用户名: 密码: 验证码:
煤炭矿区复垦土壤的菌根修复技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国矿区土壤侵占严重、质量恶化的局面,研发有效的矿区土壤修复技术成为国内外研究热点之一。菌根技术由于其具有高效低耗、简单易行、生态效益显著、促进生态平衡的特点,在矿区土壤修复中受到了广泛的关注。但对于菌根技术修复矿区土壤的效果以及土壤修复过程中微生态特征变化等方面的研究较少,菌根对矿区土壤有机碳积累的影响鲜有报道。因此,本论文利用菌根技术,以活性污泥添加构成的矿区复合基质为修复对象,在优化复合基质配比的基础上,对矿区复垦土壤的修复效应、土壤修复过程中微生态变化规律以及修复土壤有机碳累积性能的变化等做了系统的研究,获得的主要研究结论如下:
     盆栽试验研究获得矿区复合基质的较优配比:培养60d后,20%-40%污泥添加量的复合基质pH值为5.5~7.5,基质中有机质、全氮、速效磷等养分指标均处于较丰富或丰富的营养等级,适于三叶草生长,为矿区复垦的较优配比。可实现矿区免施化肥复垦。
     复合基质-AMF (arbuscular mycorrhizal fungi)组合的试验结果表明,污泥添加量为20%、30%的A2、A3配比基质中种植黑麦草接种摩西球囊霉菌(Glomusmosseae,简称G.m)盆栽实验2年后,其基质容重和孔隙度、有机质及氮磷钾元素的变化量均高于污泥添加量为10%的A1配比,黑麦草的菌根侵染率与菌根依赖性均相对较高。因此,A2-G.m、A3-G.m为矿区复垦技术的较优组合。
     A3复合基质-G.m组合修复的现场试验表明,矿区复垦土壤的容重、孔隙度及持水量等和有机质均随时间而逐渐改善;矿区复垦土壤酶活性随时间而逐渐提高,且接种处理的变化量均显著高于未接种对照(p<0.05)。
     矿区复垦土壤微生物群落和功能多样性的Biolog微平板法分析表明,添加污泥处理的AWCD值增长较快,Biolog微平板培养60h的微生物群落Shannon多样性指数、Simpson指数和McIntosh指数显著高于其它处理(p<0.05),污泥的添加显著提高矿区复垦土壤中微生物的丰富度和常见物种种类,且可达到群落组成均一。矿区复垦1年和2年的土壤微生物群落和功能多样性均高于复垦前土壤,表明矿区的复垦过程对于增强土壤微生物活性意义重大。
     矿区复垦土壤SOC的动态变化分析表明,不同处理复合基质中SOC含量均有所升高。AMF分泌的球囊霉素相关土壤蛋白(Glomalin-related Soil Protein,GRSP)随复垦时间逐渐增加,土壤有机碳与TG及EEG之间存在极显著的正相关(p<0.01),说明AMF所分泌的GRSP对矿区复垦土壤有机碳积累具有直接作用。AMF及其分泌的GRSP对土壤有机碳积累的作用机理为通过增加植物固碳量、促进土壤团聚体形成保护土壤有机碳、改变土壤微生境增加土壤有机碳等方式促进土壤有机碳的积累。
Aiming at the taking-up and the bad quality of mine soil, the research of anecological restoration system of abandoned mine land become the research focus.Mycorrhizal technology is characterized by effective, low-consuming, simple,remarkable ecological effect and promoting ecological balance, is paid close attention.Current research mainly focuses on improving of soil physical and chemicalproperties and simple vegetation recovery, and paid little attention for soil microbialecological characteristics and organic carbon accumulation in reclaimed mine soil. Anecological restoration system of abandoned mine land with activated sludge additionand arbuscular mycorrhizal fungi (AMF) inoculation was the main object in this study,the optimal ratio of compound substrate and optimal combination of compoundsubstrate and AMF inoculation was researched, and restoration effects of AMF toreclaimed mine soil and soil microbial characteristics and organic carbonaccumulation in reclaimed mine soil were discussed. Here are the major conclusions:
     The optimum ratio of complex substrate research showed that sludge addition is20%-40%in the compound substrate, pH ranged5.5-7.5suitable for clover, andorganic matter, total nitrogen and available phosphorus content were rich for growthof clover, can be used in reclamation of coal mine.
     The combination of complex substrate ratio and AMF research showed thatsludge addition is20%and30%in the compound substrate and Glomus mosseae (G.m)was inoculated, the physical and chemical characteristics were better than othertreatments, ryegrass biomass is relatively high, and the affinity of ryegrass and G.mwas good, so the combination of A2, A3compound substrates and Gm was selected inthe reclamation of coal mine.
     The field trials carried out to examined the effect of the combination of30%sludge addition in compound substrate and inoculation of G.m using in coal minereclamation indicated that bulk density and porosity were gradually improved with therehabilitation time, ryegrass biomass, soil organic matter and enzyme activity weregradually increased, and inoculation treatments were significantly higher than thenon-inoculation controls (p <0.05). Therefore, the combination of30%sludgeaddition in compound substrate and inoculation of G.m have a remarkableimprovement for vegetation restoration and microbial activity.
