用户名: 密码: 验证码:
植物篱—农作模式控制坡耕地氮磷流失效应及综合生态效益评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对粮食与食品需求不断增长,水土流失与耕地资源耗竭式高强度利用引起的地力衰退,农田肥料投入逐年增多,由此导致农业非点源(尤其是氮磷)污染引起的水环境恶化日益加剧。因此,探索农业非点源污染防控措施是高度关注的环境问题之一。农田氮磷的损失主要通过水、土迁移进入水体,而植物篱技术因植物篱的机械阻滞等作用,不仅能有效地保持水土,还能显著地减轻流失氮磷对水体富营养化的潜在危害。目前,对植物篱控制氮磷流失效应的研究大多是在分析植物篱的水土保持效应时,涉及减少总氮磷或径流全氮流失效应,较少研究植物篱模式下植物吸收与土壤蓄积氮磷效应,也较少探讨植物篱控制氮磷流失的原因;对植物篱模式综合生态效益评价的研究大多侧重于保持水土与提高土地生产力效益,忽视了控制农业非点源污染。为此,本文以三峡库区上游及库周丘陵区的紫色坡耕地为研究对象,利用野外径流小区试验,结合室内分析与数理统计法在研究了植物篱-农作模式控制坡耕地氮磷流失效应及其对土壤综合抗蚀性的响应的基础上,采用多因素综合评定法评价了坡耕地植物篱-农作模式综合生态效益,得到了紫色丘陵区最佳综合生态效益的植物篱模式。主要结论如下:
     1.植物篱-农作模式控制坡耕地氮素流失效应
     植物篱模式能降低径流全氮及其各形态径流氮浓度。就径流全氮浓度而言,与常规横坡农作模式(T4)相比,涪陵试验点黄花植物篱模式(T1)、金银花植物篱模式(T2)、2带桑树植物篱模式(T3)径流全氮平均浓度分别降低26.2%、27.5%、13.5%;3带桑树模式(T5)和四边桑模式(T6)在实验期间未呈现降低径流氮浓度的效应。在资阳试验点,与常规横坡农作模式(T7)相比,20°坡地紫穗槐模式(T8)和香根草模式(T9)径流全氮平均浓度分别降低36.0%、33.0%;与常规横坡农作模式(T10)相比,13°坡地紫花苜蓿(T11)的径流全氮平均浓度降低5.9%,蓑草(T12)无此趋势。因此,不同植物篱模式降低径流氮浓度效应的大小为:涪陵试验点金银花>黄花>2带桑树,资阳试验点20°坡地紫穗槐>香根草,13°坡地紫花苜蓿>蓑草。
     植物篱-农作模式减少了坡耕地总氮及各形态氮流失负荷。就总氮流失负荷而言,与T4相比,涪陵试验点T1、T2和T3在2011-2012年的2年间总氮流失负荷分别降低7.34kg/hm2、6.54kg/hm2、1.78kg/hm2,降低幅度分别为34.9%、31.0%、8.4%;T5与T6在试验期间未呈现降低总氮流失负荷的效应。在资阳试验点,与T7相比,20°坡地T8、T9在2010-2012年的3年间总氮流失负荷分别降低98.58kg/hm2、95.75kg/hm2,降低幅度分别为92.4%、90.0%;与T10相比,资阳试验点13°坡地T11、T12在2010-2012年的3年间总氮流失负荷分别比降低82.65kg/hm2、78.12kg/hm2,降低幅度分别为88.7%、83.9%。因此,不同植物篱模式控制氮素流失效应的大小为:涪陵试验点黄花>金银花>2带桑树;资阳试验点20°坡地紫穗槐>香根草,13°坡地紫花苜蓿>蓑草。
     2.植物篱-农作模式控制坡耕地磷素流失效应
     植物篱模式也能降低径流全磷及其各形态径流磷浓度。就径流全磷平均浓度而言,涪陵试验点T1、T2、T3和T5的径流全磷平均浓度分别降低38.1%、44.1%、41.9%、4.3%;T6在试验期间未呈现降低径流磷浓度的效应。在资阳试验点,与T7相比,20°0坡地T8、T9径流全磷平均浓度分别降低52.6%、42.1%;与T10相比,T11、T12径流全磷平均浓度分别降低40.4%、41.3%。因此,不同植物篱模式降低径流磷素浓度效应的大小为:涪陵试验点金银花>2带桑树>黄花>3带桑树,资阳试验点20°坡地紫穗槐>香根草,13°坡地紫花苜蓿≈蓑草。
     植物篱-农作模式也减少了坡耕地总磷及各形态磷流失负荷。就总磷流失负荷而言,与T4相比,涪陵试验点T1、T2和T3在2011-2012年的2年间总磷流失负荷分别降低0.99kg/hm2、1.22kg/hm2、0.84kg/hm2,降低幅度分别为38.4%、47.4%、32.7%;T5与T6在试验期间也未呈现降低总磷流失负荷的效应。在资阳试验点,与T7相比,20°坡地T8、T9在2010-2012年的3年间总磷流失负荷分别降低53.91kg/hm2、51.39kg/hm2,降低幅度分别为96.1%、91.6%:与T10相比,资阳试验点13°坡地T11、T12在2010-2012年的3年间总磷流失负荷分别降低48.81kg/hm2、48.09kg/hm2,降低幅度分别为94.0%、92.7%。因此,不同植物篱模式控制磷素流失效应的大为,涪陵试验点金银花>黄花>2带桑树;资阳试验点20°坡地紫穗槐>香根草,130坡地紫花苜蓿>蓑草。
     3.植物篱-农作模式下植物吸收与土壤蓄积氮磷效应
     植物篱-农作模式增大了植物(包括农作物和植物篱)吸收氮磷量与土壤蓄积氮磷量。植物篱模式下植物对氮、磷素的相对吸收率分别为1.6~30.0%、2.0-16.0%(除黄化模式外);土壤对氮、磷素的相对蓄积率分别为7.5-25.8%、9.7-50.9%。本文分别将植物篱-农作模式增强植物吸收和土壤蓄积氮磷量的效应称为植物篱-农作模式控制氮磷流失的植物吸收和土壤蓄积效应。
     不同植物篱由于生物、生理特性不同,增强植物吸收与土壤蓄积氮磷效应不一致。同等条件下,不同植物篱模式下植物吸收氮素效应的大小为,涪陵试验点金银花>桑树>黄花,资阳试验点20°坡地紫穗槐>香根草,13°坡地紫花苜蓿>蓑草;吸收磷素效应的大小是,涪陵试验点金银花>桑树,资阳试验点20°坡地香根草>紫穗槐,13°坡地紫花苜蓿>蓑草。涪陵试验点不同植物篱模式下土壤蓄积氮素效应的大小为黄花>金银花>桑树,蓄积磷素效应的大小是黄花>桑树>金银花;资阳试验点不同植物篱模式土壤蓄积氮、磷素效应的大小均为,20°坡地紫穗槐>香根草,13°坡地紫花苜蓿>蓑草。
     4.植物篱-农作模式土壤综合抗蚀性及其对坡耕地氮磷流失负荷的影响
     资阳实验点植物篱-农作模式土壤抗剪强度(SS)、土壤抗蚀性(AE)、抗冲性(AS)与综合抗蚀性(CAE)大于常等高农作模式,其中20°坡地T8表层土壤的SS、AEI(抗蚀指数)、ASI(抗冲指数)与CAEI(综合抗蚀指数)分别比T7增大70.3%、3.99、84.1%、102.9%,T9的分别增大49.6%、2.65、49.0%、91.9%;13°坡地T11表层土壤的SS、AEI、ASI与CAEl分别比T10增大62.2%、3.13、188.3%、87.9%,T12的分别增大89.7%、2.36、174.8%、82.9%。因此,就综合抗蚀性而言,不同植物篱模式增强土壤综合抗蚀性效应的大小为,20°坡地紫穗槐>香根草,13°坡地紫花苜蓿>蓑草。
     与常规横坡农作模式相比,植物篱-农作模式坡耕地各坡位篱带与作物带土壤抗剪强度、抗蚀性、抗冲性与综合抗蚀性明显增强,尤其是篱带。植物篱-农作模式大大减弱了坡耕地土壤各抗蚀指标自下而上呈近直线式降低或急剧降低的程度,改善了坡耕地土壤各抗蚀指标的过大坡面异质性。
     植物篱-农作模式坡耕地总氮磷流失负荷随土壤抗剪强度、抗蚀指数、抗冲指数与综合抗蚀指数的增大呈指数函数式或一次线性函数式降低,且除抗蚀指数外,拟合方程的决定系数(R2)达极显著。由此可推知植物篱-农作模式控制氮磷流失效应也随土壤抗剪强度、抗冲性与综合抗蚀性的增强而增大。
     5.植物篱-农作模式坡耕地综合生态效益评价
     在资阳试验点,与T7相比,20°坡地T8综合生态效益指数(A)、保持水土效益指数(B1)、控制农业面源污染效益指数(B2)、提高土壤抗侵蚀力效益指数(B3)、提高土地生产力效益指数(B4)分别增加301.9%、278.4%、346.6%、107.2%、23.6%,T9的分别增加288.1%、262.6%、333.9%、93.7%、25.3%;与T10相比,13°坡地T11的A、B1~B4分别增加215.6%、237.5%、220.2%、126.0%、33.6%,T12的分别增加215.6%、237.5%、220.2%、126.0%、33.6%。植物篱-农作模式坡耕地不同类型生态效益指数大小为,B2(1.165)>B1(0.962)>B4(0.495)>B3(0.332)。因此,植物篱-农作模式提高了坡耕地综合生态效益与不同类型生态效益。不同植物篱-农作模式的提高效应大小为,20°坡地紫穗槐模式>香根草,13°坡地紫花苜蓿>蓑草。在西南紫色丘陵区的坡耕地,尤其是15°以上坡耕地推广与实施灌木类植物篱模式可取得较好的综合生态效益。
     综上所述,植物篱-农作模式能有效地控制坡耕地氮磷流失,增大植物吸收与土壤蓄积氮磷量,提高综合生态效益,对保护三峡库区及其上游地区小流域水环境质量具有极其重要的理论与现实意义。植物篱-农作模式可作为控制农业点源污染物氮、磷素的源头控制技术。本文引入植物吸收氮(磷)素的相对吸收率,土壤蓄积氮(磷)素的相对蓄积率,可分别表征植物篱-农作模式下植物吸收与土壤蓄积氮磷效应;建立了坡耕地总氮磷流失负荷与土壤各抗蚀指标的关系模型;构建了包括植物篱模式控制农业非点源污染指标的植物篱-农作模式的综合生态效益评价指标体系。但由于研究条件限制,未研究植物篱-农作模式控制壤中流减少氮磷流失效应:未评价植物篱-农作模式经济与社会效益。因此,今后应进一步研究植物篱-农作模式控制壤中流减少氮磷流失效应,构建合理评价植物篱-农作模式社会效益、景观效益与综合效益的指标体系。
