用户名: 密码: 验证码:
北京山区森林植被对坡面水文过程的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以华北土石山区典型森林植被为研究对象,基于水量平衡原理,在坡面尺度上进行林冠截留、土壤含水率、林地蒸散、地表径流、壤中流等各层次定位观测,结合同步森林植被结构指数的观测,基于生态水文模型进行坡面尺度的水文过程模拟,用以揭示森林植被对水资源形成过程的影响机制,定量评价森林植被影响径流量及其组分的形成过程的影响;基于土壤水分植被承载力的原理,依据不同坡面森林植被对生态水文过程的影响机制,比较筛选水量调节与水质净化最佳功能的适宜植被类型,提出以调控有效产水量为导向的适宜植被类型及其合理配置模式。具体研究成果如下:
     (1)研究了不同林分叶面积指数的特征,在整个生长季,四种林分的叶面积指数表现出了一致的变化趋势,均表现为“增加—平稳—减小”的趋势。灌木林分叶面积指数的增加阶段相比三种乔木林分时间较短;无论是各月份还是整个生长季,灌木林叶面积指数的变异系数均要高于三种乔木林分,就三种乔木林分来讲,6月的叶而积指数的变异系数要明显高于其他三个月份,三种林分在6月的叶面积指数变异系数有明显差异;根据实测的不同林分不同结构的叶面积指数和郁闭度、生物量、林分密度的关系建立了回归方程。
     (2)穿透雨与林外降雨量呈线性的正相关关系,树干流也与林外降雨呈正相关关系。平均穿透降雨率与林分叶面积指数呈负相关关系,随着降雨量的增加林冠截留量也增大,但其增加幅度不断减小。枯落物的持水率变化一般分为三个阶段:快速增长—缓慢增长—趋于稳定。松栎混交林的土壤渗透能力比其他林种要高。在大规模降雨后,5个径流场的土壤水分消退都体现出了蒸渗型的特征。不同林分的生长季蒸腾量有较大的差异,油松林1号6-9月的总蒸腾量为181.81mm,侧柏林为210mm,灌木林为56.4mm,油松林2号为161.98mm,松栎混交林为201.37mm。各树种枯落物蒸发量在日时间尺度上一般为三个阶段:快速蒸发一缓慢下降—稳定阶段。不同林分下土壤日平均蒸发量在0.58-1.84mm之间。基于北京山区2011-2012年实测数据,建立了不同植被结构指数与林冠截留率、土壤含水率、林地蒸散量的回归方程,并运用SPSS方法求出了各影响因子的贡献率。
     (3)2011年和2012年两个生长季,在5个径流小区中,灌木径流小区的产流总量最大,其次为松栎混交径流小区,再次为侧柏径流小区,而油松径流小区产流总量最小。侧柏和灌木径流小区的坡面径流主要形式为地表径流,分别占总径流的95.61%和91.62%;松栎混交径流小区的坡面径流主要形式为壤中流,占总径流的90.86%;而油松径流小区的坡面径流各组分所占比例较平均,地表径流和壤中流所占比例分别为61.99%和38.01%。在北京7.21特大暴雨后,四种植被类型的坡面径流小区中,就总产流量来说,灌木径流小区总产流量最大,其次为侧柏和松栎混交径流小区,油松径流小区总产流量最小。各径流小区产流时间和滞后时间也有明显差异。基于北京山区2011-2012年实测数据,建立了不同植被结构指数与地表径流的回归方程和壤中流与雨前土壤含水率的回归方程,并求出了各结构参数对径流影响的贡献率
     (4)坡面水文过程模拟采用Brook90模型,模型参数率定效果达到较好的水平。随着叶面积指数与郁闭度的增加林冠量不断增加,土壤入渗量不断减少,在径流不断减少。各森林植被中,土壤入渗是降雨分配最主要的去向,其次为植被截留降雨,最少部分为地面径流。在不同林分结构下都呈现出随着叶面积指数和林分郁闭度的提高而总蒸散量不断增加的规律。在郁闭度较小的阶段,总蒸散量远小于降雨量,当郁闭度达到一定数值后,林分的总蒸散量逐步增大,并超过了降雨量,说明自然水分的供给已经无法满足植物健康生长所需的水分。通过对不同林分不同结构的情景模拟可以得出,侧柏林的生态需水临界郁闭度为0.72,灌木林为0.74,油松林为0.71,松栎混交林为0.7。当林分郁闭度在0-0.7之间变化时,径流量随郁闭度增加而迅速下降;当林分达到一定程度的郁闭度后,即郁闭度达到0.8以后,林分对径流量的削减作用减弱,径流量随郁闭度提升而减少的趋势较为平缓;而当林分达到较高程度郁闭后,大量降水被森林生态系统以各种形式消耗,此时林分只能产生很小的坡面径流。
     (5)通过对各径流场水量平衡分析,得到松栎混交林地6-9月土壤蓄水量增加了105.3mm,增加程度很小;灌木林地土壤持水量增加为5个径流场中最多,共增加了487.07mm;油松1号径流场、油松2号径流场和侧柏径流场土壤持水量分别增加了125.6mm、177.06mm和162.23mm。综合对比各项数值,土壤蓄水量变化是方程右侧各项中占比例最大的分量,其次为蒸腾量。基于水量平衡原理,得到基于生长季降雨量计算的立地水分植被承载力(LAI)的公式,在2011年和2012年两年生长季平均降雨量为448.23mm时,可计算得到侧柏林能承载的叶面积指数为2.99;油松林可承载的叶面积指数为3.91;灌木林能承载的叶面积指数为2.55;松栎混交林可承载的叶面积指数为4.08。为完成坡面森林植被配置,先进行了立地因子划分,选择出了低耗水树种,根据上面的研究推出四种林分各自能承载的植被密度与林分郁闭度,最后完成植被配置。
This dissertation takes typical forest vegetation in rocky mountain area of north china as the research object relying on forest ecosystem positioning observation station in the capital region. According to the principle of water balance, positioning observations of canopy interception, evapotranspiration, surface runoff, soil moisture content, soil flow at each level were conducted on slope scale. The research combined with synchronous observations of the forest vegetation structure indexes, and simulated the hydrologic process on slope scale based on eco hydrological models. It has revealed the influence mechanism of forest vegetation to the water formation, and has evaluated influences of forest vegetation to the runoff forming process and its components quantitatively. According to the influence mechanism of different slope vegetation to the eco hydrological processes, the study screened optimal vegetation type which has best features on regulating volume and water quality purification, it also puts forward to the suitable vegetation types and the reasonable configuration mode to control effective water yield relying on the principle of soil vegetation bearing capacity.