     Biolog Eco plate method analysis of microbial community and functional diversity shows that AWCD of sludge addition treatment was bigger, indicated thataddition of sludge helps to enhance microbial activity in ecological restoration ofmining substrate. In addition, functional diversity of microbial community analysis ofthe different recovery stages showed that2year reclamation increase soilmicroorganisms and common microbial species in reclamation of mine substrate.
     Soil organic carbon (SOC) in reclaimed mine soil increased in differenttreatments. SOC and Glomalin-related Soil Protein (GRSP) had highly significantpositive correlation (p <0.01), indicating that the GRSP has a direct role on soilcarbon sequestration.
引文
[1] Anderson J D, Stahl P D, Ingram L J. Influence of mineland reclamation practices on microbialcommunity recovery and soil organic carbon accumulation. In: Barnhisel RI, editor.Proceedings of a joint conference of american society of mining and reclamation and21stannual national conference and25th West Virginia surface mine drainage task forcesymposium. Lexington, KY: American Society of Mining and Reclamation;2004,74-86.
    [2] Harris J A, Birch P, Short K C. The impact of storage of soils during opencast mining on themicrobial community: a strategist theory interpretation [J]. Restoration Ecology,1993,1:88-100.
    [3] Insam H, Domsch K H. Relationship between soil organic carbon and microbial biomass onchronosequences of reclamation sites [J]. Microbial Ecology,1988,15:177-188.
    [4] Coyne M S, Zhai Q, Mackown C T, et al. Gross nitrogen transformation rates in soil at asurface coal mine site reclaimed for prime farmland use [J]. Soil Biology and Biochemistry,1998,30:1099-1106.
    [5] Smith I, Nilsson C, Adams D. Greenhouse gases—perspectives on coal [M]. London, UK: IEACoal Research;1994.
    [6] World Coal Institute. Coal Power for progress: Coal in the Environment (http://www. wci-coal.com/uploads/coal_enviro.pdf);2003.
    [7]卞正富.我国煤矿区土地复垦与生态重建研究[J].资源·产业,2005,7(2):18-24.
    [8]李玉臣,吉日格拉.矿区废弃地的生态恢复研究[J].生态学报,1995,15(3):339-343.
    [9] Noyd R K, Pfleger F L, Norland M R. Field responses to added organic matter, arbuscularmycorrhizal fungi, and fertilizer in reclaimation of taconite iron retailing [J]. Plant and Soil,1996,179:89-97.
    [10]郁纪东.应用菌根技术进行西北地区土地复垦初探[J].西安科技学院学报,2000,20(增刊):77-81.
    [11] Hu H W. Effects of different improvements on controlling acidification of Pb/Zn tailings [J].Acta Scientiarum Naturalium Universitatis Sunyatsen,1999,(3):68-71.
    [12]卞正富,张国良.矿山土复垦利用试验[J].中国环境科学,1999,1:81-84.
    [13] Daniel L M, Peter D S, Jeffrey S B. Soil MicroBiological properties20years after surfacemine reclamation: Spatial analysis of reclaimed and undisturbed sites [J]. Soil Biology&Biochenmistry,2002,(34):1717-1725.
    [14] Andrew W R, Karen M L, Peter A F. Application of biosolids in mineral sands minerehabilitation: Use of stockpiled topsoil decreases trace element up take by plants [J].Bioresource Technology,2004,(91):223-231.
    [15]王洁,周跃.矿区废弃地的恢复生态学研究[J].安全与环境工程.2005,(1):5-8.
    [16]孙泰森,师学义,杨玉敏等.五阳矿区采煤塌陷地复垦土壤的质量变化研究[J].水土保持学报,2003,17(4):35-37
    [17]胡振琪.煤矿山复垦土壤剖面重构的基本原理与方法[J].煤炭学报,1997,(6):617-622.
    [18]魏忠义,王秋兵.大型煤矸石山植被重建的土壤限制性因子分析[J].水土保持研究,2009,(1):179-182.
    [19]王志宏,李爱国.矿山废弃地生态恢复基质改良研究[J].中国矿业,2005,(3):22-24.
    [20]马彦卿,李小平,冯杰,等.粉煤灰在矿山复垦中用于土壤改良的试验研究[J].矿冶,2000,9(3):15-19.
    [21]何小燕.工业区土壤重金属污染的微生物—植物联合修复技术[D].中南林学院,2005:9-10.
    [22]孙永强,李富平,崔少东.应用生物修复技术治理矿区生态环境[J].矿业快报,2006,3(3):39-42.
    [23] Obbard J P, Jones K C. The effect of heavy metals on nitrogen fixation by Rhizobium whiteclover in a range of longterm sewage sludge amended and metal-contaminated soils [J].Environmental Pollution,1993,79:105-112.
    [24] Zhang Z Q, Wong M H, Nie X P, et al. Effects of zinc on rhizobia-earleaf acacia(A caciaauriculaeform is) symbiotic association [J]. Bioresource Technology,1998,(64):97-104.
    [25]刘润进,李晓林.丛枝菌根及其应用[M].北京:科学出版社,2000:109-110.