With the demand for grain and food constantly growing, water and soil loss and soil degradation for farmland resource used by depletion-type and high strength utilization, fertilizer of inputting farmland is increasing year by year, which leads to increasingly intensifying of water environment deterioration for agricultural non-point pollution (especially nitrogen and phosphorus).Therefore, exploring prevention and controlling measures of agricultural non-point pollution has been paid more attention to one of environmental problems. Farmland nitrogen and phosphorus loss mainly enter the water through runoff and soil. However, hedgerow technique, for its the roles such as mechanical block, not only effectively conserve water and soil, but also significantly reduce potential hazards of water eutrophication for the loss of nitrogen and phosphorus. At present, researches on effect of hedgerows on controlling farmland nitrogen and phosphorus loss mostly involved reducing amount of total nitrogen and phosphorus or runoff total nitrogen and phosphorus loss in analyzing conservation water and soil. Effect of plant absorbing and soil storing nitrogen and phosphorus is hardly studied; Reason of hedgerow on controlling nitrogen and phosphorus is hardly discussed. Researches on evaluating of comprehensive ecological benefits for hedgerow patterns mostly focus on benefits of conservation water and soil and improving land productivity. Benefit of controlling agricultural non-point pollution is neglected. Therefore, taking with slope farmland in upstream and surrounding of the Three Gorges Reservoir purple hilly region as the objective of research, effect of hedgerow-crop patterns on controlling nitrogen and phosphorus loss and its response to soil comprehensive anti-erodibility were studied by runoff plot experiment, laboratory analysis and mathematical statistics, and comprehensive ecological benefits of hedgerow-crop patterns were evaluated by multi-factor assessment, in this paper. Main results are as follows.
     1. Effect of hedgerow-crop patterns on controlling nitrogen loss in slope farmland
     Hedgerow patterns could reduce concentration of runoff total N and different form runoff N. In terms of runoff total N concentration, in Fuling experimental zone, compared with conventional contour crop pattern (T4), average concentration of runoff total N decreased by26.2%,27.5%,13.5%for Hemerocallis citrina baroni hedgerow pattern (T1), Honeysuckle hedgerow pattern (T2), two stripe contour Mulberry hedgerow pattern(T3), respectively; runoff N concentration under three stripe contour Mulberry hedgerow pattern(T5) and border mulberry pattern(T6) had no decreasing trend during experiment. In Ziyang experimental zone, compared with conventional contour cropping pattern (T7), average concentration of runoff total N decreased by36.0%,33.0%for Amorpha hedgerow pattern (T8) and Vetiver hedgerow pattern (T9) in20°slope farmland, respectively; Compared with conventional contour crop pattern (T10), average concentration of runoff total N decreased by5.9%for Alfalfa pattern(T11), and that of Eulaliopsis binata pattern(T12) had no significant decreasing trend, in13°slope farmland. Therefore, the order of effect of different hedgerow patterns on decreasing runoff nitrogen concentration was T2>T1>T3in Fuling, T8>T9in20°slope farmland of Ziyang, T11>T12in13°one.
     Hedgerow-crop patterns reduced amount of total N and different form N loss. In terms of amount of total N, in Fuling experimental zone, compared with T4, amount of total N loss under T1,T2and T3reduced7.34kg/hm2,6.54kg/hm2,1.78kg/hm2, and their reduction ratio were34.9%,31.0%,8.4%from2011to2012, respectively; That of T5and T6had no decreasing trend during experiment. In Ziyang experimental zone, compared with T7, amount of total N loss under T8and T9reduced217.33kg/hm2,95.75kg/hm2, and their reduction ratio were92.4%,90.0%from2010to2013in20°slope farmland, respectively; That of T11and T12reduced82.65kg/hm2,78.12kg/hm2, and their reduction ratio were88.7%,83.9%in13°slope farmland, respectively. Therefore, the order of effect of different hedgerow patterns on controlling nitrogen loss was T1>T2>T3in Fuling, T8>T9in20°slope farmland of Ziyang, T11>T12in13°one.
     2. Effect of hedgerow-crop patterns on controlling phosphorus loss in slope farmland
     Hedgerow patterns could reduce concentration of runoff total P and different form runoff P. In terms of runoff total P concentration, in Fuling experimental zone, compared with T4, average concentration of runoff total P decreased by38.1%,44.1%,41.9%,4.3%for T1, T2, T3, T4, respectively; runoff P concentration under T6had no decreasing trend during experiment. In Ziyang experimental zone, compared with T7, average concentration of runoff total P decreased by52.6%,42.1%for T8and T9in20°slope farmland, respectively; Compared with T10, average concentration of runoff total P decreased by40.4%,41.3%for T11, T12in13°slope farmland, respectively. Therefore, the order of effect of different hedgerow patterns on decreasing runoff phosphorus concentration was T2>T3>T1>T5in Fuling, T8>T9in20°slope farmland of Ziyang, T11≈T12for13°one.