     The main results were as follows:
     (1) Study on the characteristics of different forest leaf area index shows that, leaf area index of four stands act out a consistent trend throughout the growing season, as the trend of "increase-smooth-reduce". The increasing time of shrub forest leaf area index is shorter compared to the three arbor stand, and the variation coefficient of shrub forest leaf area index is higher than others in each month and the entire growing season. The coefficient variation of leaf area index in June is significantly higher than the other three months in terms of the three arbor forest. The leaf area index coefficient variation of three stand in June were different obviously. The regression equation was established according to the relationship between leaf area index, crown density, biomass and forest density in different forest stand and structure.
     (2) The precipitation in forest and out of forest had a great linear positive correlation. Canopy interception correlated a positively relationship with rainfall amount and it tend to be saturated with the increasing of precipitation. Changes of litter water absorbing capacity slowde down at around4h. Litter absorption capacity had experienced a rapid growth to a slow growth and end at a stabilization process. Forest soil infiltration law of different tree species have certain differences. Overall, soil infiltration ability of mixed broadleaf-conifer forest was higher than other forest stand. Soil moisture subsided of5catchment areas reflects the characteristics of evapotranspiration after the massive rainfall. Transpiration of different stand on growing season is diversity. Litter evaporation of each tree species'changing process is roughly same, it can be divided into three stages, the first phase is rapid evaporation, the second is the slow decline stage, and the third is the stable stage. Average soil daily evaporation under the condition changes between0.58mm and1.84mm. Soil evaporation is higher than litter evaporation, and below than the plant transpiration.
     (3) The runoff volume in shrub runoff plot was the largest in5runoff plots at the two growing season in2011and2012, followed by the mixed pine and oak runoff plot, and then the platycladus orientalis runoff plot, while the runoff volume in pinus tabulaeformis runoff plot is minimal. The main forms of runoff in platycladus orientalis and shrub catchment area were surface runoff, they accounted for95.61%and95.61%of the total runoff respectively. The main form in mixed pine and oak runoff plots was interflow, accounting for90.86%of the total runoff.Slope runoff components in Chinese pine plot was well-proportioned, the volume of surface runoff and interflow accounted for61.99%and38.01%respectively. At the7.21extraordinary rainstorm in Beijing, in terms of total flow in four vegetation types of slope runoff plots, shrub runoff plot outputted the maximum flow, followed by platycladus orientalis and mixed pine and oak runoff plots, and pinus tabulaeformis runoff plot has the minimum total flow. The runoff producing time and lag time in each runoff plot were obviously diverse. The research established two regression equations based on the observed data from2011to2012in Beijing mountain area. One of the equation based on the structure index of different vegetation and surface runoff, and the other based on interflow and soil moisture before rain.
     (4) The simulation of the slope hydrological processes was using the Brook90model, and its parameter estimation had achieved a good level. With increasing of LAI and canopy density, the soil infiltration and runoff decreased. For all parts of the rainfall distribution, soil infiltration was the main part, followed by the forest interception, and the surface flows were the smallest. In all stand, the total evapotranspiration increased with the increasing of LAI and canopy density. When the canopy density was depressed, the total evapotranspiration (TE) was less than rainfall. With canopy density increasing, the TE increased below, and the increment is much more than rainfall. That means the supply of natural water had been unable to meet the growth potential of plants. And the plant began to suffer a certain degree of water stress for growth. The simulation of different forest structures showes that, the marginal canopy density of platycladus to meet ecological water demand is0.72, the shrubbery is0.74, pinus tabulaeformis is0.71, and the mixed pine and oak is0.7. When the canopy density changed between0and0.7, the runoff decreased with the increasing of canopy density,while the density reached0.8, the effects of forest decreasing runoff was much weaker. When the density was much higher, a large number of precipitation was consumed by forest in various forms, and only small slope runoff could emerge.
     (5)The soil water storage accounted for the largest proportion through the analysis of the water balance, followed by transpiration. Based on the water balance, we got the formula of vegetation carrying capacity (LAI) calculated relying on the growing season rainfall. The average rainfall of the growing season in2011and2012was448.23mm. The LAI carried by Platycladus is2.99was calculated, the shrubbery is2.55, the Pinus tabulaeformis is3.91, and the mixed pine and oak is4.08. In order to complete slope vegetation configuration, the first step was dividing the site factors, and then choosing the species of low water consumption. At last, the suited vegetation density and canopy density calculated to finalize the configuration.
引文
1.白晋华,胡振华,郭晋平.华北山地次生林典型森林类型枯落物及土壤水文效应研究[J].水土保持学报,2009,23(2):84-89.
    2. 鲍文,何丙辉,包维楷.森林植被对降水的截留效应研究[J].水土保持研究,2004,11(1):193-197.
    3. 蔡焕杰.用冠层温度诊断作物水分状况及估算农田蒸散量研究[D].西北农业大学,1992.
    4. 常宗强,王有科,席万鹏.祁连由水源涵养林土壤水分的蒸发性能[J],甘肃科学学报,2003:15(3),68-72.16.
    5. 陈丽华,余新晓,张东升等.2002.贡嘎山冷杉林区苔藓层截持降水过程研究[J].北京林业大学学报,2002,24(4):60-63
    6. 陈丽华.北京市生态用水研究[D].北京林业大学,2001
    7. 陈仁生等.内陆河高寒山区流域分布式水文水热耦合模型(1)[J].地理学报,2006,48(1):806-837
    8. 程根伟,余新晓,赵玉涛等.山地森林生态系统水文循环与数学模拟[M].北京:科学出版社,2004.
