的一系列动力响应过程对其再悬浮的影响,从而制约了现代沉积动力过程研究的深入。本学位论文在国家自然科学基金风暴对黄河三角洲侵蚀控制与海床液化(资助号:41072215;时间:2011-2013)与黄河口侵蚀再悬浮物海床内部输供及控制因素研究(资助号:41272316;时间:2013-2016)资助下,研究了现代黄河三角洲沉积物波浪动力响应过程对海底沉积物再悬浮的控制作用。
     本论文基于室内动三轴试验、现场造波试验与室内波浪水槽试验,研究了现代黄河三角洲沉积物波浪动力响应过程;基于现场原位观测与室内水槽试验,研究了海洋动力作用下现代黄河三角洲沉积物再悬浮过程;基于现场调查与现场试坑试验,研究了现代黄河三角洲沉积物再悬浮特性的时空分布特征及动态变化规律;基于室内动三轴与冲刷水槽模拟试验、现场造波与循环水槽试验,及数理统计与理论计算,研究了波浪对现代黄河三角洲沉积物再悬浮的控制机理。取得的主要研究成果主要有以下几方面:
     (1)50年一遇极端海况下,现代黄河三角洲不同沉积区域埋深4m沉积物均发生孔压累积,其中沉积年代老的沉积区域主要表现为缓慢增长快速增长至上覆有效应力,沉积年代新的区域表现为快速增长缓慢增长稳定于不足上覆有效应力50%的定值;孔压累积模式普遍符合对数曲线增长模型,对于沉积年代较老与沉积年代最新的沉积物而言,适用性相对较差;大风浪作用下,表层30cm深度范围内沉积物孔隙水压力普遍呈现出累积升高剧烈振动缓慢消散的发展模式,孔压累积导致底床内部细粒物质向上输运,使底床发生“粗化”,原状潮滩沉积物沉积年代越老,沉积物级配越差,“粗化”能力越强。
     (2)在近岸海区强风浪条件下,若底床沉积物内孔隙水压力累积程度很小,底床发生小再悬浮事件,波致剪切力为其显著动力发生机制;若底床沉积物内孔隙水压力累积程度很高,底床发生大再悬浮事件,波致沉积物液化为其显著动力发生机制;波浪作用下底床内部细粒物质向上输运进而发生再悬浮最高可达总悬浮量的50%。
     (3)现代黄河三角洲潮滩沉积物再悬浮特性存在不同时空尺度的分布特征及动态变化规律;与高潮滩与中潮滩沉积物相比,低潮滩沉积物易发生再悬浮,受海洋动力作用影响显著,空间非均匀分布程度高;北部与南部潮滩沉积物易发生再悬浮,东部与东北部不易发生再悬浮;在海洋动力作用下,初始堆积沉积物3~4天即与原状潮滩沉积物表现出相近的再悬浮特性;现代黄河三角洲沉积物的再悬浮特性在百年的沉积历史中表现为先增长后降低的演变趋势。
     (4)大幅值波浪荷载作用可引起沉积物临界剪切应力与起动流速的线性衰减,此过程与波浪荷载作用下沉积物结构强度的损失密切相关;较小幅值波浪荷载作用初期,沉积物临界剪切应力与起动流速显著降低,之后在波动中趋于稳定;沉积物孔压累积引起沉积物的软化过程是波浪荷载作用下其再悬浮特性显著降低的重要因素,波致沉积物粒度成分的动态变化是引起波浪荷载作用后期再悬浮特性变化的重要因素;基于本文建立的数学模型得出,现代黄河三角洲埕岛海域5~50年重现期波浪要素下的海床内部沉积物再悬浮通量约为17~91g·m~(-2)·s~(-1);各重现期波浪要素下海床内部泥沙再悬浮通量的最大值均出现在7~8m水深处。
     本文创新点主要有以下三方面:
     (1)揭示了不同时代沉积形成的现代黄河三角洲沉积物对波浪动力响应过程的差异性,及波浪与海流对沉积物成分、结构、物理力学性质、再悬浮特性的改造作用。
     (2)建立了波浪作用下沉积物孔隙水压力累积模型,及沉积物超静孔隙水压力累积程度与再悬浮指标间的定量关系。
     (3)创造性地提出了沉积物波致液化对黄河三角洲沉积物侵蚀再悬浮的控制作用,定量描述了海床内部沉积物向上输运对再悬浮的贡献。
The resuspension of sediment by marine hydrodynamics in the modern YellowRiver delta plays an important role in the long-distance transportation and destinationunderstanding of the Yellow River-derived sediments into sea. Existing research onsediment resuspension process and its driving mechanism only focuses on interactionof the wave-current bottom boundary layer, but ignores the role of wave-inducedseabed sediment dynamic response, which is necessary for further research on themodern sedimentary dynamic process. Jointly supported by the National NaturalScience Foundation of China "Storm control on seabed erosion and liquefaction in thesubaqueous Yellow River delta"(Contract No.41072215; Awarded:2011~2013) and"Investigation of sources and governing factors of seabed erosion and resuspension inYellow River estuary"(Contract No.41272316; Awarded:2013~2016), thisdissertation reveals the controlling role of seabed dynamic response in sedimentresuspension under waves.
     Dynamic triaxial experiments and wave flume experiments in laboratory, andwave loading experiments in field are conducted to study sediment dynamic responseto waves in Yellow River Delta. In-situ observations in field and wave flumeexperiments in laboratory are carried out to study sediment resuspension in marinehydrodynamic conditions. Field survey and pit tests are proceeded to study spatial andtemporal distribution characteristic of sediment erodibility of the Yellow River Delta.Dynamic triaxial-scouring flume simulating experiments in laboratory, wave loading-recirculating flume experiments in field, and mathematics statistic analysis andtheoretical calculation are explored to study the control mechanism of waves insediment resuspension. Main findings are demonstrated as follows:
     (1) Under extreme sea conditions of50-year return period, for various sedimentary areas of the modern Yellow River delta, different levels of pore pressureaccumulation occur in the sediment within4m depth below the seabed surface; forareas in old sedimentation age, the accumulated pore pressure can almost be up to theoverlying sediment effective stress and is characterized by two phases, i.e. slowgrowth and rapid growth; whereas for the other areas, the accumulated pore pressureis less than50%of the overlying effective stress, and the accumulation develops bythree phases, i.e. rapid growth, slow growth and almost flat phase. The pore waterpressure generally presents development patterns of cumulative rise-drasticfluctuation-slow dissipation within30cm depth inside the seabed under heavy waveaction; fine particles inside the seabed are transported upward due to the pore waterpressure accumulation and hence the seabed is coarsened; the older sedimentary ageand the worse size gradation of the undisturbed tidal flat sediment, the strongercoarsening effect.
     (2) Small-scale sediment resuspension occurs when the nearshore waves arerelatively bigger but the pore water pressure accumulation degree is little, andwave-induced shear stress is the significant driving force; large-scale sedimentresuspension only occurs with high-level pore water pressure accumulation underrough sea condition, when the sediment liquefaction due to waves dominates itsgeneration process. Fine particles inside the seabed that under wave actions aretransported upward and resuspended into water can contribute to a maximum of50%of the total suspended matters.
     (3) Multi-spatial-temporal scale variations exist in the resuspensioncharacteristics of tidal flat sediments in the modern Yellow River delta. Comparedwith high and middle tidal flat, the sediment in low tidal flat is more prone toresuspension and has higher spatial distribution ununiformity. The resuspension oftidal flat sediments can more easily occur in the north and south part but less in theeast and northeast part of the modern Yellow River delta. The freshly depositedsediments show the similar resuspension characteristics to the undisturbed tidal flatsediments in3to4days due to marine hydrodynamic effects. Sediment resuspensioncharacteristics of the modern Yellow River delta are speculated to rise and fall undergo an evolutionary trend of first increasing and then decreasing over centuries ofsedimentary history.
     (4) Large-amplitude wave loads can cause linear attenuation of sediment criticalshear stress and threshold velocity, which is closely related to the sediment structuralstrength loss under waves. Sediment critical shear stress and threshold velocity isreduced during the early period of relatively small waves, and stable in smallfluctuations thereafter; the softening of seabed sediments due to pore pressureaccumulation is an important factor in the significant reduction of sediment erodibility,and the later change is accounted for the variation of sediment particles under waves.An estimated formula for seabed internal sediment resuspension flux driven by theaccumulated pore water pressure is established based on the field observations andlaboratory experiments data. The internal sediment resuspension flux is about17~91g·m~(-2)·s~(-1)under waves in different return periods (5to50years) in Chengdao sea area;the maximum values of internal sediment resuspension flux under waves of differentreturn periods appear in the water at depths of7~8m.
     Innovation of this research is composed of the following three aspects:
     (1) Revealing the diversity of sediment dynamic response to waves for YellowRiver Delta sediments deposited in different ages, and the rework of waves and flowsto sediment composition, structure, physical and mechanical properties, and sedimenterodibility.
     (2) Constructing the model of pore water pressure accumulation, and therelationship between the degree of excess pore water pressure accumulation and theparameters of sediment resuspension.
     (3) Creatively putting forward the controlling role of wave-induced sedimentliquefaction in seabed sediment resuspension in the Yellow River Delta, andquantitively describing the contribution of seabed internal sediment upward transportto sediment resuspension.