     Hedgerow patterns reduced amount of total P and different form P loss, too. In terms of amount of total P, in Fuling experimental zone, compared with T4, amount of total N loss under T1,T2and T3reduced0.99kg/hm2,1.22kg/hm2,0.84kg/hm2, and their reduction ratio were38.4%,47.4%,32.7%from2011to2012, respectively; That of T5and T6also had no decreasing trend during experiment. In Ziyang experimental zone, compared with T7, amount of total N loss under T8and T9reduced53.91kg/hm2,51.39kg/hm2, and their reduction ratio were96.1%,91.6%from2010to2012in20°slope farmland, respectively; compared with T10, that of T11and T12reduced48.81kg/hm2,48.09kg/hm2, and their reduction ratio was reduced by94.0%,92.7%from2010to2012in13°slope farmland, respectively. Therefore, the order of effect of different hedgerow patterns on controlling phosphorus loss was T1>T2>T3in Fuling, T8>T9in20°slope farmland of Ziyang, T11>T12in13°one.
     3. Effect of plant absorbing and soil storing nitrogen and phosphorus under hedgerow-crop patterns
     Hedgerow-crop patterns increased plant (including crops and hedgerows) absorbing and soil storing the amount of nitrogen and phosphorus. Relative absorption rates of plant absorbing N and P were1.6-30.0%,2.0-16.0%(except for Hemerocallis citrina baroni pattern) under hedgerow patterns, respectively; Relative storage rates of soil storing N and P were7.5-25.8%,9.7~50.9%, respectively. Therefore, it was called by plant absorbing and soil storing effect of hedgerow-crop patterns on controlling N and P loss that hedgerow-crop patterns increased amount of plant absorbing and soil storing N and P in this paper.
     Effect of plant absorbing and soil storing N and P under different hedgerows was different for the difference of their biological and physiological characteristics. On this research conditions, the order of the effect of plant absorbing N under different hedgerow patterns was Honeysuckle> mulberry>Hemerocallis citrina baroni in Fuling, Amorpha> Vetiver in20°slope farmland of Ziyang, Alfalfa> Eulaliopsis binat in13°one; The order of the effect of plant absorbing P was Honeysuckle> mulberry in Fuling, Vetiver>Amorpha in20°slope farmland of Ziyang, Alfalfa> Eulaliopsis binat in13°one. In Fuling experimental zone, the order of effect of soil storing N under different hedgerow patterns was Hemerocallis citrina baroni> Honeysuckle> mulberry, the order of effect of soil storing P was Hemerocallis citrina baroni> mulberry> Honeysuckle. In Ziyang experimental zone, the order of effect of soil storing N and P was Amorpha> Vetiver in20°slope farmland, Alfalfa> Eulaliopsis binat in13°one.
     4. Soil comprehensive anti-erodibility and their influence on amount of nitrogen and phosphorus loss under hedgerow-crop patterns
     In Ziyang experimental zone, Soil shear strength (SS), anti-erodibility(AE), anti-scouring(AS) and comprehensive anti-erodibility(CAE) of hedgerow-crop patterns were higher than those of conventional contour crop one. In20°slope farmland, surface soil SS, AEI, ASI and CAEI for T8increased by70.3%,3.99,84.1%,102.9%, respectively, and those of T9increased by49.6%,2.65,49.0%,91.9%, respectively. In13°slope farmland, surface soil SS, AEI, ASI and CAEI for T11increased by62.2%,3.13,188.3%、87.9%, respectively, and those of T12were increased by89.7%,2.36,174.8%,82.9%, respectively. Therefore, In terms of CAE, the order of effect of different hedgerow-crop patterns improved CAE was Amorpha> Vetiver in20°slope farmland, Alfalfa> Eulaliopsis binat in13°one.
     Compared with conventional contour crop pattern, hedgerow and crop belt SS, AE, AS and CAE of slope farmland in each slope position were improved under hedgerow-crop patterns, especially hedgerow belt. Hedgerow-crop patterns weaken considerably the conditions that values of soil anti-erosion indexes decreasing by nearly line or rapidly decreasing from low slope to top slop, and improved excessive slope heterogeneity of soil anti-erosion indexes in slope farmland.
     Amount of slope farmland total N and P loss decreased by exponential or linear function with increasing of SS, AEI, ASI and CAEI values, and values of adjusted determination coefficient (R2) of fitting equation for between SS, ASI, CAEI values and amount of slope farmland total N and P loss reached extremely significant level. Therefore, it was inferred that effect of hedgerow-crop patterns on controlling N and P loss should increased with improving of SS, SAI and CSAI.
     5. Evaluating of comprehensive ecological benefits for hedgerow-crop patterns
     In20°slope farmland of Ziyang, compared with T7, indexes of comprehensive ecological effect(A), soil and water conservation one(B1), controlling agricultural non-point source pollutant one (B2), increasing soil anti-erosion force one (B3) and improving land productivity one (B4) for T8were increased by301.9%,278.4%,346.6%,107.2%,23.6%, respectively, and those of T9were increased by288.1%,262.6%,333.9%,93.7%,25.3%, respectively. In13°slope farmland, compared with T10, indexes of A, B1, B2, B3and B4for T11were increased by215.6%,237.5%,220.2%,126.0%,33.6%, respectively, and those of T12were increased by206.4%,228.6%,212.6%,106.3%,35.8%, respectively. The order of index of different type ecological effect was B2(1.165)>B1(0.962)>B4(0.495)>B3(0.332) under hedgerow-crop patterns. Therefore, Hedgerow-crop patterns improved comprehensive and different type ecological benefits of slope farmland. The order of effect of different hedgerow-crop patterns improving ecological benefits was Amorpha> Vetiver in20°slope farmland, Alfalfa> Eulaliopsis binat in13°one. If shrub hedgerow patterns be carry out in slope farmland of southwest purple hilly area, especially lager than15°slope farmland, better comprehensive ecological benefit can be obtain.
     Overall, hedgerow-crop patterns could be effectively controlling nitrogen and phosphorus loss of slope farmland, increase plant absorbing and soil storing the amount of nitrogen and phosphorus, improve ecological benefit, which is extremely important theoretical and practical significance to protect water environmental quality of Three Gorges Reservoir and its small watershed in upstream region. Hedgerow-crop patterns can be used as source controlling technology of controlling agricultural non-point pollutants nitrogen and phosphorus. In this paper, relative absorption rate of plant absorbing N and P, relative storage rate of soil storing N and P was introduced, and they may characterized plant absorbing and soil storing effect of hedgerow-crop patterns controlling N and P loss, respectively; Relational model between the amount of total N and P loss and soil anti-erosion indexes was established; Evaluation index system including indexs of hedgerow patterns controlling agricultural non-point pollution of comprehensive ecological benefits under hedgerow-crop patterns was established. However, in this paper, effect of N and P loss for hedgerow-crop patterns controlling interflow isn't studied; the economic and social benefits aren't evaluated. Therefore, effect of N and P loss for hedgerow-crop patterns controlling interflow should be further studied from now on; Index system of evaluating social, landscape and comprehensive benefits under hedgerow-crop patterns should be reasonably established.
引文
[1]Sun H, Tang Y, Xie J S.Contour hedgerow intercropping in the mountains of China:a review. Agroforest Syst,2008,73:65-76
    [2]张建锋,单奇华,钱洪涛,等.坡地固氮植物篱在农业面源污染控制方面的作用与营建技术.水土保持通报.2008,28(5):180-185.
    [3]Daniel T C, Sharpley A N, Lemunyou J L. Agricultural phosphorus and eutrophication:A symposium overview. Journal of Environmental Quality,1998,27(1):251-257.
    [4]张宇清,齐实.中国梯田生物埂研究:现状和方向.世界林业研究,2002,15(3):49-53
    [5]王喜龙,蔡强国,王忠科,等.冀西北黄土丘陵沟壑区梯田地埂植物篱的固埂作用与效益分析.自然资源学报,2000,15(1):74-79.
    [6]刘学军,李秀彬.等高线植物篱提高坡地持续生产力研究进展.地理科学进展,1997,16(3):69-79
    [7]尹迪信,唐华彬,罗红军,等.植物篱技术发展回顾和贵州省的研究进展.水土保持研究,2000,13(1):15-16
    [8]姚小华,罗细芳.坡耕地植被恢复中生态经济型植物篱应用及其展望.江西农业大学学报,2005,27(2):294-298
    [9]朱钟麟,陈一兵.经济植物篱主要模式及其生态经济效益研究.西南农业学报,2005,18(6):715-718.