    [26]王红新,胡和兵,郭绍义.丛枝菌根在矿区生态重建中的应用及其前景分析[J].资源与环境,2007,23(11):1032-1035.
    [27] Cláudio R F S Soares, José O. Siqueira. Mycorrhiza and phosphate protection of tropicalgrass species against heavy metal toxicity in multi-contaminated soil [J]. Biol Fertil Soils,2008,44:833-841.
    [28] VU Ultra Jr, S Tanaka, K Sakurai, et al. Effects of arbuscular mycorrhiza and phosphorusapplication on arsenic toxicity in sunflower (Helianthus annuus L.) and on the transformationof arsenic in the rhizosphere [J]. Plant Soil,2007,290:29-41.
    [29] Radka Sudová, Miroslav Vosátka. Differences in the effects of three arbuscular mycorrhizalfungal strains on P and Pb accumulation by maize plants [J]. Plant and Soil,2007,296:77-83.
    [30]唐明娟,郭顺星.菌根增强植物抗病机理的研究进展[J],微生物学通报,2000,24(6):446-449.
    [31] Zhu Y G, Miller R M. Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems[J]. Trends in Plant Science,2003,8:407-409.
    [32]冯固,张玉凤,李晓林.丛枝菌根真菌的外生菌丝对土壤水稳性团聚体形成的影响[J].水土保持学报,2001,15(4):99-102
    [33] Frost S M, Stahl D D, Williams S E. Long-term reestablishment of arbuscular mycorrhizalfungi in a drastical disturbed semiarid surface mine soil [J]. Arid Land Research andManagement,2001,15(1):3-12.
    [34] Cuenca G, Andrade Z D,Escalante G. Arbuscular mycorrhizal in the rehabilitation of fragiledegraded tropical lands [J].Biology and Fertility of Soils,1998,26(2):107-111.
    [35]毕银丽,李晓林,丁保健.水分胁迫下接种菌根对玉米抗旱性的影响[J].干旱地区农业研究,2003,21(2):7-12
    [36]卢彦琦,贺学礼. AM真菌与施N量对白术幼苗化学成分和生物产量的影响[J].河北大学学报(自然科学版),2005,25(6):650-653.
    [37]马彦卿.微生物复垦技术在矿区生态重建中的应用[J].采矿技术,2001,1(2):66-68.
    [38]毕银丽,吴王燕,刘银平.丛枝菌根在煤矸石山土地复垦中的应用[J].生态学报,2007,27(9):3738-3743.
    [39] Wang Liping, Qian Kuimei, He Shilong, et al. Fertilizing Effect of Arbuscular MycorrhizalFungi on Coal Mine Complex Substrate [J]. Procedia Earth and Planetary Science,2009,1:1101-1106.
    [40] Bhoopander Giri, Rupam Kapoor, Mukerji K G. Effect of the arbuscular mycorrhzae Glomusfasciculatum and G. macrocarpum on the growth and nutrient content of Cassia siamea [J].New Forests,2005,29:63-73.
    [41] Barea J M. Interactions between mycorrhizal fungi and rhizosphere micro-organism swith inthe context of sustainable soil-plant system In: Gange Brown ed. Multitrophic Interactions inTerrestrial systems [J]. Oxford: Blackwell Science Ltd,1997:196-198.
    [42]胡振琪,刘杰,蔡斌,等.菌根生物技术在大武口洗煤厂矸石山绿化中的应用初探[J].能源环境保护,2006,20(1):14-16,22.
    [43] Wang Liping, Zhang Weiwei, Guo Guangxia, et al. Selection experiments for the optimumcombination of AMF-plant-substrate for the restoration of coal mines [J]. Mining science andtechnology,2009,19:479-482.
    [44] Bendfeldt E S, Burger J A, Daniels W L. Quality of amended mine soils after sixteen years [J].Soil Science Society of America Journal,2001,65:1736-1744.
    [45] Vinson J, Jones B, Milczarek M, et al. Vegetation success, seepage and erosion on tailingsites reclaimed with cattle and biosolids. In: Bengson SA, Bland DM, editors. Mining andreclamation for the next millennium: Proceedings of the16th annual national meetings of theAmerican society for surface mining and reclamation. The American society for surfacemining and reclamation. Conference held on Aug13-19,1999in Scottsdale, Arizona;1999,175-183.
    [46] Daniels W L, Haering K C. Use of sewage sludge for land reclamation in the centralAppalachians. In: Clapp C E, Larcen W E, Dowdy R H, editors. Sewage sludge: landutilization and the environment. SSSA. Misc. Publ. ASA, CSSA, and SSSA, Madison, WI,1994,105-121.
    [47] Li R S, Daniels W L. Reclamation of coal refuse with a papermill sludge amendment. In:Brandt JE, et al, editor. Proc.1977National Meeting of the American Society for SurfkeMining and Reclamation, Austin, Texas, May10-15,1977,277-290.
    [48] Cook T E, Ammons J T, Branson J L, et al. Copper mine tailings reclamation near Ducktown,Tennessee. In: Daniels W L, Richardson S G, editors. Proceedings of2000annual meeting ofthe American Society for surface mining and reclamation. Tampa, FL, June11-15,2000.Amer. soc. surf. mining rec.,3134Montavesta Rd., Lexington, KY;2000,529-536.