引文
Aberle J, Nikora V, Walters R,2004. Effects of bed material properties on cohesive sedimenterosion. Marine Geology,207:83-93.
    Andersen T J, Fredsoe J, Pejrup M,2007. In situ estimation of erosion and deposition threshods byAcoustic Doppler Velocimeter (ADV). Estuarine, Coastal and Shelf Science,75:327-336.
    Amos C L, Umgiesser G, Ferrarin C, Thompson C E L, Whitehouse R J S, Sutherland T F,Bergamasco A,2010. The erosion rates of cohesive sediments in Venice lagoon, Italy.Continental Shelf Research,30:859-870.
    Andersen T J, Lanuru M, van Bernem C, Pejrup M, Riethmueller R,2010. Erodibility of a mixedmudflat dominated by microphytobenthos and Cerastoderma edule, East Frisian Wadden Sea,Germany. Estuarine, Coastal and Shelf Science,87:197-206.
    Andersen T J, Lund-Hansen L C, Pejrup M,2005. Biologically induced differences in erodibilityand aggregation of subtidal and intertidal sediments a possible cause for seasonal changes insediment deposition. Journal of Marine Systems,55:123-138.
    Andersen T J, Jensen K T, Lund-Hansen L, Mouritsen K N, Pejrup M,2002. Enhanced erodibilityof fine-grained marine sediments by Hydrobia ulvae. Journal of Sea Research,48:51-58.
    Andersen T J,2001. Seasonal variation in erodibility of two temperate, microtidal mudflats.Estuarine, Coastal and Shelf Science,53:1-12.
    Anderson F E,1972. Resuspension of Estuarine Sediments by Small Amplitude Waves. Journal ofSedimentary Research (SEPM),42(3):602-607.
    Bale A J, Widdows J, Harris C B, Stephens J A,2006. Measurements of the critical erosionthreshold of surface sediments along the Tamar Estuary using a mini-annular flume.Continental Shelf Research,26:1206-1216.
    Black K S, Tolhurst T J, Paterson D M,2002. Working with natural cohesive sediments. Journal ofHydraulic Engineering,128(1):2-81.
    Bi N S, Yang Z S, Wang H J, Fan D J, Sun X X, Lei K,2011. Seasonal variation ofsuspended-sediment transport through the southern Bohai Strait. Estuarine, Coastal and ShelfScience,93:239-247.
    Beheshti A A, Ataie-Ashtiani B,2008. Analysis of threshold and incipient conditions for sedimentmovement. Coastal Engineering,55:423-430.
    Bennett R H, Faris J R,1979. Ambient and dynamic pore pressures in fine-grained submarinesediments: Mississippi Delta. Applied Ocean Research,1(3):115-123.
    Baltzer A, Cochonat P, Piper D J,1994. In situ geotechnical characterization of sediments on theNova Scotian Slope, eastern Canadian continental margin. Marine Geology,120(3-4):291-308.
    Baldock T E, Alsina J A, Caceres I, Vicinanz D, Contestabile P, Power H, Sanchez-Arcilla A,2011.Large-scale experiments on beach profile evolution and surf and swash zone sedimenttransport induced by long waves, wave groups and random waves. Coastal Engineering,58(2):214-227.
    Bornhold D B, Yang Z S, Keller G H, Prior D B,1986. Sedimentary framework of the modernHuanghe(Yellow River) delta. Geo-marine Letters,6:77-83.
    Black K, Cramp A,1995. A device to examine the in situ response of intertidal cohesive sedimentdeposits to fluid shear. Continental Shelf Research,15(15),1945–1954.
    Berlamont J, Ockenden M, Toorman E,1993. The characterisation of cohesive sediment properties.Coastal Engineering,21:105-128.
    Clukey E C, Kulhawy F H, Liu P L F.1985. Response of silts to wave load: experimental study,Strength Testing of Marine Sediments. ASTM STP883. In: Chaney, R C, Demars K R eds.American Society for Testing and Materials, Philadelphia,381-396.
    Chu Z X, Sun X G, Zhai S K, et al. Changing pattern of accretion/erosion of the modern YellowRiver (Huanghe) subaerial delta, China: Based on remote sensing images. Marine Geology,2006,227(1-2):13-30.
    Chung E G, Bombardelli F A, Schladow S G,2009. Sediment resuspension in a shallow lake.Water Resources Research,45:1-18.
    Chen S S, Huang W R, Wang H Q,2009. Remote sensing assessment of sediment re-suspensionduring Hurricane Frances in Apalachicola Bay, USA. Remote Sensing of Environment,113:2670-2681.
    Cattaneo A, Correggiari A, Langone L, Trincardi F,2003. The late-Holocene Gargano subaqueousdelta, Adriatic shelf: Sediment pathways and supply fluctuations. Marine Geology,193(1-2):61-91.
    Chen Z, Yu L, Gupta A,2001. The Yangtze River: an introduction. Geomorphology,41,73-75.
    Clarke T L, Lesht B, Young R A, Swift D J P, Freeland G L,1982. Sediment resuspension bysurface-wave action: An examination of possible mechanisms. Marine Geology,49(1-2):43-59.
    Chassefiere B, Monaco A,1987. Geotechnical properties and sedimentological processes of theRhone continental margin. Marine Geology,74(3-4):225-235.
    Dohmen-Janssen C M, Hanes D M,2005. Sheet flow and suspended sediment due to wave groupsin a large wave flume. Continental Shelf Research,25(3):333-347.
    Debnath K, Nikora V, Aberle J, Westrich B, Muste M,2007. Erosion of cohesive sediments:resuspension, bed load, and erosion patterns from field experiments. Journal of HydraulicEngineering,133:508-520.
    Dalrymple R A, Liu P L F,1978. Waves over soft mud: a two-layer fluid model. Journal ofPhysical Oceanography,8:1121-1130.
    Dickhudt R J, Friedrichs C T, Schaffner L C,2009. Spatial and temporal variation in cohesivesediment erodibility in the York River estuary, eastern USA: A biologically influencedequilibrium modified by seasonal deposition. Marine Geology,267(3-4):128-140.
    Dyer, K.R.,1986. Coastal and Estuarine Sediment Dynamics. John Wiley&Sons, Chichester, pp.342.
    Endler R,2009. Sediment physical properties of the DYNAS study area. Journal of MarineSystem,75:317-329.
    Faas R W,1986. Mass-physical and geotechnical properties of surficial sediments and densenearbed sediment suspensions on the Amazon continental shelf. Continental Shelf Research,6(1-2):189-208.
    Finn W D L, Siddharthan R, Martin G R,1983. Response of seafoor to ocean waves. Journal ofGeotechnical Engineering. ASCE,109(4):556-572.
    FerréB, Guizien K, Durrieu de Madron X, Palanques A, Guillén J, Grémare A,2005. Fine-grainedsediment dynamics during a strong storm event in the inner-shelf of the Gulf of Lion (NWMediterranean). Continental Shelf Research,25:2410-2427.
    Foda M A, Tzang S Y,1994. Resonant fiuidization of silty soil by water waves. Journal ofgeophysical research,99(10):20463-20475.
    Foda M A, Tzang S Y,1994. Resonant fiuidization of silty soil by water waves. Journal ofgeophysical research,99(10):20463-20475.
    Fan D D, Liu K B,2008. Perspectives on the linkage between typhoon activity and globalwarming from recent research advances in paleotempestology. Chinese Science Bulletin,53(19):2907-2922.
    Fan D D, Cai G F, Shang S,2012. Sedimentation processes and sedimentary characteristics oftidal bores along the north bank of the Qiantang Estuary. Chinese Science Bulletin,57(15):1578-1589.
    Fan H, Huang H J, Zeng T Q, Wang K R,2006. River mouth bar formation, riverbed aggradationand channel migration in the modern Huanghe (Yellow) River delta, China. Geomorphology,74:124-136.
    Finn W D L, Siddharthan R, Martin G R,1983. Response of Seafloor to Ocean Waves. Journal ofGeotechnical Engineering,109(4):556-572.
    Flemings P B, Long H, Dugan B,2008. Pore pressure penetrometers document high overpressurenear the seafloor where multiple submarine landslides have occurred on the continental slope,offshore Louisiana, Gulf of Mexico. Earth and Planetary Science Letters,269(3-4):309-325.
    Fu S S, Wilkens R H, Frazer L N,1996. Acoustic lance: New in situ seafoor velocity profles.Journal of the Acoustical Society of America,9(1):234-242.
    Friend P L, Collins M B, Holligan P M,2003. Day-night variation of intertidal flat sedimentproperties in relation to sediment stability. Estuarine, Coastal and Shelf Science,58:663-675.
    Grabowski R C, Droppo I G, Wharton G,2011. Erodibility of cohesive sediment: the importanceof sediment properties. Earth-Science Reviews,105:101-120.
    Ganaoui O E, Schaaff E, Boyer P,2004. The deposition and erosion of cohesive sedimentsdetermined by a multiclass model. Estuarine, Coastal and Shelf Science,60:457-475.
    Gatmiri B,1990. A simplifed fnite element analysis of wave-induced efective stress and porepressures in permeable sea beds. G′eotechnique,40(1):15-30.
    Gatmiri B,1992. Response of cross-anisotropic seabed to ocean waves. Journal of GeotechnicalEngineering, ASCE,118(9):1295-1314.