    9. 程积民,李香兰.子午岭植被类型特征与枯枝落叶层保水作用的研究.武汉植物研究[J],1992,10(1):55-64
    10.党宏忠.祁连山水源涵养林水文特征研究[D],东北林业大学,2004
    11.刁一伟,裴铁.森林流域生态水文过程动力学机制与模拟研究进展[J].应用生态学报,2004,15(12);2369-2376.
    12.董世仕,郭景唐,满荣洲.华北油松人工林的透流、干流和树冠截留[J].北京林业大学学报.1987,9(1);58-67.
    13.董世仁.华北汕松人工林的透流、干流和树冠截留[M].哈尔滨:东北林业大学出版社,1994.
    14.杜阿鹏.六盘山叠叠沟小流域坡而森林植被水文影响与模拟[D].中国林业科学院,2009
    15.范世香,裴铁,蒋德明等.两种不同林分截留能力的比较研究[J].应用生态学报,2000,11(5):671-674
    16.范世香,高雁,程银才等.林冠对降雨截留能力的研究[J].地理科学,2007 27(2):200-204.
    17.方正三.黄河中游黄土高原梯田的调查研究[M].北京:科学出版社,1958.
    18.顾慰祖.利用环境同位素及水文实验研究集水区产流方式[J].水力学报.1995,5;9-17.
    19.郭明春.六盘山叠叠沟小流域森林植被坡面水文影响的研究[D].中国林业科学研究院,2005.
    20.郭生练,熊立华,杨井等.2001.分布式流域水文物理模型的应用和检验[J].武汉大学学报(工学版).34(1):1-5.
    21.何亚平,费世民,蒋俊明,等.四川长宁竹林凋落物的蓄水功能研究[J].北京林业大学学报,2006,28(5).
    22.何永涛,李文华,李贵才等.黄土高原地区森林植被生态需水研究[J].环境科学,2004,25(3):35-39
    23.胡继超,张佳宝,冯杰.蒸散的测定和模拟计算研究进展[J].土壤,2004,36(5):492-497
    24.胡伟,杜峰,徐学选等.黄土丘陵区刺槐树干液流动态分析[J].应用生态学报.2010,21(6)1367-1373
    25.黄承标,梁宏温.广西亚热带主要林型的树干茎流.植物资源与环境学报[J],1994,3(4):10-17
    26.霍亚贞,杨作民等.北京自然地理[M],北京师范学院出版社,1989
    27.贾国栋,余新晓,朱建刚等.北京山区刺槐、栓皮栎生长旺季液流特性及影响因子[J].水土保持通报.2010,30(5):50-56
    28.贾星灿.夏季不同地区降水云系雨滴谱特征的观测研究[D].南京:南京信息工程大学,2009.
    29.蒋定生,黄国俊,谢永生.黄土高原土壤入渗能力野外测试[J].水土保持通报,1984,4(4):7-9.
    30.蒋定生,黄国俊.黄土高原土壤入渗速率的研究[J].土壤学报,1986,23(4):299-304.
    31.巨关升,刘奉觉等.选择树木蒸腾耗水测定方法的研究[J].1998,林业科技通讯.10:12-14.
    32.康绍忠,张富仓,刘晓明.作物叶而蒸腾与棵间蒸发分摊系数的计算方法[J].水科学进展,1995,6(4):285-289
    33.康绍忠,张书函,聂光镛,等.内蒙古敖包小流域土壤入渗分布规律的研究[J].土壤侵蚀与水土保持学报,1996,2(2):38-46.
    34.雷廷武,刘汗,潘英华等.坡地土壤降雨入渗性能的径流-入流-产流测量方法与模型[J].中国科学D辑,2005,(12):1180-1186
    35.雷廷武.土壤、作物与水的关系[J].农业工程学报,1995,(2);189-194
    36.雷瑞德.华山松林冠层对降雨动能的影响[J].水土保持学报,1988,2(2):31-39.
    37.李代琼.半干旱黄土区沙棘的水分生理生态与形态解剖学特性研究.水土保持研究[J],1998,5(1):97-102
    38.李海涛,韩兴国,陈灵芝.华北暖温带山地落叶阔叶混交林的茎流研究[J].生态学报1997,17(4):371-376
    39.李开元,李玉山.土壤水分特征曲线的意义及其应用[J].陕西农业科学,1991,(4):47-48
    40.李兰.流域水文数学物理耦合模型[M].见:中国水利学会优秀论文集,2000,322-329
    41.李玉山.测定土壤水势的离心机法[M].土壤.1981,(4):143-146.
    42.李振新,郑华,欧阳志云,等.岷江冷杉针叶林下穿透雨空间分布特征[J].生态学报,2004,24(5):1015-1021
    43.林业部科技司.森林生态系统定位研究方法[M],北京:中国科技出版社,1994.
    44.刘昌明,窦清晨.土壤-植物-大气连续体模拟中的蒸散计算[J].水科学进展,1992,3(4):255-163
    45.刘昌明,刘苏峡.大气-土壤-植被界面间的水文联系.地球科学进展趋势战略研究[M].叶笃正主编.北京:气象出版社,1993.365-371
    46.刘昌明,王会肖,等.土壤-作物-大气界面水分过程与节水调控[M].北京:科学出版社.1999
    47.刘昌明.关于生态需水量的概念和重要性[J].科学对社会的影响,2002,2,25-29
    48.刘创民,李昌哲,陈军华,等.北京九龙山主要植被类型水文作用的研究[J].林业科技通讯,1994,(7):10-12.
    49.刘春江,杨玉盛,马祥庆.欧亚大陆地上森林凋落物的研究.世界林业研究[J].2003,14(1):27-34
    50.刘建立.六盘山叠叠沟坡面生态水文过程与植被承载力研究[D].中国林业科学研究院,2008
    51.刘世海,余新晓等.密云水库北京集水区人工水源保护林降水化学性质研究[J].2002,水土保持学报.16(1):100-103.
    52.刘世荣,常建国,孙鹏森.森林水文学:全球变化背景下的森林与水的关系[J].植物生态学报,2007,31(5):753-756.
    53.刘世荣,温远光,王兵.等.中国森林生态系统水文功能规律[M].北京:中国林业出版社, 1996.3-7.