    [10]李秀彬. L iving Terrace Edge-an Effective Method of Slope Utilization in the Upper Reaches of the Yangtze R iver, In:Pei (ed.), Rehabilitation of Degraded Lands in Mountain Ecosystems of the Hindu Kush-Hinalayan Region, ICIMOD,1995.
    [11]Rodriguez O S. Hedgerows and mulch as soil conservation measures evaluated under field simulated rainfall. Soil Technology,1997,11 (1):79-930
    [12]施迅.坡地改良利用中活篱笆的种类选择和水平空间结构初步研究.生态农业研究,1995,3(2):49-53
    [13]许峰,蔡强国,吴淑安.等高植物篱在南方湿润山区坡地的应用一以三峡库区紫色土坡地为例.山地学报,1999,17(3):193-199
    [14]唐政洪,蔡强国,许峰,等.半干旱区植物篱侵蚀及养分控制过程的试验研究.地理研究,2001,20(5):593-600.
    [15]唐政洪,蔡强国,许峰,等.冀西北半干旱区等高植物篱面源污染控制机理.环境科学,2001,22(6)86-90
    [16]马云,何丙辉,何建林,等.基于水动力学的紫色土区植物篱控制面源污染的临界带间距确定.农业工程学报,2011,27(4):60-64
    [17]陈正刚,朱青,王文华,等.坡改梯经济植物篱技术的示范效果.耕作与栽培,2006(2):61-62
    [18]彭熙,李安定,李苇洁,卢兰.不同植物篱模式下土壤物理变化及其减流减沙效应研究.土壤,2009,41(1):107-111
    [19]许峰,蔡强国,吴淑安,张光远.坡地等高植物篱带间距对表土养分流失影响.土壤侵蚀与水土保持学报,1999,5(2):23-29
    [20]刘定辉,赵燮京,曹均城,等.紫色丘陵区蓑草植物篱的减流减沙效应及其机理.西南农业学报,2007,20(3):439442
    [21]Jeff P. Sloping agricultural land technology (SALT):Nitrogen fixing agroforestry for sustainable soil and water conservation.Philippines:MBRLC,1996.
    [22]Paningbatan EP, Ciesiolka CA, Coughlan KJ, Rose CW. Alley cropping for managing soil erosion of hilly lands in the Philippines. Soil Technology,1995,8:193-204
    [23]Narain P, Singh R K, Sindhwal N S, et al. Agroforestry for soil and water conservation in western Himalayan valley region of India:1.Runoff, soil and nutrient loss. Agroforestry Systems,1998,39(2):175-189.
    [24]Kiepe P. Cover and barrier effect of Cassia siamea hedgerows on soil conservation in semi-arid Kenya. Soil Technology,1996,9:161-171
    [25]Kinama J M, Stigter C J, Ong C K, et al. Contour hedgerows and grass strips in erosion and runoff control on sloping land in semi-arid Kenya. Arid land research and management,2007,21(1):1-19
    [26]Angima S D, Stott D E, O'Neill M K, Ong CK, Weesies GA. Use of calliandra-Napier grass contour hedges to control erosion in central Kenya. Agricuture Ecosystems & Environment,2002,91(1/3):15-23
    [27]Alegre J C. Soil and water conservation by contour hedging in the humid tropics of peru.Agriculture,Ecosystems and Environment,1995,57(1):17-25
    [28]Banda A Z, Maghembe J A, Ngugi D N,et al. a hedgerows on soil conservation and maize yield on a steep slope at Ntcheu, Malawi. Agroforestry Systems,1994,27 (1):17-22
    [29]McDonald M A, Healey J R, Stevens P A. The effects of secondary forest clearance and subsequent land-use on erosion losses and soil properties in the Blue Mountains of Jamaica. Agriculture, Ecosystems & Environment.2002,92(1):1-19
    [30]Coughlan K J, Rose C W. A new soil conservation methodology and application to cropping systems in trop ical steep lands. Canberra:ACIAR, Austrilia,1997
    [31]尹迪信,唐华彬,罗红军.参与式植物篱坡地治理技术发展的实践和体会.贵州农业科学,2006,34(5):107-111
    [32]孙辉,唐亚,陈克明,何永华.固氮植物篱防治坡耕地土壤侵蚀效果研究.水土保持通报.1999,19(6):1-5
    [33]孙辉,唐亚,陈克明,张炎周.等高固氮植物篱控制坡耕地地表径流的效果.水土保持通报,2001,21(2):48-51
    [34]孙辉,唐亚,王春明,何永华.等高固氮植物篱技术——山区坡耕地保护开发利用的有效途径.山地学报,2001.19(2):125-129
    [35]唐亚,谢嘉穗,陈克明,等.等高固氮植物篱技术在坡耕地可持续耕作中的应用.水土保持研究,2001,8(1):104-109
    [36]吴杨,唐亚,许宇慧,付磊.植物篱模式下小流域退耕还草生态农业可持续发展模式研究.草业科学,2009,26(4):59-63
    [37]Lin C W, Tu S H, Huang J J, Chen YB. Effects of plant hedgerows on soil erosion and soil fertility on sloping farmland in the purple soil area. Acta Ecologica Sinica,2007,27(6):2191-2198
    [38]Lin C W, Tu S H, Huang J J, Chen YB, The effect of plant hedgerows on the spatial distribution of soil erosion and soil fertility on sloping farmland in the purple-soil area of China. Soil and Tillage Research,2009,105(2): 307-312
    [39]陈一兵,林超文,黄晶晶.经济植物篱和增施钾肥综合效益研究.水土保持研究,2006,13(3):47-49
    [40]涂仕华,陈一兵,朱青.经济植物篱在防治长江上游坡耕地水土流失中的作用及效果.水土保持学报,2005,19(6):1-5,85
    [41]唐华彬,尹迪信,罗红军,等.经济植物篱模式在坡耕地上的试验示范研究.中国水土保持,2006(1):17-19
    [42]谢庭生,罗蕾.紫色土丘陵侵蚀沟建植物篱自然植被恢复及水土流失特征研究.水土保持研究,2005,12(5):62-65
    [43]申元村.三峡库区植物篱坡地农业技术水土保持效益研究.土壤侵蚀与水土保持学报,1998,4(2):61-66
    [44]许峰,蔡强国,吴淑安,张光远.香根草植物篱控制坡地侵蚀与养分流失研究.山地农业生物学报,2000,19(2):75-82
    [45]许峰,蔡强国,吴淑安,等.三峡库区坡地生态工程控制土壤养分流失研究——以等高植物篱为例.地理研究,2000,19(3):303-309
    [46]许峰,蔡强国,吴淑安,等.等高植物篱控制紫色土坡耕地侵蚀的特点.土壤学报,2002,39(1):71-79
    [47]Bu C F, Cai Q G, Ng S L, Chau K C, Ding SW. Effects of hedgerows on sediment erosion in Three Gorges Dam Area, China. International Journal of Sediment Research,2008,23(2):119-129
    [48]卜崇峰,蔡强国,袁再健.湿润区坡地香根草植物篱农作措施对土壤侵蚀和养分的影响.农业工程学报,2006,22(5):55-60
    [49]蔡强国,黎四龙.植物篱笆减少侵蚀的原因分析.土壤侵蚀与水土保持学报,1998,4(2):54-60
    [501陈治谏,廖晓勇,刘邵权.坡地植物篱农业技术生态经济效益评价.水土保持学报,2003,17(4):125-127,160
    [51]廖晓勇,罗承德,陈治谏,等.三峡库区坡地果园间植草篱的水土保持效应.长江流域资源与环境,2008,17(1):152-156
    [52]史东梅,卢喜平,刘立志.三峡库区紫色土坡地桑基植物篱水土保持作用研究.水土保持学报,2005,19(3):75-79
    [53]车全国.黄土高原东部植物篱水保效益试验研究.山西水利,1998,(3):13-14
    [54]张鹏.山西南部植物篱水土保持效益试验研究.山西水利,2001(4):15-16
    [55]王青杵,王彩琴,杨丙益.黄土残塬沟壑区植物篱水土保持效益研究.中国水土保持,2001(12):25-27
    [56]雷霆,于铖江,姜华.植物篱营建技术及效益分析.华内蒙古林业,2002,(12):29-30
    [57]Wei L H, Zhang B, Wang M Z. Effects of antecedent soil moisture on runoff and soil erosion in alley cropping systems. Agricultural Water Mangagement,2007,94(1/3):54-62