    Green M O,2011. Very small waves and associated sediment resuspension on an estuarineintertidal flat. Estuarine, Coastal and Shelf Science,2011,93:449-459.
    Glenn S, Jones C, Twardowski M, Bowers L, Kerfoot J, Kohut J, Webb D, Schofield O,2008.Observing storm-induced sediment resuspension processes in the mid-atlantic bight withSlocum Gliders. US/EU-Baltic International Symposium,2008IEEE/OES:1-6.
    Grade H,1958. Effects of a non-rigid impermeable bottom on plane surface waves in shallowwater. Journal of Marine Research,16:61-82.
    Goff J A, Kraft B J, Mayer L A, Schock S G, Smonnerfield C K, Olson H C, Gulic S P S,Nordfjord S,2004. Seabed characterization on the New Jersey middle and outer shelf:correlatability and spatial variability of seafloor sediment properties. Marine Geology,209:147-172.
    Hu C H, Cao W H,2003. Variation, regulation and control of flow and sediment in the YellowRiver Estuary: I. Mechanism of flow-sediment transport and evolution. Journal of SedimentReserch,5:1-8.
    Hu C H, Ji Z W, Wang T,1996. Characteristics of ocean dynamics and sediment diffusion in theYellow River estuary. Journal of Sediment Research,4:1-10.
    Hunter K A, Liss P S,1979. The surface charge of suspended Particles in estuarine and coastalwaters. Nature,282:823-825.
    Hong D L, Gao Y J, Xie R, Ji C H, Shen X,2007. Experimental study on silt incipient motionunder wave action. China Ocean Engineering,21(4):677-688.
    Hill P S, Milligan T G, Geyer W R,2000. Controls on effective setting velocity in the Eel Riverflood plume. Continental Shelf Research,20:2095-2111.
    Horppila J, Nurminen L,2003. Effects of submerged macrophytes on sediment resuspension andinternal phosphorus loading in Lake Hiidenvesi (southern Finland). Water Research,37(18):4468-4474.
    Ian TW, Phillip W F,2010. Delivery, deposition and redistribution of fine sediments withinmacrotidal Fitzroy Estuary/Keppel Bay: Southern Great Barrier Reef, Australia. ContinentalShelf Research,30:793-805.
    Ilstad T, Marr J G, Elverboi A, Harbitz C B,2004. Laboratory studies of subaqueous debris flowsby measurements of pore-fluid pressure and total stress. Marine Geology,213:403-414.
    Jeng D S,2012. Porous Models for Wave-seabed Interactions. Springer-Verlag Berlin andHeidelberg GmbH&Co. K.
    Jeng D S, Seymour B R, Li J,2007. A new approximation for pore pressure accumulation inmarine sediment due to water wave. International Journal for Numerical and AnalyticalMethods in Geomechanics,31(1):53-69.
    Jeng D S, Lee T L,2001. Dynamic response of porous seabed to ocean waves. Computers andGeotechnics,28(2):99-128.
    Jeng D S, Lin Y S,1996. Finite element modelling for water waves–soil interaction. SoilDynamics and Earthquake Engineering,15(5):283-300.
    Jeng D S,1997. Soil response in cross-anisotropic seabed due to standing waves. Journal ofGeotechnical and Geoenvironmental Engineering, ASCE,123(1):9-19.
    Jeng D S, Seymour BR,1997a. Response in seabed of fnite depth with variable permeability.Journal of Geotechnical and Geoenvironmental Engineering, ASCE,123(10):902-911.
    Jeng D S, Seymour B R,1997b. Short-crested wave-induced seabed response with variablepermeability. Journal of the Chinese Institute of Engineering,20(4):377-388.
    Jeng D S, Rahman M S, Lee T L,1999. Efects of inertia forces on wave-induced seabed response.International Journal of Ofshore and Polar Engineering,9(4):307-313.
    Jeng D S,2000. On calculating the length of a short-crested wave over a porous seabed. Appliedocean research,22(2):63-73.
    Jeng D S, Barry D A, Li L,2001. Water wave driven seepage in marine sediments. Advances inWater Resources,24(1):1-10.
    Jeng D S, Cha D H,2003. Efects of dynamic soil behavior and wave non-linearity on thewave-induced pore pressure and efective stresses in porous seabed. Ocean Engineering,30(16):2065-2089.
    Jeng D S,2003. Wave-induced sea floor dynamics. Applied Mechanics Reviews,56(4):407-430.
    Jepsen R, Roberts J, Wilbert L,1997. Effects of bulk density on sediment erosion rates. Water, Airand Soil Pollution,99:21-31.
    Jolhurst T J, Black K S, Shayler S A, Mather S, Black I, Baker K, Paterson D M,1999. Measuringthe in situ erosion shear stress of intertidal sediments with the cohesive strength meter (CSM).Estuarine, Coastal and Shelf Science,49:281-294.
    Jones EM, Kampf J, Fernandes M,2012. Characterisation of the wave field and associated risk ofsediment resuspension in a coastal aquaculture zone. Ocean&Coastal Management,69:16-26.
    Johansen C, Larsen T, Petersen O,1997. Experiments on erosion of mud from the Danish WaddenSea, pp.305e314. In: Burt, N., Parker, R., Watts, J.(Eds.), Cohesive Sediments. John Wiley&Sons Limited, Chichester, pp.458.
    Jia Y G, Fu Y B, Shan H X, et al.,2003. The fractal character`s change in the Huanghe RiverEstuary due to the hydrodynamic condition`s variation. Acta ceanologica Sinica,22(2):191-200.
    Jia Y G, Liu X L, Shan H X, Zheng J W, Huo S X,2011. The effects of hydrodynamic conditionson geotechnical strength of the sediment in Yellow River Delta. International Journal ofSediment Research,26(3):318-330.
    Kim D C, Sung J Y, Park S C, Lee G H, Choi J H, Kim G Y, Seo Y K, Kim J C,2001. Physicaland acoustic properties of shelf sediments, the South Sea of Korea. Marine Geology,179:39-50.
    Kim G Y, Kim D C, Yoo D G, Shin B K,2011. Physical and geoacoustic properties of surfacesediments off eastern Geoje Island, South Sea of Korea. Quaternary International,230(1-2):21-33.
    Kitano T, Mase H,1999. Boundary-layer theory for anisotropic seabed response to sea waves.Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE,125(4):187-194.
    Kitano T, Mase H,2001. Wave-induced porewater pressure in a seabed with inhomogeneouspermeability. Ocean Engineering,28:279-296.
    Kwon J I, Maa J P Y, Lee D Y,2007. A preliminary implication of the constant erosion rate modelto simulate turbidity maximums in the York River, Virginia, USA. The6th InternationalConference on Cohesive Sediment Transport Processes, Virginia, USA,331-353.
    Keller G H, Prior D B,1986. Sediment dynamics of the Huanghe (Yellow River) delta andneighboring Gulf of Bohai, People’s Republic of China: Project overview. Geo-marine Letter,6:63-66.
    Keulegen G H,1994. Laminar flowat the interface of two liquids, Journal of Research, NationalBureau of Standards,17:142-149.
    Kamphuis J W, Hall K R,1983. Cohesive material erosion by unidirectional current. Journal ofHydraulic Engineering,109(1):49-61.
    Kuo Y Y, Chiu Y F,1994. Transfer function between wave height and wave pressure forprogressive waves. Coastal Engineering,23:81-93.
    van Kessel T, Kranenburg C,1998. Wave-induced liquefaction and flow of subaqueous mud layers.Coastal Engineering,34:109-127.
    Lambrechts J, Humphrey C, Mckinna L,2010. Importance of wave-induced bed liquefaction inthe fine sediment budget of Cleveland Bay, Great Barrier Reef. Estuarine, Coastal and ShelfScience,89:154-162.
    Lee H J, Chun S S, Yoon S H, Kim S R,1993. Slope stability and geotechnical properties ofsediment of the southern margin of Ulleung Basin, East Sea (Sea of Japan). Marine Geology,110(1-2):31-45.
    Li M Z, Amos C L,1999. Field observations of bedforms and sediment transport thresholds offine sand under combined waves and currents. Marine Geology,158:147-160.
    Lin J.,Wang, H.V., Oh, J.H., Park, K., Kim, S.C., Shen, J., and Kuo, A.Y.,2003. A new approachto model sediment resuspension in tidal estuaries. Journal of Coastal Research,19(1):76-88.
    Lin Y S, Jeng D S,1997. The effects of variable permeability on the wave-induced seabedresponse. Ocean Engineering,24(7):623-643.
    Liu X H, Huang W R,2009. Modeling sediment resuspension and transport induced by stormwind in Apalachicola Bay, USA. Environmental Modeling and Software,24(11):1302-1313.
    Liu J P, Li A C, Xu K H, Velozzi D M, Yang Z S, Milliman J D, DeMaster D J,2006. Sedimentaryfeatures of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea.Continental Shelf Research,26(17-18):2141-2156.
    Liu P L F,1973. Damping of waves over porous bed. Journal of Hydraulics Divisions, ASCE,99(1):2263-2271.
    Liu J, Saito Y, Wang H, Yang Z, Nakashima R,2007. Sedimentary evolution of the Holocenesubaqueous clinoform off the Shandong Peninsula in the Yellow Sea. Marine Geology,236(3-4):165-187.