    [49] Webber L R. Incorporation of nonsegregated, noncomposted soil waste and soil physicalproperties [J]. Journal of Environmental Quality,1978,7:397-400.
    [50] Norland M R. Use of mulches and soil stabilizers for land reclamation. In: Barnhisel RI,Darmody RG, Daniels WL, editors. Reclamation of drastically disturbed lands. Agronomy,ASA, CSSA, SSSA, Madison,Wisconsin, USA;2000,645-666.
    [51] Chu C W, Poon C S. The feasibility of planting on stabilized sludge-amended soil [J].Environment International,1999,25:465-477.
    [52] Wong J W C. The production of artificial soil mix from coal fly ash and sewage sludge [J].Environ Technol,1995,16:741-751.
    [53] Shukla M, Lal R, Ebinger M H. Physical and chemical properties of a minespoil eight yearsafter reclamation in northeastern Ohio [J]. Soil Sci Soc Am J,2005,69:1288-1297.
    [54] Thompson T L, Wald Hopkins M, White S A. Reclamation of copper mine tailings usingbiosolids and green waste. In: Vincent R, editor. Proceedings of2001: Land reclamation: adifferent approach.18th annual meeting of the American society for surface mining andreclamation. Albuquerque, New Mexico, June3-7,2001. Amer. soc. surf. mining rec.,3134Montavesta Rd., Lexington, KY;2001,448-456.
    [55] Rogers M T, Bengson S A, Thompson T L. Reclamation of acidic copper mine tailings usingmunicipal biosolids. In: Throgmorton D, Nawrot J, Mead J, Galetovic J, Joseph W, editors.Proceedings1998: Mining: Gateway to the future.15th annual meeting of the Americansociety for surface mining and reclamation. St. Louis, Missouri, May17-21,1998. TheAmerican Society for Surface Mining and Reclamation;1998,85-91.
    [56] Yang J E, Kim H J, Choi J Y, et al. Reclamation of abandoned coal mine wastes using limecake byproducts in Korea. In: Barnhisel R I, editor. Proceedings of a joint conference ofAmerican society of mining and reclamation.21st annual national conference,25th WestVirginia surface mine drainage task force symposium April18-22,2004, Morgantown, WV;2004,2067-2078.
    [57] Moreno-Penaranda R, Lloret F, Alcaniz J M. Effects of sewage sludge on plant communitycomposition in restored limestone quarries [J]. Restoration Ecology,2004,12:290-295.
    [58] Smith L J, Papendick R I. Soil organic matter dynamics and crop residue management. In:Metting B (ed) Soil microbial ecology. Marcel Dekker, New York,1993.
    [59] Morin P J, McGrady-Steed J. Biodiversity and ecosystem functioning in aquatic microbialsystems: a new analysis of temporal variation and species richness-predictability relations [J].Oikos,2004,104:458-466.
    [60] Bell T, Newman J A, Silverman B W, et al. The contribution of species richness andcomposition to bacterial services [J]. Nature,2005,436:1157-1160.
    [61] Green J, Bohannan B J M. Spatial scaling of microbial biodiversity [J]. Trends in Ecology&Evolution,2006,21:501-507.
    [62] Smith J L, Paul E A. The significance of soil microbial biomass estimations [J]. Soil Biochem,1990,6:357-359.
    [63] Harris J A. Measurements of the soil microbial community for estimating the success ofrestoration [J]. European Journal of Soil Science,2003,54:801-808.
    [64] He J Z, Ge Y, Xu Z H, et al. Linking soil bacterial diversity to ecosystem multifunctionalityusing backward-elimination boosted trees analysis [J]. Journal of Soils and Sediments,2009,9:547-554.
    [65] Nannipieri P, Ascher J, Ceccherini MT, et al. Microbial diversity and soil functions [J].European Journal of Soil Science,2003,54:655-670.
    [66]毕银丽,任婧.接种菌根对根际微生物群落和磷营养的影响[J].能源环境保护,2007,21(3):25-28.
    [67]龙健,黄昌勇,滕应,等.重金属污染矿区复垦土壤微生物生物量及酶活性的研究[J].中国生态农业学报,2004,12(3):146-148
    [68]陈政,阳贵德,孙庆业.植物群落对铜尾矿废弃地土壤微生物量和酶活性的影响[J].生态环境学报,2009,18(6):2189-2193.
    [69]龙健,黄昌勇,滕应,等.矿区废弃地土壤微生物及其生化活性[J].生态学报,2003,23(3):496-503.
    [70]洪坚平,谢英荷,孔令节,等.矿山复垦区土壤微生物及其生化特性研究[J].生态学报,2000,20(4):669-672.
    [71]姚斌,尚鹤,刘成志,等.废弃柴河铅锌矿区土壤微生物特征调查研究[J].林业科学研究,2006,19(3):400-403.
    [72]方辉,王翠红,辛晓云,等.平朔安太堡矿区复垦地土壤微生物与土壤性质关系的研究[J].安全与环境学报,2007,7(6):74-76.
    [73] Zak J C, Willig M R, Moorhead D L, et al. Functional diversity of microbial communities. Aquantitative approach [J]. Soil Biology and Biochemistry,1994,26:1101-1108.