    [58]姚桂枝,刘章勇.丹江口库区坡耕地不同植物篱对径流及养分流失的影响初探.安徽农业科学,2010,38(6):3015-3016,3047
    [59]Tej P, Harold R W. Sloping agricultural land technology (SALT):A Regenerative Option for Sustainable Mountain Farming. Kathmandu:ICEMOD,1994
    [60]申元村.三峡库区植物篱坡地农业技术提高土地生产潜力的研究.长江流域资源与环境,2002,11(1):56-59
    [61]Kiepe P. Effect of Cassia siamea hedgerow barriers on soil physical p roperties. Geoderma,1995,66(1/2): 113-120
    [62]Oyedele D J, Awotoye O O, Popoola S E. Soil physical and chemical properties under continuous maize cultivation as influenced by hedgerow trees species on an alfisol in South Western Nigeria. African Jouranl of Agricultural Reserch,2009,4(8):736-739
    [63]Agus F, Cassel D K, Garrity D P. Soil-water and soil physical properties under contour hedgerow systems on sloping oxisols. Soil and Tillage Research,1997,40(3/4):185-199
    [64]廖晓勇,罗承德,陈治谏,等.三峡库区植物篱技术对坡耕地土壤肥力的影响.水土保持通报,2006,26(6):1-3
    [65]廖晓勇,罗承德,陈义相,田道平.陡坡地饲草玉米生物篱的生态效益研究.农业环境科学学报,2009,28(3):633-638
    [66]王海明,陈治谏,廖晓勇,等.三峡库区坡耕地植物篱技术对土壤特性的影响.安徽农业科学,2009,37(2):692-694
    [67]程冬兵,李朝霞,蔡崇法,彭艳平.三峡库区等高绿篱技术对土壤物理性质的影响.中国水土保持科学,2008,6(2):83-89
    [68]Walter C, Merot P, Layer B, Dutin G. The effect of hedgerows on soil organic carbon storage in hill slopes. Soil Use and Management,2003,19(3):201-207
    [69]Stephane F, Christian W, Arnaud L, et al. Induced effects of hedgerow networks on soil organic carbon storage within an agricultural landscape. Geoderma,2007,142(1-2):80-95.
    [70]McDonald M A., Healey J R., Stevens P A.The effects of secondary forest clearance and subsequent land-use on erosion losses and soil properties in the Blue Mountains of Jamaica. Agriculture, Ecosystems & Environment,2002,92(1):1-19
    [71]McDonald M A., Healey J R., Stevens P A. The effects of secondary forest clearance and subsequent land-use on erosion losses and soil properties in the Blue Mountains of Jamaica. Agriculture, Ecosystems & Environment,2002,92(1):1-19
    [72]孙辉,唐亚,陈克明,何永华.固氮植物篱改善退化坡耕地土壤养分状况的效果.应用与环境生物学报,1999,5(5):473-477
    [73]谢嘉穗,唐亚,孙辉,陈建中.等高固氮植物篱值得大力推广.中国水土保持,2003(3):23-25
    [74]袁远亮,孙辉,杜开杰,等.宁南县加速推广等高固氮植物篱技术成效.水土保持通报,2000,20(6):48-50
    [75]袁远亮,杜开杰,高建文.宁南县推广等高固氮植物篱技术的措施.中国水土保持,2001,(2):32-33
    [76]吴杨,唐亚,许宇慧,付磊.植物篱模式下小流域退耕还草生态农业可持续发展模式研究.草业科学,2009,26(4):59-63
    [77]孙辉,唐亚,何永华,赵其国.高固氮植物篱模式对坡耕地土壤养分的影响.中国农业生态学报,2002,6(2):79-82
    [78]陈治谏,廖晓勇,刘邵权.坡地植物篱农业技术生态经济效益评价.水土保持学报,2003,17(4):125-127,160
    [79]黄丽,蔡崇法,丁树文,张光远.几种绿篱梯田中紫色土有机质组分及其性质的研究.华中农业大学学报,2000,19(6):559-562
    [80]程冬兵,蔡崇法.等高绿篱技术保水抗旱效益研究.长江流域资源与环境,2008,17(5):793-797
    [81]Shi Z H, Chen L D, Cai C F, et al. Effects of long-term fertilization and mulch on soil fertility in contour hedgerow systems:A case study on steeplands from the Three Gorges Area, China. Nutrient cycling in agroecosystem,2009,84(1):39-48
    [82]蒲玉琳 谢德体,林超文,等.植物篱-农作坡耕地土壤微团聚体组成及分形特.土壤学报,2012,24(1):1069-1077
    [83]蒲玉琳,林超文,谢德体,等.植物篱-农作坡地土壤团聚体组成及稳定性特征.应用生态学报,2013,24(1):122-128
    [84]Daniels R B, Gilliam J W. Sediment and chemical load reduction by grass and riparian filters. Soil Scienee Society of America Journal,1996,60:246-251
    [85]Watanabe H, Grismer ME. Diazinon transport through inter-row vegetative filter strips:micro-ecosystem modeling.Journal of Hydrology,2001,247(3-4):183-199
    [86]Mersie W, Seybold C A, McNamee C, Lawson MA. Abating endosulfan from runoff using vegetative filter strips:the importance of plant species and flow rate.Agriculture, Ecosystems & Environment,2003,97(1-3): 215-223
    [87]Ericp W.Impact of vegetative filter strips on herbicide loss in runoff from soybean.Weed Science,1996,44:662-671.
    [88]Otto S, Vianello M, Infantino A, et al. Effect of a full-grown vegetative filter strip on herbicide runoff: Maintaining of filter capacity over time. Chemosphere,71,2008,(1):74-82
    [89]] Smith M, Melvin S, Pope R, et al.Vegetativ filter strips for imroved surface water quality.Ames:Iowa state university,1992
    [90]Blanco-Canqui H; Gantzer, C J; Anderson, S H, et al.Grass barrier and vegetative filter strip effectiveness in reducing runoff, sediment, nitrogen, and phosphorus loss.Soil science society of america joumal,2004,68(5):1670-1678
    [91]Bhattarai R, Kalita P K, Patel M K. Nutrient transport through a Vegetative Filter Strip with subsurface drainage.Journal of Environmental Management,2009,90(5):1868-1876
    [92]Lazzaro L, Otto S, Zanin G. Role of hedgerows in intercepting spray drift:Evaluation and modelling of the effects.Agriculture, Ecosystems & Environment,2008,123(3):317-327
    [93]Angima S D, Stott D E, O'Neill M K, et al. Use of calliandra-Napier grass contour hedges to control erosion in central Kenya.agricuture ecosystems & environment,2002,91(1-3):15-23.
    [94]Comia, R A, Paningbatan, E P, Hakansson I H. Erosion and crop yield response to soil conditions under alley cropping systems in the Philippines. Soil & Tillage Research.1994,31:249-261.
    [95]仓恒瑾,许炼峰,李志安,等.农业非点源污染控制中的最佳管理措施及其发展趋势.生态科学,2005,24(2):173-177
    [96]章明奎,李建国,边卓平.农业非点源污染控制的最佳管理实践.浙江农业学报,2005,17(5):244-250
    [97]李怀恩,张亚平,蔡明,等.植被过滤带的定量计算方法.生态学杂智,2006,25(1):108-112
    [981李怀恩,邓娜,杨寅群,等.植被过滤带对地表径流中污染物的净化效果.农业工程学报,2010,21(7):81-86.