    Liu J G, Li A C, Chen M H,2010. Environmental evolution and impact of the Yellow Riversediments on deposition in the Bohai Sea during the last deglaciation. Journal of Asian EarthScience,38:26-33.
    Liu X L, Jia Y G, Zheng J W, Wei H, Zhang L, Zhang L P, Shan H X,2012. Experimental evidenceof wave-induced inhomogeneity in strength of silty seabed sediments: Yellow River Delta,China. Ocean Engineering,59:120-128.
    Li G X, Zhuang K L, Wei H L,2000. Sedimentation in the Yellow River delta. Part III. Seabederosion and diapirism in the abandoned subaqueous delta lobe. Marine Geology,168,(1-4):129-144.
    Li G X, Wei H L, Han Y S, Chen Y J,1998a. Sedimentation in the Yellow River delta, part I: flowand suspended sediment structure in the upper distributary and the estuary. Marine Geology,149:93-111.
    Li G X, Wei H L, Yue S H, Cheng Y J, Han Y S,1998b. Sedimentation in the Yellow River delta,part II: suspended sediment dispersal and deposition on the subaqueous delta. MarineGeology,149:113-151.
    Liu X L, Jia Y G, Zheng J W, Yang X J, Shan H X,2012. Consolidation of sediments dischargedfrom the Yellow River: implications for sediment erodibility. Ocean Dynamics, doi10.1007/s10236-013-0599-z.
    Lick W, McNeil J,2001. Effects of sediment bulk properties on erosion rates. Science TotalEnvironment,266:41-48.
    Lund-Hansen L C, Valeur J, Pejrup M, Jensen A,1997. Sediment fluxes, re-suspension andaccumulation rates at two wind-exposed coastal sites and in a sheltered bay. Estuarine,Coastal and Shelf Science,44:521-531.
    Morgan J P, Coleman J M, Gagliano S M,1965. Mudslumps at the mouth of South Pass,Mississippi river sedimentology, paleontology, structure, origin, and relation to delticprocesses. Coastal studies, Louisana University, Baton Rough,10:190-215.
    Meng X M, Jia Y G, Shan H X, Yang Z N, Zheng J W,2012. An experimental study on erodibilityof intertidal sediments in the Yellow River delta. International Journal of Sediment Research,27:240-249.
    Madsen O S,1978. Wave-induced Pore Pressures and effective stress in a porous bed.Geotechnique,28(4):377-393.
    Mei C C, Foda M A,1981. Wave-induced response in a fluid-filled poro-elastic solid with a freesurface-a boundary layer theory. Geophysical Journal Royal Australia Society,66:597-631.
    Mei C C, Liu P L F,1987. A bingham-plastic model for a muddy seabed under long waves.Journal of Geophysics Research,92:14581-14587.
    Maa P Y, Metha A J,1987. Mud erosion by waves: a laboratory study. Continental Shelf Research,7(11):1269-1294.
    Massel S R,1976. Gravity waves propagated over permeable bottom. Journal of Waterways.Harbors and Coastal Engineering, ASCE,102:111-121.
    Moshagen H, Torum E,1975. Wave induced pressures in permeable seabed. Journal of Waterways,Harbor and Coastal Engineering Division, ASCE,101:49-58.
    Magda W,1990. On one-dimensional model of pore pressure generation in a highly satuarated andbed due to cyclic loading acting on a sand surface I: theoretical description and numericalapproach. Internal Report SFB-205, Kusteningenieurwesen, TPA13, University of Hannover.
    Moshagen H, Torum A,1975. Wave induced pressures in permeable seabeds. Journal ofWater-ways, Harbors and Coastal Engineering Division, ASCE,101(1):49-57.
    Massel S R,1976. Gravity waves propagated over permeable bottom. Journal of Waterways,Harbors and Coastal Engineering, ASCE,102(2):111-121.
    Maeno Y H, Hasegawa T,1987. In-situ measurements of wave-induced pore pressure forpredicting properties of seabed deposits. Coastal Engineering in Japan,30(1):99-115.
    Maeno Y H, Sakai T, Mase H,1989. Infuences of wave steepness on wave-induced liquefaction insand layer. In Proceedings of6th Symposium on Coastal and Ocean Management, CoastalZone,3945-3957.
    Mu Y, Cheng A H D, Badiey M, Bennett R,1999. Water wave driven seepage in sediment andparameter inversion based on pore pressure data. International Journal for Numerical andAnalytical Methods in Geomechanics,23:1655-1674.
    Milliman J D, Syvitski J P M,1992. Geomorphic/tectonic control of sediment discharge into theocean: the importance of small mountainous rivers. Journal of Geology,100:525-544.
    Milliman J D, Meade R H,1983. World-wide delivery of river sediment to the oceans. Journal ofGeology,91:1-21.
    Milliman J D, Qin Y S, Ren M E, Saito Y,1987. Man's influence on the erosion and transport ofsediment by Asian rivers: the Yellow River (Huanghe) example. Journal of Geology,95:751-762.
    Miyamoto J, Sassa S, Sekiguchi H,2004. Progressive solidification of a liquefied sand layerduring continued wave loading. Geotechnique,54(10):617-629.
    Milligan,2007. Sediment dynamics in the western Adriatic Sea: From transport to stratigraphy.Continental Shelf Research,27:287-295.
    McNeil J, Taylor C, Lick W,1996. Measurements of Erosion of Undisturbed Bottom SedimentsWith Depth. Journal of Hydraulic Engineering,122(6):316-324.
    Maerz J, Wirtz K,2009. Resolving physically and biologically driven suspended particulate matterdynamics in a tidal basin with a distribution-based model. Estuarine, Coastal and ShelfScience,84:128-138.
    Neumeier U, Lucas C H, Collins M,2006. Erodibility and erosion patterns of mudflat sedimentsinvestigated using an annular flume. Aquatic Ecology,40:543-554.
    Nam P T, Larson M, Hanson H, Hoan L X,2011. A numerical model of beach morphologicalevolution due to waves and currents in the vicinity of coastal structures. Coastal Engineering,58(9):863-879.
    Nakarmura H, Onishi R, Minamide H,1973. On the seepage in the seabed due to waves.Proceedings of20thCoastal Engineering Conference, JSCE,421-428.
    Nittrouer C A, Curtin T B, DeMaster D J,1986. Concentration and flux of suspended sediment onthe Amazon continental shelf. Continental Shelf Research Sedimentary Processes on theAmazon Continental Shelf,6(1-2):151-174.
    Ni J R, Meng X G.2001. Forces on particles and their effects on vertical sediment sorting insolid-liquid two-phase flows. International Journal of Sediment Research,16(2),128-138.
    Nittrouer CA, DeMaster DJ,1996. The Amazon shelf setting: tropical, energetic, and influencedby a large river. Continental Shelf Research,16(5-6):553-573.
    Narayana A C, Jago C F, Manojkumar P, Tatavarti R,2008. Nearshore sediment characteristics andformation of mudbanks along the Kerala coast, southwest India. Estuarine, Coastal and ShelfScience,78:341-352.
    Neill S P, Reche P D, Davies A G, Iglesias G,2012. Impact of wave energy arrays on beachprocesses. OSM2012, Salt Lack City, Ulta, USA.
    Ogston A S, Guerra J V, Sternberg R W,2004. Interannual variability of nearbed sediment flux onthe Eel River shelf, northern California. Continental Shelf Research,24(1):117-136.
    Ogston A S, Cacchione D A, Sternberg R W, Kineke G C,2000. Observations of storm and riverflood-driven sediment transport on the northern California continental shelf. ContinentalShelf Research,20(16):2141-2162.
    Prior D B, Yang Z S, Bornhold B D, Keller G H,1986. Active slope failure, sediment collapse,and silt flows on the modern subaqueous Huanghe (Yellow River) Delta. Geo-marine Letter,6:85-95.
    Prior D B, Suhayda J N, Lu N Z, Bornhold B D, Keller G H, Wiseman W J, Wright L D, Yang Z S,1989. Storm Wave Reactivation of a Submarine Landslide. Nature,341(6237):47-50.
    Putnam J A,1949. Loss of wave energy due to percolation in a permeable bottom. Transactions,American Geophysical Union,30(3):349-356.
    Paterson D M, Tolhurst T J, Kelly J A, Honeywill C, de Dechkere E M G T, Huet V, Shayler S A,Black K S, de Brouwer J, Davidson I,2000. Variations in sediment properties, Skefflingmudflat, Humber Estuary, UK. Continental Shelf Research,20:1373-1396.
    Prevost J H, Eide O, Anderson K H,1975. Discussion of wave induced pressure in permeableseabed. Journal of Waterways, Harbor and Coastal Engineering Division, ASCE,101:464-465.
    Partheniades E,1965. Erosion and deposition of cohesive soil. Journal of the Hydraulics Division,91:105-139.
    Partheniades E,1986. A fundamental framework for cohesive sediment dynamics. In A.J.Mehta(ed.), Lecture Notes on Coastal and Estuarine Studies14, Estuarine Cohesive SedimentDynamics, pp.219-250. Berlin, Heidelberg, New York, Tokyo: Springer.
    Patrick J D, Carl T F, Linda C S, Lawrence P S,2009. Spatial and temporal variation in cohesivesediment erodibility in the York River estuary, eastern USA: A biologically influencedequilibrium modified by seasonal deposition. Marine Geology,267:128-140.