    54.刘世荣,温远光等.中国森林生态系统水文生态功能规律[M].中国林业出版社,1996.
    55.刘文兆.作物生产、水分消牦与水分利用效率间的动态联系[J].自然资源学报,1998,13(1):23-27
    56.刘霞,王礼先,张志强.生态环境用水研究进展[J].水土保持学报,2001,12(6):58-61
    57.刘煊章,康文星.杉木人工林林分的湿度特征[J].中南林学院学报,1993,13(2):149-157
    58.罗德.北京山区森林植被影响下的降雨动力学特性研究[D].北京林业大学,2008
    59.罗伟祥,白立强,宋西德等.不同覆盖度林地和草地的径流量与冲刷量[J].水土保持学报,1990,4(1):30-35
    60.罗毅,于强,欧阳竹等.SPAC系统中的水、热、CO2通量与光合作用的综合模型(Ⅰ)模型建立[J].水利学报,2001,2:90~97
    61.马雪华.森林水文学[M].北京:中国林业出版社,1993.
    62.马雪华.四川米亚罗地区高山冷杉林水文作用的研究[J].林业科学,1987.23(3):253-265.
    63.莫菲.六盘山洪沟小流域森林植被的水文影响与模拟[D].中国林科院,2008
    64.穆宏强,夏军,王中根.分布式流域水文生态模型的理论框架[J].长江职工大学学报.2001,18(1):1-5.
    65.潘紫文,刘强,终得海.黑龙江省东部山区主要森林类型土壤水分的入渗速率[J].东北林业大学学报.2002,30(5):24-26
    66.秦耀东.土壤物理学[M].北京:高等教育出版社,2003.
    67.阮成汀,李代琼.黄土丘陵区人工沙棘蒸腾作用研究[J].生态学报,2001,21(12):2141-2146
    68.芮孝芳,朱庆平.分布式流域水文模型研究中的几个问题[M].水利水电科技进展.2002,22(3):56-70.
    69.芮孝芳.流域水文模型研究中的若干问题[J].水科学进展.1997,8(1):94-98
    70.石培礼,李文华.森林植被变化对水文过程和径流的影响效应[J].自然资源学报,2001,16(5):481-487
    71.时忠杰,王彦辉,熊伟等.单株华北落叶松树冠穿透降雨的空间异质性[J].生态学报,2006,26(9):2877-2886
    72.司建华,冯起,张小由等.植物蒸散耗水量测定方法研究进展[J].水科学进展,2005,16(3):450-459
    73.宋吉红.重庆缙云山森林水文生态功能研究[D].北京林业大学,2008.
    74.宋献方,王仕琴,肖国强等.华北平原地下水浅埋区土壤水分动态的时间序列分析[J].自然资源学报,2011,26(1):145-155
    75.孙阁,张志强,周国逸等.森林流域水文模拟模型的概念、作用及其在中国的应用[J].北京林业大学学报,2007,29(3):178-184.
    76.孙立达,朱金兆.水土保持林体系综合效益研究与评价[M].北京:中国科技出报社,1995.
    77.孙鹏森,马履一.水源保护树种耗水特征研究与应用[M].北京:中国环境科学出版社,2002.
    78.史宇.北京山区主要优势树种森林生态系统生态水文过程分析[D].北京林业大学,2011.
    79.田大伦,项文化,杨晚华.第2代杉木幼林生态系统水化学特征[J].生态学报,2002,22(6):859-865.
    80.田大伦,杨晚华,方海波.第二代杉木幼林中降雨对养分的淋溶作用[J].湖北民族学院学报(自然科学版),1999,17(1):1-5.
    81.田大伦.会同广坪林区降雨和杉木林内雨的养分含量[J].中南林学院学报,2002,22(3):9-13
    82.田积莹.黄土地区土壤的物理性质与黄土成因的关系[J].中国科学院西北水保所集刊,1987(5):1212.
    83.万洪涛,万庆,周成虎.流域水文模型研究的进展[J].地球信息科学.2000,(4):46-50.
    84.万师强,陈灵芝.东灵山地区大气降水特征及森林树干茎流[J].生态学报.2000,20(1):61-67.
    85.王兵,崔向慧,李海静等.大岗山森林生态站区气象要索分析[J].林业科学研究.2002,15(6):693-699.
    86.王琛.北京地区森林小气候特征研究[D].北京林业大学,2010
    87.王芳,粱瑞驹,杨小柳等.中国西北地区生态需水研究(1)——干旱半干旱地区生态需水理论分析[J].自然资源学报.2002,17(1):1-8
    88.王根绪,钱鞠,程国栋.生态水文科学研究的现状与展望[J].地球科学进展,2001,16(3):314-323
    89.王华田,马履一.利用热扩式边材液流探针(TDP)测定树木整株蒸腾耗水量的研究[J].植物生态学报,2002,26(6);661-667.
    90.王金叶,于澎涛,王彦辉,等.森林生态水文过程研究[M].北京:科学出版社.2008.
    91.王礼先,解明曙主编.山地防护林水土保持水文生态效益及其信息系统[M].中国林业出版社,1997:361.
    92.王礼先,张志强.森林植被变化的水文生态效应研究进展.世界林业研究[J].1998,11(6):14-23.
    93.王礼先.植被生态建设与生态用水——以西北地区为例[J].水土保持研究,2000,7(3):5-7
    94.王鹏,等.四川盆北山区马尾松、麻栎林水源涵养能力的初步研究[J].四川林业科技,199617(3):45-52.
    95.王沙生,高荣孚等.植物生理学(第2版)[M].中国林业出版社,1991
    96.王万忠.黄土地区降雨特性与水土流失关系的研究[J].水土保持通报,1983,(4):7-13,65.
    97.王彦辉,刘永敏.江西省大岗山茅竹林水文效应研究[J].林业科学研究,1993,6(4):373-379.
    98.王彦辉,熊伟,于澎涛等.干旱缺水地区森林植被蒸散耗水研究[J].中国水土保持科学,2004,4(4):19-25
    99.王彦辉,于彭涛,郭浩等.北京官厅库区森林植被生态用水及其恢复[M].中国林业出版社,2009.