    [99]李怀恩,庞敏,杨寅群,等.植被过滤带对地表径流中悬浮固体净化效果的试验研究.水力发电学报,2009,28(6):176-171
    [100]田潇,周运超,刘晓芸,等.物种配置植物篱对坡耕地营养元苏拦截效应.水土保持研究,2011,18(6):89-93
    [101]许开平,吴家森,黄程鹏,姜培坤.不同植物篱在减少雷竹林氮磷渗漏流失中的作用.土壤学报,2012,49(5):980-986
    [102]Pansak W, Hilger T H, Dercon G,et al. Changes in the relationship between soil erosion and N loss pathways after establishing soil conservation systems in uplands of Northeast Thailand. Agriculture, Ecosystems & Environment,2008,128(3):167-176
    [103]Adam F, Alison B. Evaluating canalside hedgerows to determine future interventions. Journal of Environmental Management,2005,74(1):71-78
    [104]Clements, D K, Tofts, R J. Hedgerow Evaluation & Grading Systems, A methodology for the Ecological Survey: Evaluation & Grading of Hedgerows. Countryside Planning & Management, UK.1992.
    [105]Rich T C G., Clements D K, Lewis J L. Moore A comparison of four methods used to survey hedgerows:The Cardiff Hedgerow Survey 1998. Journal of Environmental Management,2000,60(1):91-100
    [106]Faiers A, Bailey A.Evaluating canalside hedgerows to determine future interventions.Journal of Environmental Management,2005,74(1):Volume 74,71-78
    [107]Pattanayak S, Mercer D E. Valuing soil conservation benefits of agroforestry:contour hedgerows in the Eastern Visayas, Philippines.Agricultural Economic,1998,18(1):31-46
    [108]Sudhishri S, Dass A, Lenka N K. Efficacy of vegetative barriers for rehabilitation of degraded hill slopes in eastern India. Soil & Tillage Research.,2008,99 (1):98-107.
    [109]邓智伟,伍世良.三峡库区等高植物篱之成本效益分析.资源科学,2004,26(增刊):132-136
    [1101祝其丽,孙辉,何道文,等.植物篱种植模式综合效益研究.四川环境,2007,26(3):41-45,54
    [111]王幸,张洪江,程金花,等.三峡库区坡耕地植物篱模式效益评价研究.中国农业生态学报,2011,19(3):692-698
    [112]李裕荣,尹迪信,韦小平.贵州植物篱梯化项目区农户对水保植物的参与式评价. 贵州农业科学,2007,35(5):108-110
    [113]Wischmeier W H, Smith D D. Predicting rainfall-erosion losses from cropland east of the Rocky Mountains.USDA.Agricultural Handbook,1965
    [114]Nearing M A, Lane L J, Alberts E E, et al. Prediction technology for soil erosion by water:Status and research needs. Soil Sci Soc Am J,1990,54(6):1702-1711
    [115]Morgan R. The European Soil Erosion Model :an update on its structure and research base, In:Rickson R(ed), Conserving Soil Resources:European perspectives. CAB International.Cambridge,1994:286-299.
    [116]DeRoo A, Wesseling C G, Ritsma C G. LISEM:A single-event,physical based hydrological and soils erosion model for drainage basin. I:theory.input and output. Hydrological Processes,1996,10:1107-1117
    [117]Rose C W, Williams J R, Sander G C, et al. A mathematical model of soil erosion and deposition processes:Ⅰ. Theory for a plane land element. Soil Sci Soc of Am J,1983,47 (5):991-995
    [118]Cai QG, Wang H, Curtin D, Zhu Y Evaluation of the EUROSEM model with single event data on steeplands in the three Gorges reservoir areas, China. Catena,2005,59(1):19-33
    [119]谭钦文,尹黎明,卢玉东,等.三峡库区紫色土坡耕地土壤侵蚀量预测模型研究.国土与自然资源研究.2004,1:19-21
    [120]Meyer L D,Wischmeier W H. Mathematical simulation of process of soil-erosion by water. Trans.Am.Soc.Agrie.Engrs,1969, (12):754-758
    [121]汤立群.流域产沙模型的研究.水科学进展,1996,7(1):47-53
    [122]唐政洪.GIS支持下小流域农林复合经营的侵蚀控制模拟——以冀西北青边口河小流域为例.水土保持学报,2001,15(6):70-73
    [123]李新平.红壤坡耕地人工模拟降雨条件下植物篱笆水土保持效应及机理研究.水土保持学报,2002,16(2):36-40
    [124]马廷,周成虎,蔡强国.不同植物篱坡面的土壤侵蚀过程CA模拟.地理研究.2006,25(6):959-966
    [125]胡万里,付斌,段宗颜,等.低纬高原湖泊农业面源污染防治研究进展.中国农学通报2009,25(08):250-255
    [126]Shavic A, Mikkelsen R L. Slow release fertilizers to increase efficiency of nutrient use and minimize environmental degradation. A review. Fert. Res.,1993,35:1-12
    [127]Shoji S, Kanno H. Use of polyolefin-coated fertilizers for increasing fertilizer efficiency and reducing nitrate leaching and nitrous oxide emissions. Fert. Res.,1994,39:147-152
    [128]许秀成.再论“人口粮食环境肥料”(续完).磷肥与复肥,2005,20(2):9-13
    [129]粟晓万,杜建军,贾振宇,等.缓/控释肥的研究应用现状.土壤肥料科学,2007,23(12):234-238
    [130]冯元琦.我国的腐植酸包膜尿素.腐植酸,2001,3:47-49
    [131]Lewis D R, McGechan M B, McTaggart I P.Simulating field-scale nitrogen management scenarios involving fertiliser and slurry applications. AgriculturalSystems,2003,76:159-180
    [132]刘克礼,高聚林,王立刚.大豆对氮、磷、钾的平衡吸收动态的研究.中国油料作物学报,2004,26(1):51-54.
    [133]葛建军,何文选.柑桔测土配方施肥技术指标体系研究与应用.邵阳学院学报(自然科学版),2008,5(2):90-93.
    [134]丁华萍,陈斌,张和兰,等.氮钾肥施用量对秋季大白菜产量和品质的影响.七壤通报,2006,6(3):28-31
    [135]王静,蔡叶.玉米平衡配套施肥技术研究.耕作与栽培,2000,(4):41-55
    [136]Phillips L D高鹏.农业耕作措施对非点源污染的影响.水土保持科技情报,1994,(3):6-7
    [137]Ward,A.D.Tillage and water quality research.soil & tillage research,1994,30:49-74
    [138]丁恩俊,谢德体.基于农业面源污染控制的三峡库区保护性耕作技术.农机化研究,2009,(8):1-5
    [139]刘建.基于一种稻田新型耕作制度的农业面源污染控制效应分析,中国农学通报,2008,34(增刊):168-171
    [140]陈文英,毛致伟,沈万斌,等.农业非点源污染环境影响及防治.北方环境,2005,30(2):43-45
    [141]曹俊杰,王学真.国外现代生态农业发展比较研究.生态经济,2006,(9):108-111
    [142]孙鸿良.我国生态农业主要种植模式及其持续发展的生态学原理.生态农业研究,1996,4(1):15-32
    [143]韩东峰,孟庆岩,孙鹏飞,等.我国生态农业模式研究现状及展望.生态经济,2008,(4):33-35,39
    [144]张维理,冀宏杰,Kolbe H,等.中国农业面源污染形势估计及控制对策Ⅱ.欧美国家农业面源污染状况及控制.中国农业科学2004,37(7):1018-1025
    [145]蒋鸿昆,高海鹰,张奇.农业面源污染最佳管理措施(BMPs)在我国的应用.农业环境与发展,2006,23(4):64-67
    [146]Beckman U, Kolbe H,Model A. Ackerbausysteme in Oekologischen Landbau unter besonderer Beruecksichtigung von N-Bilanz und Effizientkennzahlen, UFZBericht,1999, Saechsische Landesanstalt fuer Landschaft,UFZ-Umweltforschung-szentrum, Leipzig
    [147]AlexJ.H人工湿地在国外的应用案例研究.城市水景观建设和水环境治理国际研讨会论文集,2005.