    [74] Garland J L. Patterns of potential C source utilization by rhizosphere communities [J]. SoilBiology and Biochemistry,1996,28:223-230.
    [75] Lupwayi N Z, Rice W A, Clayton G W. Soil microbial diversity and community structureunder wheat as influenced by tillage and crop rotation [J]. Soil Biology and Biochemistry,1998,30:1733-1741.
    [76] Yan F, McBratney A B, Copeland L. Functional substrate biodiversity of cultivated anduncultivated A horizons of vertisols in NW New South Wales [J]. Geoderma,2000,96:321-343
    [77] Grayston S J, Campbell C D. Functional biodiversity of microbial communities in therhizospheres of hybrid larch (Larix eurolepis) and Sitka spruce (Picea sitchensis). TreePhysiol,1996,16:1031-1038.
    [78] White C, Tardif J C, Adkins A, et al. Functional diversity of microbial communities in themixed boreal plain forest of central Canada. Soil Biology and Biochemistry,2005,37:1359-1372.
    [79]滕应,黄昌勇,龙健,等.矿区侵蚀土壤的微生物活性及其群落功能多样性研究[J].水土保持学报,2003,174(1):115-118.
    [80] Lal R. Soil carbon sequestration impacts on global climate change and food security [J].Science,2004,304:1623-1627.
    [81] Sinclair H R, McWilliams Jr K M, Wade SL, et al. In: Barnhisel RI, editor. Proceedings of ajoint conference of American society of mining and reclamation.21st annual nationalconference,25th West Virginia surface mine drainage task force symposium April18-22,2004, Morgantown, WV;2004,1674-1699.
    [82] Seybold C A, Grossman R B, Sinclair H R, et al. Evaluating soil quality on reclaimed coalmine soils in Indiana. In: Barnhisel RI, editor. Proceedings of a joint conference of Americansociety of mining and reclamation.21st annual national conference,25th West Virginiasurface mine drainage task force symposium April18-22,2004, Morgantown, WV;2004,1644-1663.
    [83] Hearing K C, Daniels W L, Feagley S E. Reclaiming mined lands with biosolids, manures,and papermill sludges. In: Barnhisel R I, Darmody R G, Daniels W L, editors. Reclamation ofdrastically disturbed lands. Agronomy, ASA, CSSA, SSSA, Madison, Wisconsin, USA;2000,615-644.
    [84] Boerner R E J, Scherzer A J, Brinkman J A. Spatial patterns of inorganic N, P availability, andorganic C in relation to soil distrubance: a chronosequence analysis [J]. Applied Soil Ecology,1998,7:159-177.
    [85] Indorante S J, Jansen I J, Boast C W. Surface mining and reclamation: initial changes in soilcharacter [J]. Journal of Soil and Water Conservation,1981,36:347-351.
    [86] Kohnke H. The reclamation of coal mine spoils [J]. Advances in Agronomy,1950,2:318-49.
    [87] Vogel W G, Berg W B. Grasses and legumes for cover on acid strip-mine spoils [J]. Journal ofSoil and Water Conservation,1968,23:89-91.
    [88] Akala V A, Lal R. Potential of mineland reclamation for soil organic C sequestration in Ohio[J]. Land Degradation&Development,2000,11:289-297.
    [89] Akala V A, Lal R. Soil organic pools and sequestration rates in reclaimed minesoils in Ohio[J]. Journal of Environmental Quality,2001,30:2090-2104.
    [90] Jacinthe P A, Lal R, Ebinger M. Post-reclamation land-use and carbon sequestration in minedsoils. Annual meeting of the American society of agronomy, Denver, CO,2003.
    [91] Sourkova M, Frouzb J, Santruckova H. Accumulation of carbon, nitrogen and phosphorusduring soil formation on alder spoil heaps after brown-coal mining, near Sokolov (CzechRepublic)[J]. Geoderma,2005,124:203-214.
    [92] Post W M, Izaurralde R C, Jastrow J D, et al. Enhancement of carbon sequestration in USsoils [J]. BioScience,2004,54:895-908.
    [93] Palumbo A V, McCarthy J F, Amonette J E, et al. Prospects for enhancing carbonsequestration and reclamation of degraded lands with fossil-fuel combustion by-products [J].Adv Environ Res,2004,8:425-438.
    [94] Schlesinger W H. Changes in soil carbon storage and associated properties with disturbanceand recovery. In: Trabalka J R, Reichle D E, editors. The changing carbon cycle. New York,USA: Springer-Verlag New York;1986,194-220.
    [95] Houghton R A, Boone R D, Melillo J M, et al. Net flux of carbon dioxide from terrestrialtropical forests in1980[J]. Nature,1985,316:617-620.
    [96]侯晓丽.废弃煤矿土地复垦研究——以山西省为例.西南大学,2010.
    [97] Larat S, Lapointe L, Gutjahr, et al. Carbon portioning in a split-root system of arbuscularmycorrhizal plants is fungal and plant species dependent[J]. New Phytologist,2003,157:589-595.