    Pang C G, Yu W, Yang Y, Han D X,2011. An improved method for evaluating the seasonalvariability of total suspended sediment flux field in the Yellow and East China Seas.International Journal of Sediment Research,26(1):1-14.
    Precht E, Huettel M,2004. Rapid wave-driven advective pore water exchange in a permeablecoastal sediment. Journal of Sea Research,51(2):93-107.
    Puig P, Ogston A S, Mullenbach B L, Nittrouer C A, Sternberg R W,2003. Shelf-to-canyonsediment-transport processes on the Eel continental margin (northern California). MarineGeology,193(1-2):129-149.
    van Prooijen B C, Wang Z B,2011. A one-dimensional model for short tidal basins-fine sedimentdynamics. The11th International Conference on Cohesive Sediment Transport Processes,Shanghai, China.
    Peng J, Chen S L, Dong P,2010. Temporal variation of sediment load in the Yellow River basin,China, and its impacts on the lower reaches and river delta. Catena,83(2-3):135-147.
    Qiao S Q, Shi X F, Zhu A M, Liu Y G, Bi N S, Fang X S, Yang G,2010. Distribution and transportof suspended sediments off the Yellow River (Huanghe) mouth and the nearby Bohai Sea.Estuarine, Coastal and Shelf Science,86:337-344.
    Qin H, Chen F, Liu Y L,2010. Study on wave-influenced resistance to erosion of silty soil inHuanghe (Yellow) River Delta. Acta Oceanologica Sinica,29(2):53-57.
    Raman-Nair W, Sabin G C W,1991. Wave-induced failure of poro-plastic seabed slopes: Aboundary element study. Proceedings, Institution of Civil Engineers, Part2,91:771-794.
    van Raaphorst W, Malschaert H, Van Harren H,1998. Tidal resuspension and deposition ofparticulate matter in the Oyster Grounds, North Sea. Journal of Marine Research,56:257-291.
    Reid R O, Kajiure K,1957. On the damping of gravity waves over permeable seabed.Transactions, American Geophysical Union,38(5):662-666.
    Ravi S M S, Ilamparuthi K,2009. Interpretation of electric piezocone data of Chennai coast.Coastal Engineering,36:511-520.
    Raman-Nair W, Sabin G C W,1991. Wave-induced failure of poroelastic seabed slope: aboundary element study. Proceeding of Institute of Civil Engineering, Part II,91(4):771-794.
    Rahman M S, Jabery W Y,1986. A simplifed drained analysis for wave-induced liquefaction inocean foor sands. Soils and Foundations,26(1):57-68.
    Rahman M S, El-Zahaby K,1997. Probabilistic liquefaction risk analysis including fuzzyvariables. Soil Dynamics and Earthquake Engineering,16:63-79.
    Roux J P L,2010. Sediment entrainment under fully developed waves as a function of water depth,boundary layer thickness, bottom slope and roughness. Sedimentary Geology,223:143-149.
    Sheremet A, Mehta A J, Liu B, Stone GW,2005. Wave-sediment interaction on a muddy innershelf during Hurricane Claudette. Estuarine, Coastal and Shelf Science,63:225-233.
    Storlazzi C D, Jaffe B E,2002. Flow and sediment suspension events on the inner shelf of centralCalifornia. Marine Geology,181:195-213.
    Sanford L P, Maa J P Y,2001. A unified erosion formulation for fine sediments. Marine Geology,179:9-23.
    Stevens A W, Wheatcroft R A, Wiberg P L,2007. Seabed properties and sediment erodibility alongthe western Adriatic margin, Italy. Continental Shelf Research,27:400-416.
    Shan H X, Liu H, Jia Y G, Meng X M,2010. Effects of bioturbation on the erodibility of fineintertidal sediments in the Yellow River estuary, China. Far East Journal of Ocean Research,2(3):157-170.
    Saito Y, Yang Z S, Hori K,2001. The Huanghe (Yellow River) and Changjiang (Yangtze River)deltas: a review on their characteristics, evolution and sediment discharge during theHolocene. Geomorphology,41(2-3):219-231.
    Sakai T, Mase H, Matsumoto A,1988. Effects of inertia and gravity on seabed response to oceanwaves. In: Kolkman et al.(Eds.), Modelling Soil-Water-Structure Interactions.
    Sleath J F A,1970. Wave-induced pressures in beds of sand. ournal of Hydraulics Division, ASCE,96(2):367-378.
    Sekiguchi H, Kita K, Okamoto O,1995. Response of poro-elastoplastic beds to standing waves.Soils and Foundations,35(3):31-42.
    Sassa S, Sekiguchi H,2001. Analysis of wave-induced liquefaction of sand beds. G′eotechnique,51(2):115-126.
    Sassa S, Sekiguchi H, Miyamamot J,2001. Analysis of progressive liquefaction asmoving-boundary problem. G′eotechnique,51(10):847-857.
    Sassa S, Sekiguchi H,1999. Wave-induced liquefaction of beds of sand in a centrifuge.Geotechnique,49(5):621-638.
    Suzuki T, Okayasu A, Shibayama T,2007. A numerical study of intermittent sedimentconcentration under breaking waves in the surf zone. Coastal Engineering,54:433-444.
    Sumer B M, Kirca V S O, Freds e J,2012. Experimental validation of a mathematical model forseabed liquefaction under waves. International Journal of Offshore and Polar Engineering,22(2):1-9.
    Sumer B M, Fredsoe J,2002. The mechanics of scour in the marine environment, New Jersey:World Scientific, Chapter10,445-520.
    Sumer B M, Hatlpoglu F, Fredsoe J, Sumer S K,2006. The sequence of sediment behaviourduring wave-induced liquefaction. Sedimentology,53(3):611-629.
    Sumer B M, Cheng N S,1999. A random-walk model for pore pressure accumulation in marinesoils. In The9th International Ofshore and Polar Engineering Conference (ISOPE99),volume1, pages521-528.
    Seed H B, Rahman M S,1978. Wave-induced pore pressure in relation to ocean floor stability ofcohesionless soils, Marine Geotechnology,3(2):123-150.
    Sternberg R W,1986. Transport and Accumulation of River-Derived Sediment on the WashingtonContinental-Shelf, USA. Journal of the Geological Society,143:945-956.
    Smith B P G, Naden P S, Leeks G J L, Wass P D,2003. The influence of storm events on finesediment transport, erosion and deposition within a reach of the River Swale, Yorkshire, UK.The Science of the Total Environment,314-316:451-474.
    Storlazzi C D, Field M E, Draut A E, Hoeke R K,2012. Understanding the delivery, residence time,and advection of fluvial sediment out of a coral reef lined embayment through empiricalobservations and modeling. OSM2012, Salt Lack City, Ulta, USA.
    Saito Y, Yang Z S, Hori K,2001. The Huanghe (Yellow River) and Changjiang (Yangtze River)deltas: a review on their character-istics, evolution and sediment discharge during theHolocene. Geomorphology,41:219-231.
    Saito Y, Wei H L, Zhou Y Q, Nishimura A, Sato Y, Yokota S,2000. Delta progradation and chenierformation in the Huanghe (Yellow River) delta, China. Journal of Asian Earth Science,18:489-497.
    Shepard F P,1954. Nomenclature based on sand–silt–clay rations. Journal of SedimentaryPetrology,24:151-158.
    Schlichting H,1979. Boundary-layer theory.7th ed. Columbus, OH: McGraw-Hill.
    Taylor C, Lick W,1996. Erosion Properties of Great Lakes Sediments, UCSB Report.
    Tsai C P, Chen H B, Lee F C,2006. Wave transformation over submerged permeable breakwateron porous bottom. Ocean Engineering,33(11-12):1623-1643.
    Tzang S Y, Ou S H,2006. Laboroatary flume studies on monochromatic wave-fine sandy bedinteractions: Part I. Soil fluidization. Coastal Engineering,53(11):965-982.
    Tzang S, Ou S, Hsu T,2009. Laboratory flume studies on monochromatic wave-fine sandy bedinteractions Part2. Sediment suspensions. Coastal Engineering,56(3):230-243.
    Tsai C P, Lee T L,1995. Standing wave induced pore pressure in a porous seabed. OceanEngineering,1995,22(6):505-517.
    Thomas S D,1989. A finite element model for the analysis of wave induced stresses,displacements and pore pressure in an unsaturated seabed I: Theory. Computers andGeotechnics,8(1):1-38.
    Thomas S D,1995. A finite element model for the analysis of wave induced stresses,displacements and pore pressure in an unsaturated seabed II: Model verification. Computersand Geotechnics,17(1):107-132.
    Thomas S D,1989. A fnite element model for the analysis of wave induced stresses,displacements and pore pressure in an unsaturated seabed. Theory, Computers andGeotechnics,8(1):1-38.
    Thompson C E L, Couceiro F, Frones G R,2011. In situ flume measurements of resuspension inthe North Sea. Estuarine, Coastal and Shelf Science,94:77-88.
    Tzang, Shiaw-Yih.1998. Unfluidized soil responses of a silty seabed to monochromatic waves.Coastal Engineering,(35):283-301.
    Traykovski P, Geyer W R, Lynch J F,2000. The role of wave-induced density-driven fluid mudflows for cross-shelf transport on the Eel River continental shelf. Continental Shelf Research,20(16):2113-2140.