    100.王彦辉,于澎涛,徐德应等.林冠截留降雨模型转化和参数规律的初步研究[J].北京林业大学学报.1998,6:25-30.
    101.王佑民.中国林地水土保持功能研究概况[J].水土保持学报,2000,14(4):109-113
    102.王玉宽.黄土高原坡地降雨产流过程的试验分析[J].水土保持学报,1991,5(2):25-29.
    103.王忠科.植被盖度及地面坡度影响降雨入渗过程的试验研究[J].河北水利水电技术,1994,(4):63.
    104.魏天兴,朱金兆等.林分蒸散耗水量测定方法述评[J].北京林业大学学报,1999,21(3):86-91.
    105.魏晓华,周晓峰.三种阔叶次生林的茎流研究[J].生态学报,1989,9(4):325-329
    106.魏宇昆,梁宗锁,王俊峰等.黄土丘陵区不同立地条件沙棘水分特征与生物量研究[J].沙棘.2001,14(4):5-8
    107.温远光,刘世荣.我国主要森林生态类型降水截持规律的数量分析[J].林业科学,1995,3(4):289-298.
    108.吴发启,赵西宁,崔卫芳.坡耕地土壤水分入渗测试方法对比研究[J].水土保持通报.2003,23(3):39-41.
    109.吴擎龙,雷志栋,杨诗秀.求解SPAC系统水热输移的耦合迭代计算方法[J].水利学报,1996(2):1-9
    110.吴险峰,刘昌明.流域水文模型研究的若干进展[J].地理科学进展,2002,21(4):341-348
    111.夏军,孙雪涛,丰华丽等.西部地区生态需水问题研究面临的挑战[J].中国水利,2000,5,A.57-60.
    112.肖文发,徐德应.森林能量利用与产量形成的生理生态基础[J].中国林业出版社,1999.
    113.熊立华,郭生练.分布式流域水文模型[J].北京:中国水利水电出版社,2004.
    114.徐德应.森林的蒸散:方法与实践[M].见:中国林学会主编森林水文学术讨论会文集.北京:测绘出版社.1989.177-182.
    115.徐娟,余新晓,席彩云.北京十三陵不同林分枯落物层和土壤层水文效应研究[J].水土保持学报,2009,23(3):189-193
    116.薛立,何跃君,屈明等.华南典型人工林凋落物的持水特性.植物生态学报[J],2005,29(3):415-421
    117.杨劫,曹云,李国强,宋炳煜.皇甫川流域百里香草原和人工沙棘灌木林的水分利用特征.地球科学进展[J],2002,17(2):241-246
    118.杨文治,邵明安.黄土高原土壤水分研究[M].北京:科学出版社,2000.
    119.于贵瑞,王秋凤.我国水循环的生物学过程研究进展[J].地理科学进展,2003,22(2):111-117.
    120.于澎涛.分布式水文模型的理认、方法与应用[D].中国林业科学研究院,2001.
    121.于古辉,陈云明,杜盛.黄土高原半干旱区人工林刺槐展叶期树干液流动态分析[J].林业科学.2009,45(4):53-59.
    122.余新晓,张志强,陈丽华等.森林生态水文[M].北京:中国林业出版社,2004.
    123.袁建平,张索丽,张春燕等.黄土丘陵区小流域土壤稳定入渗速率空间变异[J].土壤学报,2001,38(4):579-583.
    124.袁正科,欧阳惠.洞庭湖水系防护林树冠截留研究[J].应用生态学报.1996,7(sup):11-15.
    125.臧廷亮,张金池.森林枯落物的蓄水保土功能[J].南京林业大学学报,1999,23(2):81-84
    126.曾德慧,裴铁璠,范志平.樟子松林冠截留模拟实验研究[J].应用生态学报.1996,7(2):134-138.
    127.曾思齐,佘济云,肖育檀等.马尾松水土保持林水文功能计量研究——Ⅰ.林冠截留与土壤贮水能力[J].中南林学院学报,1996,16(3):1-8
    128.战伟床,张志强,武军,肖金强.华北油松人工林冠层穿透雨空间变异性研究.中国水土保持科学[J],2006,4(3):26-30
    129.张光灿,刘霞,赵玖.泰山几种林分枯落物和土壤水文效应研究[J].林业科技通讯,1999,(6):28-29.
    130.张光灿,刘霞,赵玫.树冠截留降雨模型研究进展及其述评[J].南京林业大学学报,2000,24(1):64-68
    131.张汉雄,王万忠.黄土高原的暴雨特性及分郁规律[J].水土保持通报,1983, (1):35-44.
    132.张家洋.北亚热带次生竹林林冠截留过程研究[D].南京林业大学,2007
    133.张劲松,盂平等.植物蒸散耗水量计算方法综述[J].世界林业研究.2001,14(2):23-28.
    134.张新献,贺庆棠.用Gash模型估算单场降雨的林冠截翻量(简报)[J].安徽农业大学学报,1997,24(1):21-23
    135.张颖,谢宝元,余新晓等.黄土高原典型树种幼树冠层对降雨雨滴特性的影响[J].北京林业 大学学报.2009(04):70-76.
    136.张远,杨志峰.黄淮海地区林地最小生态需水量研究[J].水土保持学报,2002,16(2):72-75
    137.张振明,余新晓,牛键值等.不同林分枯落物层的水文生态功能[J].水土保持学报,2005,19(3):139-143..
    138.张志强,余新晓,赵玉涛等.森林对水文过程影响研究进展[J].应用生态学报,2003,14(1):113-116.
    139.张志强.森林水文:过程与机制[M].北京:中国环境科学出版社,2002.
    140.赵鸿雁,吴钦孝,从怀军.黄土高原人工油松林枯枝落叶截留动态研究[J].自然资源学报,2001,16(4):381-385
    141.赵鸿雁,吴钦孝,刘国彬.黄土高原人工油松林枯枝落叶层的水上保持功能研究[J].林业科学,2003,39(1):168-172
    142.赵鸿雁,吴钦孝,刘向东.山杨枯枝落叶的水文水保作用研究[J].林业科学,1994,30(2):176-180
    143.赵世伟,周印东,吴金水.子午岭北部不同植被类型土壤水分特征研究[J].水土保持学报,2002,16(4):119-1221
    144.赵文智,程国栋.生态水文研究前沿问题及生态水文观测试验[J].地球科学进展,2008,23(7):671-674.