    [98] Kuzyakov Y, Cheng W. Photosynthesis controls of rhizosphere respiration and organic matterdecomposition [J]. Soil Biology and Biochemistry,2001,33:1915-1925.
    [99] Bomberg M, Jurgens G, Saano A, et al. Nested PCR identification of archaea in definedcompartments of pine mycorrhizospheres developed in boreal forest humus microcosms[J].Fems Micriobiology Ecology,2003,43:163-171.
    [100] Leake J R, Johnson D, Donnelly D, et al. Networks of power and influence: the role ofmycorrhizal mycelium in controlling plant communities and agroecosystem functioning [J].Canadian Journal of Botany,2004,82:1016-1045.
    [101] Jakobsen I, Smith S E, Smith F A. Function and diversity of arbuscular mycorrhizae incarbon and mineral nutrition [J]//Mycorrhizal ecology. Ecology Study,2002,157:75-92.
    [102] Johnson D, Leake J R, Ostle N, et al. In situ13CO2pulse-labelling of upland grasslanddemonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil[J]. New Phytologist,2002,153:327-334.
    [103] Nakano-Hylander A, Olsson P A. Carbon allocation in mycelia of arbuscular mycorrhizalfungi during colonisation of plant seedlings [J]. Soil Biology&Biochemistry,2007,39:1450-1458.
    [104] Shrestha R K, Lal R. Ecosystem carbon budgeting and soil carbon sequestration inreclaimed mine soil [J]. Environment International,2006,32:781-796.
    [105] Rillig M C, Mummey D L. Mycorrhizas and soil structure [J]. New Phytologist,2006,171:41-53.
    [106] Wright S F, Upadhyaya A. A survey of soils for aggregate stability and glomalin, aglycoprotein produced by hyphae of arbuscular mycorrhizal fungi [J]. Plant and Soil,1998,198:97-107.
    [107] Caesar-TonThat T C, Cochran V L. Soil aggregate stabilization by a saprophyticlignin-decomposing basidiomycete fungus I. MicroBiological aspects [J]. Biology andFertility of Soils,2000,32:374-380.
    [108] Caesar-TonThat T C, Shelver W L, Thorn R G, et al. Generation of antibodies for soilaggregating basidiomycete detection as an early indicator of trends in soil quality [J]. AppliedSoil Ecology,2001,18:99-116.
    [109] Carter M R, Angers D A, Kunelius H T. Soil structural form and stability, and organic matterunder cool-season perennial grasses [J]. Soil Science Society of America Journal,1994,58:1194-1199.
    [110] W sten H A B. Hydrophobins: multipurpose proteins [J]. Annual Review of Microbiology,2001,55:625-646.
    [111] Linder M B, Szilvay G R, Nakari-Set l T, et al. Hydrophobins: The protein-amphiphiles offilamentous fungi [J]. FEMS Microbiology Reviews,2005,29:877-896.
    [112] Marschner P, Baumann K. Changes in bacterial community structure induced bymycorrhizal colonisation in split-root maize [J]. Plant and Soil,2003,251:279-289.
    [113] Mummey D L, Holben W, Six J, et al. Spatial stratification of soil bacterial populations inaggregates of diverse soils [J]. Microbial Ecology.2006,51(3):404-411.
    [114] Smith S E, Read D J. Mycorrhizal symbiosis [M]. London: Academic Press,1997.
    [115] Giuffre L, Heredia O, Pascale C, et al. Land use and carbon sequestration in and soils ofnorthern Patagonia (Argentina)[J]. Landbauforsch Volkenrode,2003,53:13-18.
    [116] Jacinthe P A, Lal R, Ebinger M. Carbon sequestration in reclaimed mined lands.Proceedings of the second annual carbon sequestration conference, May5-8, Alexandria, VA,2004.
    [117] Gerdemann J W. Vesicular-arbuscular mycorrhizae. In: The development and Function ofRoots. Torrey JG, Clarkson DT (eds). Academic Press, New York and London,1975,575-591.
    [118] Weber K P, Grove J A, Gehder M, et al. Data transformations in the analysis ofcommunity-level substrate utilization data from microplates [J]. Journal of MicrobiologicalMethods,2007,69:461-469.
    [119] Choi K, Dobbs F C. Comparison of two kinds of Biolog microplates (GN and ECO) in theirability to distinguish among aquatic microbial communities[J]. Journal of MicrobiologicalMethods,1999,36:203-213.
    [120] Grove J A, Kautola H, Javadpour, et al. Assessment of changes in the microorganismcommunity in a biofilter [J]. Biochemical Engineering Journal,2004,18:111-114.
    [121]时亚南.不同施肥处理对水稻土微生物生态特性的影响[D].杭州:浙江大学,2007.
    [122] Garland J L, Mills A L. Classification and characterization of heterotrophic microbialcommunities on the basis of community-level sole-carbon-source utilization [J]. Applied andEnvironmental Microbiology.1991,57:2351-2359.
    [123] Magurran A E. Ecological diversity and its measurement [M]. Princeton: PrincetonUniversity Press,1988.
    [124] Menge J A, Johnson E L V and Platt R G. Mycorrhizal dependence of several circuscultivars under three nutrient regimes [J]. New Phyology,1978,81:553-559.