    Tolhurst T J, Riethmuller R, Paterson D M,2000. In situ versus laboratory analysis of sedimentstability from intertidal mudflats. Continental Shelf Research,20:1317-1334.
    Tolhurst T J, Defew E C, de Brouwer J F C, Wolfstein K, Stal L J, Paterson D M,2006.Small-scale temporal and spatial variability in the erosion threshold and properties ofcohesive intertidal sediments. Continental Shelf Research,26:351-362.
    Tolhurst T J, Black K S, Shayler S A,1999. Measuring the in situ erosion shear stress of intertidalsediments with the Cohesive Strength Meter (CSM). Estuarine, Coastal and Shelf Science,49:281-294.
    Ulses C, Estournel C, de Madron X D, Palanques,2008. Suspended sediment transport in the Gulfof Lions (NW Mediteranean): Impact of extrem storms and floods. Continental Shelf Research,28:2048-2070.
    Voulgaris G, Collins M B,2000. Sediment resuspension on beaches: response to breaking waves.Marine Geology,167:167-187.
    Vincent C E, Hanes D M,2002. The accumulation and decay of nearbed suspended sandconcentration due to waves and wave groups. Continental Shelf Research,22(14):1987-2000.
    Warner J C, Sherwood C R, Signell R P,2008. Development of a three-dimensional, regional,coupled wave, current, and sediment-transport model. Computers&Geosciences,34:1284-1306.
    Wang Y H,2003. The intertidal erosion rate of cohesive sediment: a case study from Long IslandSound. Estuarine, Coastal and Shelf Science,56:891-896.
    Wang Z Y, Liang Z Y,2000. Dynamic characteristics of the Yellow River mouth. Earth SurfaceProcesses and Landforms,25(7):765-782.
    Wang H J, Yang Z S, Li G X, Jiang W S,2006. Wave climate modeling on the abandonedHuanghe (Yellow River) delta lobe and related deltaic erosion. Journal of Coastal Research,22(4):906-918.
    Wang H J, Yang Z S, Saito Y, Liu J P, Sun X X, Wang Y,2007. Stepwise decreases of the Huanghe(Yellow River) sediment load (1950-2005): Impacts of climate change and human activities.Global and Planetary Change,57:331-354.
    Wang H J, Yang Z S, Li Y H, Guo Z G, Sun X X, Wang Y,2007. Dispersal pattern of suspendedsediment in the shear frontal zone off the Huanghe (Yellow River) mouth. Continental ShelfResearch,27:854-871.
    Watts C W, Tolhurst T J, Black K S, Whitmore A P,2003. In situ measurements of erosion shearstress and geotechnical shear strength of the intertidal sediments of the experimentalmanaged realignment scheme at Tollesbury, Essex, UK. Estuarine, Coastal and Shelf Science,58(3):611-620.
    Walsh J P, Nittrouer C A,2009. Understanding fne-grained river-sediment dispersal oncontinental margins. Marine Geology.263(1-4):34-45.
    Wei H, Hainhucher D, Pohlmann T, Feng S Z, Suendermann J,2004. Tidal-induced Lagrangianand Eulerian mean circulation in the Bohai Sea. Journal of Marine Systems,44:141-151.
    Wright L D, Wiseman W J, Bornhold B D,1988. Processes of marine dispersal and deposition ofYellow River silts by gravity-driven underflows. Nature,332(14):629-632.
    Wright L D, Sherwood C R, Sternberg R W,1997. Field measurements of fair weather bottomboundary layer processes and sediment suspension on the Louisiana inner continental shelf.Marine Geology,140:329-345.
    Wright L D, Boon J D, Xu J P,1992. The bottom boundary layer of the Bay Stem Plainsenvironment of lower Chesapeake Bay. Estuarine, Coastal and Shelf Science,35:17-36.
    Wright L D, Wiseman W J, Yang Z S, Bornhold B D, Keller G, Prior D B, Suhayda J N,1990.Processes of marine dispersal and deposition of suspended silts off the modern mouth of theHuanghe (Yellow River). Continental Shelf Research,10(1):1-40.
    Wright L D, Friedrichs C T, Kim S C,2001. Effects of ambient currents and waves ongravity-driven sediment transport on continental shelves. Marine Geology,175(1-4):25-45.
    Wheatcroft R A, Drake D E,2003. Post-depositional alteration and preservation of sedimentaryevent layers on continental margins, I. The role of episodic sedimentation. Marine Geology,199(1-2):123-137.
    Wheatcroft R A, Borgeld J C,2000. Oceanic flood deposits on the northern California shelf:large-scale distribution and small-scale physical properties. Continental Shelf Research,20(16):2163-2190.
    Winterwerp J C, de Boer G J, Greeuw G, van Maren D S,2012. Mud-induced wave damping andwave-induced liquefaction. Coastal Engineering,64:102-112.
    Winterwerp J C, van Kesteren W G M, van Prooijen B, Jacobs W,2012. A conceptual frameworkfor shear-flow induced erosion of soft cohesive sediment beds. Journal of GeophysicalResearch.117:113-128.
    Winterwerp J C, van Kesteren W G M,2004. Introduction to the physics of cohesive sediments inthe marine environment. In: Developments in Sedimentology, vol.56. Elsevier, Amsterdam.
    Wolanski E, King B, Galloway D,1995. The dynamics of the turbidity maximum in the Fly Riverestuary, Papua New Guinea. Estuarine, Coastal and Shelf Science,40:321-338.
    Wolanski E, Spagnol S,2003. Dynamics of the turbidity maximum in King Sound, tropicalWestern Australia. Estuarine, Coastal and Shelf Science,56:877-890.
    Xu G H, Sun Y F, Wang X,2009. Wave-induced shallow slides and their features on thesubaqueous Yellow River delta. Canadian Geotechnique Journal,46:1406-1417.
    Xue C,1993. Historical changes in the Yellow River delta, China. Marine Geology,113:321-329.
    Xia X M, Li Y, Yang H, Wu C Y, Sing T H, Pong H K,2004. Observations on the size and settlingvelocity distributions of suspended sediments in the Pearl River Estuary, China. ContinentalShelf Research,24:1809-1826.
    Yamamoto T, Koning H, Sellmeijer H, Hijum E V,1978. On the response of a poro-elastic bed towater waves. Journal of Fluid Mechanics,87(1):193-206.
    Yamamoto T,1981. Wave-induced pore pressures and efective stresses in inhomogeneous seabedfoundations. Ocean Engineering,8:1-16.
    Yamamoto T,1983. On the response of a coulomb-damped poro-plastic bed to water waves.Marine Geotechnology,5(2):93-130.
    Yang Z S, Ji Y J, Bi N S, Lei K, Wang H J,2011. Sediment transport off the Huanghe (YellowRiver) delta and in the adjacent Bohai Sea in winter and seasonal comparision. Estuarine,Coastal and Shelf Science,93:173-181.
    Yang B C, Dalrymple R W, Chun S S, Lee H J,2006. Transgressive sedimentation andstratigraphic evolution of a wave-dominated macrotidal coast, western Korea. MarineGeology,235(1-4):35-48.
    Yang X J, Jia Y G, Shan H X,2012. Experimental research on marine hydrodynamic action onconsolidation process of sediments in Yellow River Estuary. China Ocean Engineering,25(1):149-157.
    Yuhi M, Ishida H,1998. Analytical solution for wave-induced seabed response in a soil-watertwo-phase mixture. Coastal Engineering Journal,40(4):367-381.
    Yuhi M, Ishida H,2002. Simplifed solutions for wave-induced response of anisotropic seabed.Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE,128(1):46-50.
    Yuan Y, Wei H, Zhao L,2008. Observations of sediment resuspension and settling off the JiaozhouBay mouth, Yellow Sea. Continental Shelf Research,28(19):2630-2643.
    Yuan Y, Wei H, Zhao L,2009. Implications of intermittent turbulent bursts for sedimentresuspension in a coastal bottom boundary layer: a field study in the western Yellow Sea,China. Marine Geology,263(1-4):87-96.
    You Z J,2005. Fine sediment resuspension dynamics in a large semi-enclosed bay. OceanEngineering,32:1982-1993.
    Yu Z Y, Liu J, Zhang Q S,1994. Consideration of hydrodynamics characteristics,sediments&environmental problems of muddy coast in the construction of Lianyungang harbour.ChineseJournal of Oceanology and Limnology,12(2):97-105.
    Zen K, Yamazaki H,1990a. Mechanism of wave-induced liquefaction and densifcation in seabed.Soils and Foundations,30(4):90-104.
    Zen K, Yamazaki H,1990b. Oscillatory pore pressure and liquefaction in seabed induced by oceanwaves. Soils and Foundations,30(4):147-161.
    Zhang J, Huang W W, Shi M C,1990. Huanghe (Yellow River) and its estuary: sediment origin,transport and deposition. Journal of Hydrology,120(1-4):203-223.
    Zheng J W, Shan H X, Jia Y G, Liu X L, Hou W,2011. Field tests and observation of wave-loadinginfluence on erodibility of silty sediments in the Huanghe (Yellow River) estuary, China.Journal of Coastal Research,27(4):706-717.
    曹文洪,刘青泉,2000.波浪掀沙的动力学机理分析.水力学报,(1):49-59.
    曹祖德,孔令双,李炎保,2004.粉沙质海岸的工程泥沙问题.水道港口,25(S1):26-30.