    145.赵西宁,吴发启.土壤水分入渗的研究进展和评述.西北林学院学报[J],2004,19(1):42-45
    146。赵艳云,程积民,万惠娥等.林地枯落物层水文特征研究进展.中国水土保持科学[J],2007,5(2):130-134
    147.赵玉涛,余新晓,张志强等.长江上游亚高山峨眉冷杉林枯落物层界而水分传输规律研究[J].水土保持学报,2002,16(3):118-121
    148.郑红星,刘昌明,丰华丽.生态需水的理论内涵探讨[J].水科学进展,2004,15(5):626-633
    149.周海光,刘广全,焦醒等.黄土高原水蚀风蚀复合区几种树木蒸腾耗水特性[J].生态学报.2008,28(9):4568-4574
    150.周平,李吉跃,招礼军.北方主要造林树种苗木蒸腾耗水特性研究[J].北京林业大学学报,2002,24(5/6):50-55
    151.周晓峰.中国森林生态系统定位研究[M].哈尔滨:东北林业大学出版社,1994.。
    152.周星魁,王忠科,蔡强国.植被和坡度影响入渗过程的试验研究[J].山西水土保持科技,1996,(4):10-13.
    153.周跃,David Wats高山峡谷区云南松林土壤侵蚀控制的水文效应[J].水土保持学报,1998,(3)31-38
    154.周跃,李宏伟.云南松林的林冠对土壤侵蚀的影响[J].山地学报.1999,17(4):324-328.
    155.周择福,李昌哲.北京九龙山不同立地土壤蓄水量及水分有效性的研究[J].林业科学研究1995,8(2):182-187
    156.周泽福,张光灿,刘霞等.树干茎流研究方法及其述评[J],水土保持学报,2004,18(3):137-140.
    157.朱建刚.北京山区典型森林生态系统SVAT水分动态非线性系统仿真研究[D].北京林业大学,2010.
    158.朱志龙,土壤水分消退规律分析[J].水文,1994(4):36-39
    159. Abbott M. B., Bathurst J. C., Cunge J. A., et al. An introduction to the European Hydrological System-Systeme Hydrologique Europeen, "SHE",1:History and philosophy of a physically-based[J]. Distributed modelling system.1986,87:45-59.
    160. Abdenbi H, Maurice R.Stem flow determination in forest stands. Forest Ecology and anagement[J]. 1997,(97):231-235
    161. Aken A. O., Yen B. C. Effect of rainfall intensit y no infilt ration and surface runoff rates [J]. J. of Hydraulic Research,1984,21(2):324-331.
    162. Anderson M G. Hydrological Forecasting [M]. New York:John Wiley & Sons,1985.
    163. Atlas D, Srivastava R C, Sekhon R S. Doppler radar characteristics of precipitation at vertical incidence[J]. Rev. Geophys.1973,11(1):1-35.
    164. Baird A.J., Willby R.L. Ecohydrology:Plants and water in terrestrial and aquatic environments[M]. London:Routledge.1998.346-373.
    165. Beiling L., Phillips F., Hoines S. Water movement in desert soil traced by hydrogen and oxygen isotopes, chloride, and chlorine-36, southern Arizona[J]. Journal of Hydrology.1995,168:91-110.
    166. Bergkamp Ger. A hierarchical view of the interactions of runoff and infiltration with vegetation and microtopography in semiarid shrublands[J]. Catena.1998,33:201-220.
    167. Beven K.J. Changing ideas in hydrology-the case of physically based models[J]. Journal of Hydrology.1989,105:157-172.
    168. Beven K.J., Kirkby M.J. A physically based variable contributing area model of basin hydrology. Hydrology Sci Bull[J].1979,24:43-69.
    169. Bonell M. Progress in the understanding of runoff generation dynamics in forests[J]. Journal of Hydrology.1993,150:217-275.
    170. Bonell M. Selected challenges in runoff generation research in forests from the hillslope to headwater drainage basin scale. Journal of the American Water Resources Association[J].1998, 34(4):765-785.
    171. Bren L. J., Papworth M. Early water yield effects of conversion of slope and a eucalypt forest catchment to radition pine plantation[J]. Water Resource Research,1991,27(9):2421-2428
    172. Carder I R et al. A study of evaporation from tropical rainforest-West Java[J]. Journal of Hydrology 1986,89:13-31
    173. Carlyle-Moses D.E.,Price A.G. An evaluation of the Gash interception model in a northern hardwood stand[J]. Journal of Hydrology.1999,214:103-110.
    174. Chang M. Forest hydrology:An introduction to water and forest (2nd ed.) [M]. New York:CRC Press,2006:1-4.
    175. Connolly R.D., Silburn D.M. Distributed parameter hydrology model (ANSWERS) applied to a range of catchment scales using rainfall simulator data Ⅱ Application to spatially uniform catchments[J]. Journal of Hydrology.1995,172:105-125.
    176. Connolly R.D., Silburn D.M., Ciesiolka C.A.A. Distributed parameter hydrology model (ANSWERS) applied to a range of catchment scales using rainfall simulator data.Ⅲ. Application to a spatially complex catchment[J]. Journal of Hydrology.1997,193:183-203.
    177. Corinna Moehrlen. Literature review of current used SVAT models. UCC Department of Civil & Environmental Engineering INTERNAL REPORT[C].1999.
    178. Dunin. G. M. And D. J. Connor. Analysis of sapflow in mountain ash (Eucalyptus regnans) forests of different age[J]. Tree Physiol.1993,13:321-336.
    179. Dunkerley D.L. Infiltration rates and soil moisture in a groved mulga community near Alice Springs, arid central Australia:evidence for complex internal rainwater redistribution in a runoff-runon landscape[J]. Journal of Arid Environments.2002,51:199-219.