    [125]林先贵,群文英.不同植物对VA菌根菌的依赖性[J].植物学报,1989,31(9):721-725.
    [126]董昌金,赵斌.影响丛枝菌根真菌孢子萌发的几种因素研究[J].植物营养与肥料科学报,2003,9(4):489-494.
    [127] Asghari H R, Chittleborough D J, Smith FA, et al. Influence of arbuscular mycorrhizal (AM)symbiosis on phosphorus leaching through soil cores [J]. Plant and Soil,2005,275:181-193.
    [128] Megan H. Ryan, Anthony F. van Herwaarden, John F. Angus, et al. Kirkegaard. Reducedgrowth of autumn-sown wheat in a low-P soil is associated with high colonisation byarbuscular mycorrhizal fungi [J]. Plant and Soil,2005,270:275-286.
    [129]黄京华,骆世明,曾任森,等.磷胁迫下AMF对玉米生长的影响[J].广西农业生物科学,2006,25(14):321-324.
    [130] Rillig M C and Steinberg P D. Glomalin production by an arbuscular mycorrhizal fungus: amechanism of habitat modification. Soil Biology&Biochemistry,2002,34:1371-1374.
    [131] Quintero-Ramos A, De La Veja C, Hernandez E, et al. Effect of conditions of osmotictreatment on the quality of dried apple dices, Aiche Symposium Series,1993,89:108-113
    [132] Buwalda J G, Stribley D P, Tinker P B. Increased uptake of anions by plants withmyeorrhizas [J]. Plant and Soil,1983,71:463-467.
    [133] Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected byroot-induced chemical changes: a review [J]. Plant and Soil,2001,237:173-195.
    [134]刘世亮,介晓磊,李有田,等.土壤-植物根际磷的生物有效性研究进展[J].土壤与环境,2002,11(2):178-182.
    [135] Li X L, George E, Marschner H. Extension of the phosphorus depletion zone in a VAmycorrhizal white clover in a calcareous soil [J]. Plant and Soil,1991,136:41-48.
    [136]曾曙才,苏志尧. VA菌根真菌对植物养分吸收与传递的影响[J].西南林学院学报.2005,1:72-74.
    [137]郑伟文,宋亚娜. VA菌根真菌和根瘤菌对翼豆生长、固氮的影响[J].福建农业学报,2000,15(2):50-55.
    [138] Sanders, F E, Tinker P B. Phosphate flow into mycorrhizal roots, Pest Science,1973,4:385-395.
    [139]黄金芳,肖华山. VA菌根对植物的有益作用及其应用展望[J].热带农业科技,2006,29(2):23-27.
    [140] Sally E, Smith F. Andrew Smith, Iver Jakobsen. Mycorrhizal Fungi can dominate phosphatesupply to plants irrespective of growth responses [J]. Plant Physiol.2003,133:16-20.
    [141] Smith J E, McKay D, Niwa CG, et al. Short-term effects of seasonal prescribed burning onthe ectomycorrhizal fungal community and fine root biomass in ponderosa pine stands in theBlue Mountains of Oregon. Canadian Journal of Forest Research,2004,34,2477-2491.
    [142]冯固,杨茂秋,白登莎,等.石灰性土壤上VA菌根真菌对土壤有机磷矿化的影响及其机理初探.土壤通报,1993,24(4):184-186.
    [143]李晓林,曹一平.菌根和非菌根三叶草根际土壤磷钾变化.土壤通报,1992,23(4):180-182.
    [144] Li X L, George E, Marschner H. Acquision of phosphorus and copper by VA-mycorrhizalhyphae and root-to-shoot transport in white clover. Plant and Soil,1991,136:49-57.
    [145] Johansen A. Hyphal transport of15N2labelled nitrogen by a vesicular arbuscularmycorrhizal fungus and its effect on depletion of inorganic soil. New Phytol.,1992,122:281-285.
    [146]司东霞,吕福堂,张敏,等.设施栽培条件下土壤养分及有机质组成变化趋势的研究[J].土壤通报,2004,35(5):566-569.
    [147] Insam H. Development in soil microbiology since the Mid1960s [J]. Geoderma,2001,100(4):389-402.
    [148] Gagnon B, Lalande R, Simard R R, et a1. Soil Enzyme Activities Following Paper SludgeAddition in a Winter Cabbage Sweet Corn Rotation [J]. Canada Journal of Soil Science,2000,80(9):91-97.
    [149] Sannino F, Gianfreda L. Pesticide Influence on Soil Enzymatic Activities [J]. Chemosphere,2001,45(4):417-425.
    [150] Skujins J. Extracellular Enzymes in Soil [J]. Critical Reviews in Microbiology,1976,4(4):383-421.
    [151] Kr mer S, Green D M. Acid and alkaline phosphatase dynamics and their relationship to soilmicroclimate in a semiarid woodland. Soil Biology and Biochemistry,2000,32:179-188.
    [152] Lim C H, Ozkanca R, Flint KP. The effects of osmotic stress on survival and alkalinephosphatase activity of Aeromonas hydrophila. FEMS Microbiology Letters,1996,137:19-24.