    [148]杨华,马继侠.人工湿地在农业面源污染治理中的应用.工程建设与设计,2009,(10):66-70
    [149]Peterjohn W T, Correll D L. Nutrient dynamics in an agricultural watershed:observations on the role of ariparian forest.Ecology,1984,(65):1466-1475
    [150]刘文祥.人工湿地载农业面源污染控制中的应用研究.环境科学研究,1997,10(4).:15-19
    [151]汤承彬,施甘霖.滇池水源地农田径流污染控制工程的研究.云南环境科学,1997,16(2):3-5
    [152]Nyholm N.Sorensen P E, Olrik K,et al. Restoration of lake nakskov indreflord denmark, using algal ponds to remove nutrients from inflowing river water. Prog Wat Technol.1978,10:881-892
    [153]Fiala L.Vassata P. Phosphorus reduction in a manmade lake by means of a small reservoir in the inflow. Arch Hydrobiol,1982,94:24-37
    [154]中村圭吾,森川敏成,岛谷幸宏.河口设置人工内湖污染负荷制御.琵琶湖研究所所报,2002,3(44):47
    [155]Benndorf J, Putz K. Control of eutrophication of lakes and reservoirs by means of predams:Ⅱ.validation of the phosphate removal model and size optimization. Wat Res,1987,21:39-847
    [156]Klaus Putz, Jtirgen Benndorf. The importance of prereservoirs for the control of eutrophication of reservoirs. War Sci Tech,1998,37(2):317-324
    [157]Salvia-Castellvi M, Dohet A, Borght P V, et al. Control of the eutrophication of the reservoir of Esch-sur-Sure(Luxembourg):evaluation of the phosphorus removal by predams. Hydrobiologia,2001,459:61-71
    [158]边金钟,王建华.于桥水库富营养化防治前置库对策可行性研究.城市环境与城市生态,1994,7(3):5-9.
    [159]阎自申.前置库在滇池流域运用研究.云南环境科学,1996,15(6)P33-35.
    [160]张永春,张毅敏,胡孟存,等.平原河网地区面源污染控制的前置库技术研究.中国水利,2006,17:15-18
    [161]Wang T, Zhu B, Xia L Z. Effects of contour hedgerow intercropping on nutrient losses from the sloping farmland in the three gorges area, china. journal of mountain science,2012,9:105-114
    [162]夏立忠,马力,杨林章,等.植物篱和浅垄作对三峡库区坡耕地氮磷流失的影响,农业工程学报,农业工程学报,2012,28(14):104-111
    [163]Boers P C M. Nutrient emissions f rom agriculture in t he Netherlands, causes and remedies. Water Science and technology,1996,33 (4/5):183-189.
    [164]LEBA BV. Nutrient preserving in riverine transitional strip. Journal of Human Environment,1994,3(6):342-347.
    [165]宋涛,成杰民,李彦,等.农业面源污染防控研究进展.环境科学与管理,2010,35(2):39-42
    [166]杨艳霞.重庆三峡库区典型小流域面源污染研究.重庆:西南大学,2009
    [167]朱波,彭奎,谢红梅.川中丘陵区典型小流域农田生态系统氮索收支探析.中国生态农业学,2006,14(1):108-111.
    [168]万丹.紫色土不同利用方式下土壤侵蚀及氮磷流失研究.重庆:西南大学,2007
    [169]季轶群.三峡库区小流域氮素空间分布及流失特征研究.重庆:西南大学,2010
    [170]国家环境保护总局.地表水环境质量标准.北京,2002
    [171]Kiran J K, Khanif Y M, Amminuddin H, et al. Effects of controlled release urea on the yield and nitrogen nutrition of flooded rice. Communications in soil science and plantnalysis,2011,41(7):811-819
    [172]张秀玮,李光宗,董元杰,等.不同氮肥对侵蚀坡面土壤氮素流失的影响.水土保持学报,2012,26(2):45-48
    [173]高杨,王霞,宋付朋,等.模拟降雨条件下树脂包膜控释尿素对土壤氮苏流失的控制效应,水土保持学报,2010,24(3):9-12,55
    [174]王艳花,邱现奎,胡国庆,等,控释肥对坡地农田地表径流氮磷流失的影响.水土保持学报,2011,25(2):10-14
    [175]黄丽华,沈根祥,钱晓雍,等.滴灌施肥对农田土壤氮素利用和流失的影响.农业工程学报,2008,24(7):49-53
    [176]陶春.耕作措施对三峡库区旱坡地氮、磷流失的影响研究.重庆:西南大学,2010
    [177]鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000
    [178]关连珠,张伯泉,颜丽.不同肥力黑土、棕壤各级微团聚体中胶结物质的组成及其特性.沈阳农业大学学报,1991,22(1):55-60
    [179]Kim L H,Masoud K.Michael K,et al. Event mean concentration and loading of little from highway during storms.Science of total envioronment,2004,330:101-113
    [180]Horton R. E. Erosional development of st reams and their drainage basins, hydrophysical approach to quantitative morphology. Bull.Amer. Geol. Soc.,1945,56(3):275-370
    [181]石生新.高强度人工降雨条件下地面坡度、植被对坡面产沙过程的影响.山西水利科技,1996(3):77-80
    [182]张兴昌,邵明安.植被覆盖度对流域有机质和氮素径流流失的影响.草地学报,2000,8(3):128-135
    [183]张丽,刘玲花,程东升,等.不同农艺措施对坡耕地水土及氮磷流失的控制.水土保持学报,2009,23(5)21-25
    [184]蔡先立,周运超,刘晓云,等.不同行数植物篱对红枫湖坡耕地养分的拦截效应.中国水土保持科学,2012,10(5):36-42
    [185]聂军,廖育林,谢坚,等.自然降雨条件下香根草生物篱对菜地土壤地表径流和氮流失的影响.水土保持学报,2009,23(1):12-16,67
    [186]zhang X C, Shao M A.effects of vegetation coverage and management practice on soil nitrogen loss by erosion in a hilly region of the loess plateau in china. Acta botanica sinica 2003,45 (10):1195-1203
    [187]钱婧,张丽萍,王小云,等.人工降雨条件下不同坡长和覆盖度对氮素流失的影响.水土保持学报,2012,26(5):6-10
    [188]张乃明,张玉娟,陈建军,等.滇池流域农田土壤氮污染负荷影响因素研究.环境科学,2004,20(5):148-152
    [189]程文娟,史静,夏运生,等.滇池流域农田土壤氮磷流失分析研究.水土保持学报,2008,22(5):52-55
    [190]李庆召,军雪波,朱波.川中紫色土区磷素年非点源的输出负荷.东北林业大学学报,25,33(3):51-52
    [191]Vander M D F, Breeuwsma A, Boers P C M. Agricultural nutrient losses to surface water in the Netherlands: impact,strategies,and perspectives. Jounal of environmental quality,1998,27:4-11
    [192]林超文,罗春燕,庞良玉,等.不同耕作和覆盖方式对紫色丘陵区坡耕地水土及养分流失的影响.生态学报2010,30(22):6091-6101
    [193]刘存琦.灌木植物量测定技术的研究.草业学报,1994,(4):61-65
    [194]姜恕.草原生态研究方法.北京:农业出版社,1988
    [195]何仁江,江韬,木志坚,等.三峡库区典型农业小流域土壤系统氮磷收支研究.西南大学学报(自然科学版),2011,33(5)95-101
    [196]方玉东,胡业翠,封志明.基于GIS技术的中国农田磷素养分收支平衡研究.资源科学,2008,30(5):725-731
    [197]王海明,陈治谏,廖晓勇,等,三峡库区坡耕地植物篱对土壤特性的影响研究,中国水土保持,2010,(10):21-23
    [198]张文安,徐大地,刘友云,等.黔中黄壤丘陵旱坡地香根草、紫穗槐的水土保持效应.贵州农业科学,2001,29(2):41421
    [199]Banda Z, Maghembe J A., Chome D V A, Chome V A. Effect of intercropping maize and closely spaced Leucaena hedgerows on soil conservation and maize yield on a steep slope at Ntcheu, Malawi. Agroforestry Systems 27:17-22,1994
    [200]Guo Z L, Zhong C,Cai C F, et al.Nitrogen competition in contour hedgerow systems in subtropical China.Nutr Cycl Agroecosyst,2008,81:71-83
    [201]Mugendi D N, Nair P K R, Mugwe J N, et al. Alley cropping of maize with calliandra and leucaena in the subhumid highlands of Kenya:Part 1. Soil-fertility changes and maize yield. Agrofor. Syst,1999 46:39-50
    [202]Kang B T, Caveness F E, Tian G, Kolawole G.O.Longterm alley cropping with four hedgerow species on an Alfisol in southwestern Nigeria-effect on crop performance, soil chemical properties and nematode population. Nutrient Cycling in Agroecosystems 54:145-155,1999.