    180. Dunne,T.,Zhang,W.,Aubry,B.Effects of rainfall,vegetation and microtopography on infiltration and runoff[J]. Water Resource Research,1991,27(9):2271-2285
    181. Fan S.X.,Pei T.F.,Jiang D.M.,et al. Rainfall interception capacity of forest canopy between two different stands.Chin J Appl Ecol,2000,11(5):671-674
    182. Flerchinger G N, Hanson C L, Wight J RModelling evapotranspiration and surface budgets across a water shed[J]. Water Resources Research,1996,32(8):2539-2548
    183. Freeze R.A., Harlan R.L. Blueprint for a physically-based digitally-simulated hydrological response model. Journal of Hydrology[J].1969,9:237-258.
    184. Gash J.H.C. An analytical model of rainfall interception in forests[J]. Q J R Meteorl Soc.1979,105: 43-55.
    185. Gash J.H.C., Lloyd C.R., Lachaud G. Estimating sparse forest rainfall interception with an analytical model[J]. Journal of Hydrology.1995,170:79-86.
    186. Ghuman BS, Lal R. Effects of partial clearing on microclimate in a humid tropical forest[J]. Agric For Meteorol,.1987,40:17-29.
    187. Gleick P H. Water in Crisis:Paths to Sustainable Water Use[J]. Ecological Applications,1998,8 (3):571-579.
    188. Gomez J. A, Vanderlinden K, Gira ldez J V, et al. Rainfall concentration under olive trees[J]. Agricultural Water Management,2002,55:53-70.
    189. Grayson R.B., Moore I.D., McMahon T.A. Physically based hydrologic modeling,1:A terrain-based model for investigative purpose[J]. Water Resources Research.1992,28:2639-2658.
    190. Greenwood EAN and Beresford JD Evaporation from vegetation in landscapes devel-oping secondary salinity using the ventilated chamber technique.4. Evaporation from a regenerating forest of Eucalyptus wandoo on land formerly cleared for agriculture[J]. Journal of Hydrology 1982,58:357-366
    191. Grusev Y M, Nasonova O N. Modelling annual dynamics of soil water storage for agro and natural ecosystems of the steppe and forest steppe zones on a local scale[J]. Agri For Meteorol,1997, 85(3/4):171-191
    192. Gunn R, Kinzer G D. The Terminal Velocity of Fall for Water Droplets in Stagnant Air[J]. Journal of Atmospheric Sciences.1949,6:243-248.
    193. Harden C P,Scruggs P D.Infiltration on mountain slopes:a comparison of three environments[J]. Geomorphology,2003,55:5-24
    194. Hatton, T. J., R. A. Vertessy. Transpiration of plantation pinus radiata estimated by the heat pulse method and the Bowen Ratio[J]. Hydrological Processes.1990,4,289-298
    195. Hatton. T. J., S. J. Moore and P.H. Reece. Estimating stand transpiration in a Eucalyptus populnea woos land with the heat pulse method:Measurement errors and sampling strategies[J]. Tree Physiol.1995,15:219-227.
    196. Helalia A M. The relation between soil infilt ration and effective porosity in different soils[J] Agricultural Water Management,1993,24 (8):39-47.
    197. Helvey J.D., Patric J.H. Canopy and litter interception of rainfall by hardwoods of eastern United States[J]. Water Resour Res,.1965,1:193-205.
    198. Holton H N. A concept for infiltration estimates in watershed engineering[J]. Dept, Agr Res. Service,1961,39(30):41-51.
    199. Hoppe E. Precipitation measurements under tree crowns [M]. Krappe A H. Divisio n o f Silvics. U.S. Forest Serv., Trans.,1896:50.
    200. Horton R E. An approach toward a physical interpretation of infiltration-capacity[J]. Soil Sci. Soc. AM. J,1940,5(3):399-417.
    201. Horton R.E.. Rainfall interception[J]. Month Weather Rev,1919,47:603-623.
    202. Morton R.E..Surface Runoff Phenomena[M].Horton Hydrology Laboratory Publication 101,1935
    203. Jhorar R.K., van Dam J.C., Bastiaanssen W.G.M., Feddes R.A. Calibration of effective soil hydraulic parameters of heterogeneous soil profiles[J]. Journal of Hydrology.2004,285:233-247.
    204. Kim C P. Impact of soil heterogeneity in a mixed layer model of the planetary boundary layer [J]. Hydrologicasl Sciences Journal,1998,43(4):633-658
    205. Kirkby M. Hillslope runoff processes and models[J]. Journal of Hydrology.1988,100:315-339.
    206. Klaassen W, Bosveld F, de Water E. Water storage and evaporation as constituents of rainfall interception[J]. J Hydrol,.1998,212-213:36-50.
    207. Kostiakov A N. On the dynamics of the coeffient of water percolation in soils and on the necessity of studying it froma dynamicpoint of view for purposes of amelioration[J]. Soil Sci.,1932,97(1):17-21.
    208. Leonard R.E. Net precipitation in a northern hardwood forest[J]. J Geophys Res,.1961,66: 2417-2421.
    209. Lloyd C R, Marques A D O. Spatial viability of throughfall and stemflow measurements in Amazonian rainforest. Agricultural and Forest Meteorology,1988,72:63-73.
    210. Loescher H.W.,J.S.Powers,S.F.Oberbauer.Spatial variation of throughfall volume in and old-growth tropical wet forest Costa Rica[J].Journal of Tropica.Ecology,2002,18:397-407
    211. Lu P, Urban L, Zhao P. Granier's Thermal Dissipation Probe (TDP) Method for Measuring Sap Flow in Trees:Theory and Practice [J]. Acta botanica sinica,2004,46 (6):631-646.
    212. McGlynn B.L., McDonnel J.J., Brammer D.D. A review of the evolving perceptual model of hillslope flowpaths at the Maimai catchments[J], New Zealand. Journal of Hydrology.2002,257: 1-26.
    213. Michaud J., Sorooshian S. Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed[J]. Water Resources Research.1994,30:593-605.
    214. Michio Hashino, Huaxia Yao, Hiromu Yoshida. Studies and evaluations on interception processes during rainfall based in a tank mode[J]l. Journal of Hydrology.2002,255:1-11.