    曹成林,2010.波浪作用下埕岛海域海底冲刷预测评价.青岛:国家海洋局第一海洋研究所硕士学位论文.
    陈鉴,高光,李一平,等.太湖水体中悬浮物的静沉降特征.湖泊科学,2006,18(5):528-534.
    陈沈良,谷国传,吴桑云,2007.黄河三角洲风暴潮灾害及其防御对策.地理与地理信息科学,23(3):100-112.
    陈沈良,张国安,杨世纶,虞志英,2004.长江口水域悬沙浓度时空变化与泥沙再悬浮.地理学报,59(2):260-267.
    陈小英,陈沈良,李九发,2005.黄河三角洲孤东及新滩海岸侵蚀机制研究.海岸工程,2005,24(4):2-10.
    成国栋,薛春汀,1997.黄河三角洲沉积地质学.北京:地质出版社.
    程义吉,高菁,2006.黄河三角洲孤东海域前缘岸彼演变分析.人民黄河,28(6):22-27.
    程永舟,蒋昌波,潘昀,李青峰,2012.波浪渗流力对泥沙起动的影响.水科学进展,23(2):256-263.
    程永舟,沈小雄,李建习,2008.波浪作用下岸坡动力响应试验研究.港工技术,184:1-4.
    常瑞芳.海岸工程环境,1997.青岛:青岛海洋大学出版社.
    常方强,2009.波浪作用下黄河口海底滑坡研究.青岛:中国海洋大学博士学位论文.
    常方强,贾永刚,郭秀军,2009.黄河口粉土液化过程的现场振动试验研究.岩土工程学报.31(4):609-616.
    常方强,贾永刚,2010.黄河水下三角洲液化引起的灾害研究现状.海洋地质与第四纪地质,30(5):145-152.
    常方强,贾永刚,2012.黄河口粉质土海床液化过程的现场试验研究.土木工程学报,45(1):121-127.
    常方强,贾永刚,2011.黄河口埕岛海域海床的波致液化破坏研究.华东师范大学学报(自然科学版)(4):69-74.
    丁平兴,胡克林,孔亚珍,2003.风暴对长江河口北槽冲淤影响数值模拟——以“杰拉华”台风为例.泥沙研究,(6):18-24.
    董年虎,王广月,1997.渤海海湾黄河入海口区余流特性分析.黄渤海海洋,15(1):64-70.
    冯玉岩,2007.土体对波浪响应导致的沉积物运移与微层形成实验研究.青岛:中国海洋大学硕士学位论文.
    冯秀丽,沈渭铨,杨作升,1995.波浪作用下海底粉砂液化的机理研究.岩土工程学报,17(4):28-38.
    冯秀丽,吴世强,林霖,2003.黄河三角洲埕岛近岸海域悬浮泥沙运动.海洋科学,27(12):66-70.
    郭秀军,蒋甫伟,许国辉,朱大伟,2012.波浪对黄河水下三角洲浅表沉积物非均匀改造过程监测与机制研究.岩石力学与工程学报,31(4):799-806.
    霍素霞,2003.黄河三角洲沉积物对波浪响应试验研究和数值模拟,青岛:中国海洋大学硕士学位论文.
    贾永刚,栾海晶,许国辉,刘红军,单红仙,2007.振动导致黄河口粉质土性质与起动流速的变化.岩土力学,28(6):1123-1129.
    贾永刚,单红仙,2000.黄河口海底斜坡不稳定性调查研究.中国地质灾害与防治学报,11(1):1-5.
    贾永刚,董好刚,单红仙,刘小丽,刘红军,2007.黄河三角洲粉质土硬壳层特征及成因研究.岩土力学,28(10):2029-2035.
    贾永刚,霍素霞,许国辉,单红仙,郑建国,刘红军,2004.黄河水下三角洲沉积物强度变化原位测试研究.岩土力学,25(6):876-882.
    贾永刚,单红仙,杨秀娟,孟祥梅,常方强,郑杰文,2011.黄河口沉积物动力学与地质灾害.科学出版社.
    贾永刚,张颖,刘辉,刘晓磊,郑杰文,单红仙,2012.黄河三角洲海底土波致再悬浮研究.海洋学报,34(4):1-11.
    黄峰,楼志刚,1997.排水条件对海洋粉质土动力特性的影响.岩土工程学报,19(1):22-29.
    孔亚珍,朱传芳,2008.波浪作用悬沙垂向扩散特性的实验研究.华东师范大学学报(自然科学版).6:9-13.
    Keller G H,郑继民,杨作升,1991.中国黄河三角洲和渤海南部近表层沉积物质的物理性质,黄河口水下底坡不稳定性,河口沉积动力学研究文集(一),青岛海洋大学出版社,8:1-19.
    吕海燕,2005.现代黄河三角洲陆海划界问题研究.青岛:中国海洋大学硕士论文.
    李安龙,李广雪,曹丽华,张庆德,邓声贵,2004.黄河三角洲废弃叶瓣海岸侵蚀与岸线演化.地理学报,59(5):731-738.
    李安龙,李广雪,林霖,许国辉,2012.波浪作用下粉土海床中的孔压响应试验研究.海洋通报,31(1):15-21.
    李广雪,庄克琳,姜玉池,2000.黄河三角洲沉积体的工程不稳定性.海洋地质与第四纪地质,20(2):21-26.
    李占海,高抒,沈焕庭,2006.江苏大丰潮滩悬沙级配特征及其动力响应.海洋学报,28(4):87-95.
    李平,朱大奎,1997.波浪在黄河三角洲形成中的作用.海洋地质与第四纪地质,17(2):39-47.
    李华国,袁美琦,张秀芹,1995.淤泥临界起动条件及冲刷率试验研究.水道港口,(3):20-26.
    李殿魁,杨玉珍,程义吉,顾玉荷,杨作升,焦益龄,曹文洪,2002.延长黄河口清水沟流路行水年限的研究.郑州:黄河水利出版社,43-39.
    李九发,李为华,应铭,时连强,陈沈良,戴志军,2006.黄河三角洲飞雁滩沉积物颗粒度分布和粒度参数特征及水动力解释.海洋通报,25(3):38-45.
    李建习,2008.风浪作用下库岸动力响应及稳定分析.长沙:长沙理工大学硕士学位论文.
    刘红,何青,吉晓强,2008.波流共同作用下潮滩剖面沉积物和地貌分异规律——以长江口崇明东滩为例.沉积学报,26(5):833-843.
    刘红军,张民生,贾永刚,王秀海,2006.波浪导致的海床边坡稳定性分析.岩土力学,27(6):986-990.
    刘红军,张民生,许国辉,陈友媛,王秀海,2008.波浪作用下海床土体强度非均匀化数值分析.岩土工程学报,30(6):924-930.
    刘红军,吕文芳,杨俊杰,王秀海,2009.黄河三角洲粉质土初始干密度和黏粒含量对稳态强度的影响研究.岩土工程学报,31(8):1287-1297.
    刘晓磊,单红仙,贾永刚,李红磊,郑杰文,2012.电阻率法监测黄河口海床沉积物固结过程现场试验研究.海洋与湖沼,43(2):224-229.
    刘建立,丁继胜,仲德林,雷宁,蒲高军,2006.黄河三角洲前缘桩106至黄河海港岸段海底地形冲淤变化研究.海洋科学进展,24(4):539-545.
    刘春凤,翟瑞彩,2004.有限元与边界元耦合法在波浪力计算中的应用.天津理工学院学报,20(3):79-84.
    刘莹,2010.波浪作用下黄河水下三角洲粉质土体海床响应研究.青岛:中国海洋大学硕士学位论文.
    刘辉,2011.黄河水下三角洲沉积物再悬浮通量研究.青岛:中国海洋大学硕士学位论文.
    刘晓瑜,刘会欣,孙永福,许国辉,2012.不同黏粒含量粉质土动孔压发展模式试验研究.海岸工程,31(1):1-7.
    刘涛,冯秀丽,林霖,2006.海底孔压对波浪响应试验研究及数值模拟.海洋学报,28(3):173-176.
    李一平,逄勇,李勇,2007.水动力作用下太湖底泥的再悬浮通量.水利学报,38(5):558-564.
    栾茂田,何杨,许成顺,张振东,王忠涛,郭莹,2008.黄河三角洲粉土循环剪切特性的试验研究.岩土力学,29(12):3211-3217.
    马德翠,2005.黄河口粉质土体的动力响应特性及机理研究.中国海洋大学,硕士学位论文.
    孟祥梅,贾永刚,宋敬泰,侯伟,刘涛,单红仙,2010.黄河入海泥沙沉积固结过程抗侵蚀性变化研究.岩土力学,31(12):3809-3815.
    彭晓彤,周怀阳,叶瑛,陈光谦,2004.珠江口沉积物粒度特征及其对底层水动力环境的指示.沉积学报,22(3):487-494.
    齐剑峰,2007.饱和粘性土循环剪切特性与软化变形的研究.大连:大连理工大学博士学位论文.
    秦伯强,胡维平,高光,罗敛葱,张金善,2003.太湖沉积物悬浮的动力机制及内源释放的概念性模式.科学通报,48(17):1822-1832.
    秦蕴珊,李凡,1982.渤海海水中悬浮体的研究.海洋学报,4(2):191-200.
    曲鹏,2008.波浪作用下海底管线及周围海床动力响应分析.大连:大连理工大学博士学位论文.