    [203]吕星文.三峡库区坡耕地“地埂+植物篱”结构及营建模式.北京:北京林业大学,2010
    [204]张爱国,李锐,杨勤科中国水蚀土壤抗剪强度研究.水土保持通报,2001,21(3):5-9 x1
    [205]Wischmeier W H, Smith D D. Predicting Rainfall Erosion Losses-A Guide to Conservation Planning. USDA Agriculture Handbook No.537.1978, Washington D.C
    [206]蒋德麒,朱显漠.水土保持.中国农业科学院土壤肥料研究所,中国农业土壤学编著委员会.中国农业十壤论文集.上海:上海科学技术出版社,1962
    [207]吴长文,陈法扬.坡地土攘侵蚀机理研究进展与现状.中国水土保持,1996,(11):21-24,40-41
    [208]吕文星,张洪江,程金花,等.三峡库区植物篱对土壤理化性质及抗蚀性的影响,水土保持学报,2011,25(4):69-73,78
    [209]黎建强,张洪江,陈奇伯,等.长江上游不同植物篱系统土壤抗冲、抗蚀特征.生态环境学报2012,21(7):1223-1228
    [210]邬岳阳.植物篱对红壤坡耕地的水土保持效应及其机理研究.杭州,浙江大学,2011
    [211]谌芸.植物篱对紫色土水土特性的效应及作用机理.北碚:西南大学,2012
    [212]胡斐南,魏朝富,许晨阳,等.紫色土区水稻土抗剪强度的水敏性特征.农业工程学报,2013,29(3):107-114
    [213]倪九派,袁天泽,高明,等.土壤干密度和含水率对2种紫色土抗剪强度的影响.水土保持学报,2012,26(3):72-77
    [214]中国科学院南京土壤研究所.土壤理化分析.上海:上海科技出版社,1978
    [215]中国标准出版社.中国林业标准汇编(营造林卷).北京:中国标准出版社,1998
    [216]薛萐,刘国彬,张超,等.黄土丘陵区人工灌木林土壤抗蚀性演变特征.中国农业科学2010,43(15):3143-3150
    [217]胡建忠,张伟华,李文,等.北川河流域退耕地植物群落土壤抗蚀性研究.土壤学报,2004,41(6):854-862
    [218]杨亚川,莫永京,王芝芳,等.土壤-草本植被根系复合体抗水蚀强度与抗剪强度的试验研究.中国农业大学学报,1996,1(2):31-38
    [219]陈红星,李法虎,郝仕玲,张心平.土壤含水率与土壤碱度对土壤抗剪强度的影响.农业工程学报,2007,23(2):21-25
    [220]郑子成,杨玉梅,李廷轩.不同退耕模式下土壤抗蚀性差异及其评价模型.农业工程学报,2011,27(10):199-205
    [221]龚伟,胡庭兴,王景燕.川南天然常绿阔叶林人工更新后十壤微团聚体分形特征研究.十壤学报,2007,44(3):571-575
    [222]赵丽兵,张宝贵,苏志珠.草本植物根系增强土壤抗剪切强度的量化研究.中国生态农业学报,200816(3):718-722
    [223]徐文远,刘玉花,王晓春,等.G111公路讷嫩段9种护坡灌木根系增强土壤抗蚀性比较.水土保持学报,2011,25(2):72-77
    [224]周正朝,上官周平.子午岭次生林植被演替过程的土壤抗冲性.生态学报,2006,26(4):3270-3274
    [225]解明曙.林木根系固坡力学机制研究.水土保持学报,1990,4(3):7-14
    [226]解明曙.乔灌木根系固坡力学强度的有效范围与最佳组构方式.水土保持学报,1990,4(1):17-23
    [227]熊燕梅,夏汉平,李志安,蔡锡安.植物根系固坡抗蚀的效应与机理研究进展.应用生态学报,2007,18(4):895-904
    [228]查小春,贺秀斌.土壤物理力学性质与土壤侵蚀关系研究进展.水土保持研究,1999,6(2):98-104
    [229]姚军,吴发启,宋娟丽.黄土高原沟壑区坡耕地表层土壤抗剪强度影响因素分析十旱区农业研究,2010,28(3):236-239
    [230]余宏明,胡艳欣,唐辉明.红色泥岩风化含砾粘土的抗剪强度参数与物理性质相关性研究.地质科技情报,2002,21(4):93-95
    [231]史奕,陈欣,沈善敏.土壤团聚体的稳定机制及人类活动的影响,应用生态学报:2002,13(11):1495-1498
    [232]姚贤良,许绣云,于德芬.不同利用方式下红壤结构的形成.土壤学报,1990,27(1):25-33
    [233]史晓梅.紫色土丘陵区不同土地利用类型土壤抗蚀性特征研究.北碚:西南大学,2008
    [234]张晓明,王玉杰,夏一平,吴云.重庆缙云山典型植被原状土抗剪强度的灰色关联度分析与评价.水土保持研究,2007,14(2):145-147,151
    [235]Comino E, Druetta A.The effect of poaceae roots on the shear strength of soils in the Italian alpine environment. soil & tillage research 2010,(106):194-201
    [236]朱显谟.甘肃中部土壤侵蚀调查报告.土壤专报,1958,(32):53-109
    [237]黄义端,田积莹,雍绍萍.土壤内在性质对侵蚀影响的研究.水土保持学报,1989,3(3):9-14
    [238]刘国彬.黄土高原草地植被恢复与土壤抗冲性形成过程Ⅲ.植被恢复对土攘腐殖质物质及水稳性团聚体的影响.水土保持研究,1997.4(5):122-128
    [239]李勇,朱显漠,田积莹.黄土高原植物根系提高土壤抗冲性的有效性.科学通报,1991,36(12),935-938
    [240]南宏伟,贺秀斌,鲍玉海,等.桑树根系对紫色土土壤抗剪强度的影响.中国水土保持,2011,(8):48-51
    [241]黎建强,张洪江,程金,等.长江上游不同植物篱系统的土壤物理性质.应用生态学报,2011,22(2)418-424
    [242]黎建强.三峡库区植物篱生态效益分析与评价.北京:北京林业大学,2011
    [243]王海军,张德礼.多因素综合评价法划分征地区片方法研究.华中师范大学学报(自然科学版),2006,40(4):614-616
    [244]许树伯.层次分析法原理.天津:天津出版社,1988
    [245]谢承华.AH P及其应用.兰州商学院学报,2001,(2):79-82
    [246]邹志红,孙靖南,任广平.模糊评价因子的熵权法赋权及其在水质评价中的应用.环境科学学报,2005,25(4):552-556
    [247]宋红梅,侯湖平,张绍良,等.基于熵值法的城市土地集约利用评价—以徐州市为例.资源开发与市场,2007,23(2):116-180
    [248]邱菀华.管理决策与应用熵学.北京:机械工业出版社,2001:193-253
    [249]刘智,端木京顺,王强,等.基于熵权多目标决策的方案评估方法研究.数学的实践与认识,2005,35(10):114-119
    [250]Bohm P, Gerold G. Pedo-hydrological and sediment responses to simulated rainfall on soils of the Kenya uplands(Turkey). Catena,1995,25:63-76
    [251]Charles K.PersPeetiveonhedgerowintereroPPing.Agroforestrysystems.1985,3:339-356

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700