    215. Mine Albek, Ulker Bakyr O" g(?)utveren, Erdem Albek. Hydrological modeling of Seydi Suyu watershed (Turkey) with HSPF[J]. Journal of Hydrology.2004,285:260-271.
    216. Newman B.D., campbell A.R., wilcox B. P. Tracer-based studies of soil water movement in semi-arid forests of New Mexico[J]. Journal of Hydrology.1997,196:251-270.
    217. Philip J R. The theory of infilt ration about sorptivity and algebraic infiltration equations[J]. Soil Sci.,1957,84 (4),257-264.
    218. Potter, C.S. Stemflow nutrient inputs to soil in a successional hardwood forest[J]. Plant Soil,1992, 140,249254.
    219. Refagaard J.C. Parameterization, calibration, and validation of distributed hydrological models[J]. Journal of Hydrology.1997,198:69-97.
    220. Robichaud P R.Fire effects on infiltration rates after prescribed fire in Northern Rocky Mountain forests, USA[J].Journal of Hydrology,2000,231-232:220-229
    221. Rodriguez-Iturbe I. Ecohydrology:A hydrologic perspective of climate-soil-vegetation dynamics[J]. Water Resources Research.2000,36:3-9.
    222. Row e L K. Rainfall interception by an evergreen beech forest,Nelson, New Zealand[J]. J Hydrol, 1983,66:143-158
    223. Rubin J. Theory of rainfall uptake by soil initially driver than their field capacity and its applications[J]. Water Resour. Res.,1966,2 (4):739-749.
    224. Rutter A.J., Kershaw K.A., Robins P.C., et al. A predictive model of rainfall interception in forests I. Derivation of the model from observations in a plantation of Corsican pine[J]. Agric Meteorol,. 1971,9:367-384.
    225. Samba, S.A.N., Camire, C, Margolis, H.A. Allometry and rainfall interception of Cordyla pinnata in a semi-arid agroforestry parklard[J]. Senegal For Ecol Manag,.2001,154:277-288.
    226. Sarr M,Agbogbaa C,Russell-Smith A,et al.Effects of soil faunal activity and woody shrubs on water infiltration rates in a semi-arid fallow of Senegal[J].Applied Soil Ecology,2001,16:283-290
    227. Scott R, Russell Scott, Dara Entekhabi, et al. Timescales of landsurface evapotranspiration response[J]. Journal of Climate,1997,10(4):559-566
    228. Silburn D. M., Connolly R. D. Distributed parameter hydrology model(ANSWERS) applied to range of catchment scales using rainfall simulator data I:Infiltration modelling and parameter measurement[J]. Journal of Hydrology 1995,172:87-104.
    229. Singh, V.P. Distribution of evapotranspiration on different scales using computer models of watershed hydrology[M]. Water Resources Publications, Colorado, USA.1995.
    230. Sinun W., Meng W. W., Douglas I. Throughfall, stemflow, overland flow and throughflow in the Ulu Segama rain forest, Saban, Malaysia[J]. Philosophical Transactions:Biological Sciences,1992, 335:389-395.
    231. Sinun W.,Meng W.W.,Douglas Land Spencer T.Throughfall,stemflow,overland flow and throughflow in the Ulu Segama rain forest [M],Sabah,Malaysia.1992
    232. Souchere V., Cerdan O., et al.1999. Incorporating Surface Crusting and its Spatial Organization in Runoff and Erosion Modeling at the Watershed Scale[C]. Selected papers from the 10th International Soil Conservation Organization Meeting held May 24-29, at Purdue University and the USDA-ARS National Soil Erosion Research Laboratory.1999.
    233. Souchere V., King D., et al. Effects of tillage on runoff directions:consequences on runoff contributing area within agricutural catchment[J]. Journal of Hydrology.1998,206:256-267.
    234. Swanson R H. Forest hydrology issues for the 21st century:A consultant's viewpoint. Journal of the American Water Resources Association,1998,34(4):755-763
    235. Tamai K, Abe T, Araki M et al. Radiation budget, soil heat flux and latent heat flux at the forest floor inwarm, temperate mixed forest. Hydrologic Processes[J].1998,6:455-465
    236. Teskey, R.O. and Sheriff D.W. Water use by Pinus radiata trees in a plantation[J]. Tree Physiology 1996,16:273-280.
    237. Valente F. Modelling interception loss for two sparse eucalypt and pine forest s in central Portugal using reformulated Rutter and Gash analytical models[J]. J Hydrol.,1997,190:141-162.
    238. Vertessy, R.A., T.J. Hatton. Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique[J]. Tree Physiology,1997,17,747-756
    239. Viville D, Biron P, Granier A, et al. Interception in a mountainous declining spruce in the Strengbach catchment (Vosges, France) [J]. J Hydrol,.1993,144:273-282.
    240. Wassen M.J., Grootjans A.P. Ecohydrology:an interdisciplinary approach for wetland management and restoration[J]. Vegetation.1996,126:1-4.
    241.Wigmosta M.S., Vail L.W., Lettenmaier D.P. A distributed hydrology-vegetation model for complex terrain. Water Resource Research[J].1994,30:1665-1679.
    242. Wilcox B P, Newman B D. Ecohydrology of semiarid landscapes[J]. Ecological Applications,2005, 15 (3):989-900.
    243. Williams D G. Ecohydrology of Water-Controlled Ecosystems:Soil Moisture and Plant Dynamics [J]. Eos, Transactions American Geophysical Union,2005,86(38):344-351.
    244. Woolhiser D.A. Search for physically based runoff model-Ahydrologic El Dorado[J]. J. of Hydraulic Engineering.1996,122:122-128.
    245. Yager R.M., Kappel W.M. Infiltration and hydraulic connections from the Niagara River to a fractured-dolomite aquifer in Niagara Falls, New York[J]. Journal of Hydrology.1998,206:84-97.
    246. Yue S., Hashino M. Unit hydrographs to model quick and slow runoff components of streamflow[J]. Journal of Hydrology.2000,227:195-206.
    247. Zalewski M. Ecohydrology-the scientific background to use ecosystem properties as management tools toward sustainability of water resources[J]. Ecological Engineering.2000,16:1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700