    钱昆,王言英,2010.基于NURBS边界元法的波浪荷载计算研究.大连理工大学学报,50(3):368-374.
    钱宁,万兆惠,1983.泥沙运动力学.科学出版社.
    乔璐璐.2008.冬季大风事件下渤黄海环流及泥沙输运过程研究.青岛:中国海洋大学博士论文.
    任于灿,1992.现代黄河水下三角洲的地貌特征及演化.海洋地质与第四纪地质,12(4):59-69.
    时连强,李九发,应铭,2006.现代黄河三角洲潮滩原状沉积物冲刷试验.海洋工程,24(1):46-54.
    师长兴,2003.1855年以来黄河泥沙输移系统的泥沙淤积分布分析.泥沙研究,2:1-7.
    单红仙,刘涛,陈友媛,贾永刚,刘红军,2008.波浪载荷导致黄河口潮坪沉积物垂向运移现场观测研究.工程地质学报,16(2),216-222.
    单红仙,刘媛媛,贾永刚,许国辉,2004.水动力作用对黄河水下三角洲粉质土微结构改造研究.岩土力学,26(5):654-659.
    单红仙,张建民,贾永刚,刘红军,许国辉,2006.黄河口快速沉积海床土固结过程研究.岩石力学与工程学报,26(8):1676-1612.
    单红仙,郑杰文,贾永刚,张民生,刘晓磊,2009.黄河口粉质土沉积物侵蚀性动态变化试验研究.海洋学报,31(4):112-119.
    单红仙,段兆臣,刘正银,2006.粉质土重复振动液化与效果研究.水力学报,1:75-81.
    单红仙,2003.黄河水下三角洲表层工程地质环境动态变化研究.青岛:中国海洋大学博士学位论文.
    单红仙,秦昊,贾永刚,2007.黄河三角洲堤前泥沙起动现场观测研究,中国海洋大学学报,5(37):825-828.
    史文君,2004.波浪导致黄河口水下斜坡硬壳破坏过程研究.中国海洋大学,硕士学位论文.
    时钟,凌鸿烈,1999.长江口细颗粒悬沙浓度垂向分布.泥沙研究,(2):59-64.
    孙永福,段炎,吴桑云,2006.黄河三角洲北部岸滩的侵蚀演变.海洋地质动态,22(8):7-11.
    孙永福,董立峰,宋玉鹏,2008.黄河水下三角洲粉质土扰动土层特征及成因探讨.岩土力学,29(6):1494-1500.
    孙效功,杨作升,陈彰榕,1993.黄河三角洲冲淤定量计算及其机制讨论.海洋学报,15:129-136.
    苏莺,2008.波浪作用下砂质海床流固耦合数值模拟及动力分析.长沙:长沙理工大学硕士学位论文.
    盛虞,姜朴,卢盛松,1989.波浪作用下重力式平台地基中孔隙水压力的实验研究与有限元分析.海洋工程,7(4):51-58.
    宋敬泰,2009.黄河三角洲岸滩沉积物临界侵蚀剪应力研究.青岛:中国海洋大学硕士学位论文.
    宋敬泰,贾永刚,孟祥梅,单红仙,郑杰文,2010.黄河三角洲潮滩孔压对循环振动荷载响应研究.海岸工程,29(2):1-6.
    唐存本,1963.泥沙起动规律.水利学报,(2):1-12.
    王厚杰,原晓军,王燕,2010.现代黄河三角洲废弃神仙沟-钓口叶瓣的演化及其动力机制.泥沙研究,(4):51-61.
    王小花,刘红军,贾永刚,2004.黄河口粉质土矿物成分特征及水动力条件响应的研究.海洋地质动态,20(5):30-35.
    王俊超,贾永刚,史文君,单红仙,许国辉,付元斌,2004.差异水动力导致黄河口粉质土微结构分型特征变化实例研究.海洋科学进展,22(2):176-183.
    王俊超,2004.黄河口潮坪沉积物对水动力作用的响应研究.青岛:中国海洋大学硕士学位论文.
    王栋,2002.波浪作用下海床动力响应与液化数值分析.大连:大连理工大学博士学位论文.
    王忠波,杨守业,李萍,李从先,蔡进功,2006.长江水系沉积物碎屑矿物组成及其失踪意义.沉积学报,24(4):570-579.
    王立忠,潘冬子,潘存鸿,2007.波浪对海床作用的试验研究.土木工程学报,40(9):101-109.
    夏令,2006.波浪作用下的泥沙起动及海底管线周围局部冲刷.浙江大学,硕士学位论文.
    薛允传,马圣媛,周成虎,2009.基于遥感和GIS的现代黄河三角洲岸线变迁及发育演变研究.海洋科学,5:35-40.
    许国辉,刘会欣,刘锦昆,于月倩,2012.黏粒含量对粉质土液化发生的作用机制.海洋地质与第四纪地质,32(3):31-36.
    许国辉,2006.波浪导致粉质土缓坡海底滑动的研究—以黄河水下三角洲为例.青岛:中国海洋大学博士学位论文.
    许国辉,孙永福,于月倩,2011.黄河水下三角洲浅表土体的风暴液化问题.海洋地质与第四纪地质,31(2):37-43.
    许国辉,尹晓慧,王秀海,贾永刚,2007.浅表土体强度对黄河水下三角洲微地貌形成的控制作用.中国海洋大学学报,37(4):657-662.
    许国辉,贾永刚,郑建国,刘媛媛,2004.黄河水下三角洲塌陷凹坑构造形成的水槽试验研究.海洋地质与第四纪地质,24(3):37-41.
    许国辉,常瑞芳,李安龙,2000.波浪作用下粘质粉砂底床性态变化的实验研究.黄渤海海洋,18(1):19-26.
    许光祥,钟亮,刘志伟,2006.波浪作用下岸坡泥沙起动机理初探.南昌工程学院学报,25(1):48-51.
    徐晓君,2009.淤泥质潮间带沉积动力过程——以长江口崇明东滩为例,华东师范大学,硕士论文.
    杨作升,王涛,1993.埕岛油田勘探开发海洋环境.青岛:青岛海洋大学出版社.
    杨美卿,王桂玲,1995.粘性细泥沙的临界起动公式.应用基础与工程科学学报,3(1):99-109.
    杨秀娟,贾永刚,单红仙,吴琼,刘辉,2010.水动力作用对黄河口沉积物强度影响的现场试验研究.岩土工程学报,32(4):630-638.
    杨秀娟,2009.黄河入海泥沙固结过程研究.青岛:中国海洋大学博士学位论文.
    杨少丽,沈渭铨,杨作升,1995.波浪作用下海底粉砂液化的机理分析.岩土工程学报,17(4):28-37.
    杨忠年,单红仙,贾永刚,孟祥梅,郑杰文,2011.黄河三角洲北部岸滩蚀积演变特征研究.岩土工程学报,33:152-163.
    严冰,张庆河,2006.波浪作用下悬沙浓度垂线分布的研究.泥沙研究,(5):63-68.
    尹延鸿,元发庆,2001.黄河尾闾河道1996年改道的意义及黄河三角洲演化趋势.海岸工程,60(4):36-43.
    尹晓慧,2009.波浪导致黄河水下三角洲粉砂流形成及发展研究.青岛:中国海洋大学硕士学位论文.
    于濂洪,王波,1999.饱和粉土振动孔隙水压力的试验研究.大连大学学报,20(4):59-63.
    原野,2009.基于声学方法的中国近海沉积物和悬浮颗粒物动力过程观测研究.青岛:中国海洋大学博士学位论文.
    臧启运,1996.黄河三角洲近岸泥沙。北京:海洋出版社.
    曾长女,刘汉龙,陈育民,2008.细粒含量对粉土动孔压发展模式影响的实验研究.岩土力学,29(8):2193-2199.
    张建民,单红仙,贾永刚,刘红军,许国辉,2007.波浪和潮波作用下黄河口快速沉积海床土非均匀固结研究.岩土力学,28(7):1369-1375.
    张存勇,2011.连云港近岸海域沉积物再悬浮及悬沙动力研究.青岛:中国海洋大学博士学位论文.
    张民生,刘红军,李晓东,贾永刚,王秀海,2009.波浪作用下黄河口粉土液化与“铁板砂”形成机制的模拟试验研究.30(11):3347-3353.
    章根德,顾小云,1993.有限厚度砂床对波浪荷载的响应.力学学报,25(1):56-68.
    郑继民,沈渭铨,陆念祖,Keller G H,Prior D B,冯秀丽,1994.黄河口及渤海中南部沉积物工程特性及其机理.青岛海洋大学学报,24(2):231-239.
    郑继民,1992.黄河口潮间带地质地貌调查研究.海岸工程,11(3):43-54.
    赵东波,2004.黄河三角洲刁口叶瓣海岸的侵蚀研究.青岛:中国海洋大学出版社.
    赵辉,2009.波浪和涌潮荷载作用下排桩的动力响应.杭州:浙江大学博士学位论文.
    宗海波,2009.黄河口海域风浪诱导的泥沙再悬浮数值模拟和全球海面气象参数遥感反演.青岛:中国海洋大学博士论文.
    周其健,贾永刚,马德翠,单红仙,刘红军,2006.黄河口潮滩粉土体固结非均匀性研究.岩土力学,27(7):1147-1152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700