    [153] Criquet S, Ferre E, Farnet A M, et al.. Annual dynamics of phosphatase activities in anevergreen oak litter: influence of biotic and abiotic factors. Soil Biology and Biochemistry,2004,36:1111-1118.
    [154] Claassens S, Jansen van Rensburg P J, Maboeta M S, et al. Soil Microbial CommunityFunction and Structure in a Post-mining Chronosequence. Water, Air, and Soil Pollution,2008,194:315-329.
    [155] Zhman M, Di H J,Sakamoto K. Effects of sewage sludge compost and chemical fertilizerapplication on microbial biomass and N mineralization rates [J]. Soil Sci Plant Nutr,2002,48(2):195-201.
    [156]蔡艳.青海高原东部土壤放线菌资源及应用研究[D].西北农林科技大学,2002:1~14.
    [157] Juliet Preston-Mafham, Lynne Boddy, Peter F. Randerson. Analysis of microbial communityfunctional diversity using sole-carbon-source utilisation profiles-a critique [J]. FEMSMicrobiology Ecology,2002,42:1-14.
    [158] Insam H. A new set of substrates proposed for community, characterization in environmentalsamples. In: Insam H, Rangger A eds. Microbial Communities: Functional Versus StructuralApproaches.1997,259-260.
    [159]马艳,常志州,赵江涛,等.黄瓜种子发芽期微生物代谢的群落特性研究[J].植物营养与肥料学报,2006,12:109-114.
    [160]黎炜,陈龙乾,周天建.张集矿区复垦土壤养分变化研究及评价[J].现代矿业,2011,2:41-43.
    [161]樊金拴,周心澄,王华.利用绿化技术对煤矸石废弃地进行生态恢复与景观改造的尝试——以山东兖矿集团煤矸石山绿化为例[J].中国园林,2006,3:57-63.
    [162] Nannipieri P. The potential use of soil enzymes as indicators of productivity, sustainabilityand pollution. In: Pankhurst, C.E., Doube, B.M., Gupta, V.V.S.R., Grace, P.R.(Eds.), SoilBiota: Management in Sustainable Farming Systems. CSIRO, Australia,1994,238-244.
    [163]李影,王友保.蜈蚣草生长对其根际铜尾矿土壤酶活性的影响[J].生态与农村环境学报,2011,27(2):75-80.
    [164] García C, Hernández MT, Costa F. Potential use of dehydrogenase activity as an index ofmicrobial activity in degraded soils. Communications in Soil Science and Plant Analysis,1997,28:123-134.
    [165]董立国,袁汉民,李生宝,等.玉米免耕秸秆覆盖对土壤微生物群落功能多样性的影响[J].生态环境学报,2010,19(2):444-446.
    [166]谢明吉,严重玲,叶菁.菲对黑麦草根系几种低分子量分泌物的影响.生态环境,2008,17(2):576-579
    [167] Kavamura V N, Esposito E. Biotechnological strategies applied to the decontamination ofsoil polluted with heavy metals [J]. Biotechnology Advances,2010,28:61-69.
    [168] Lone M I, He Z L, Stoffella PJ, et al. Phytoremediation of heavy metal polluted soils andwater: Progress and perspectives [J]. Journal of Zhejiang University SCIENCE B,2008,9(3):210-220.
    [169] Singh A N, Raghubanshi A S, Singh J S. Plantations as a tool for mine spoil restoration[J].Current Science,2002,82(12):1436-1441.
    [170] Wong M H. Ecological restoration of mine degraded soils, with emphasis on metalcontaminated soils [J]. Chemosphere,2003,50:775-780.
    [171] Singh K P, Mandal T N, Tripathi S K. Patterns of restoration of soil physicochemicalproperties and microbial biomass in different landslide sites in the sal forest ecosystem ofNepal Himalaya [J]. Ecological Engineering,2001,17:385-401.
    [172] Skousen J, Ziemkiewicz P, Venable C. Tree recruitment and growth on20-year-old,unreclaimed surface mined lands in West Virginia [J]. International Journal of Mining,Reclamation and Environment,2006,20:142-154.
    [173] Holl K D. The effect of coal surface mine revegetation practices on long-term vegetationrecovery [J]. Journal of Applied Ecology,2002,39:960-970.
    [174]傅庆林,罗永进.低丘红壤地区植被恢复及生态效应研究.浙江农业学报,1995,2:85-87.
    [175] Potter C S, Klooster S A. Global model estimates of carbon and nitrogen storage in litter andsoil pools: response to change in vegetation quality and biomass allocation [J]. Tellus B,1997,49:1-17.
    [176] Karlen D A, Cambandella C A. Conservation strategies for improving soil quality andorganic matter storage. In: Lal R (ed) Structure and organic matter storage in agriculture soils.Adv Soil Sci. Lewis Publishers, Boca Raton, FL,1996,395-420.
    [177] Innes L, Hobbs P J, Bardgett R D. The impact of individual plant species on rhizospheremicrobial communities in soils of different fertility [J]. Biology and Fertility of Soils,2004,40:7-13.
    [178] Johnson D, Booth R E, Whiteley A S, et al. Plant community composition affects thebiomass, activity and diversity of microorganisms in limestone grassland soil [J]. EuropeanJournal of Soil Science,2003,54:671-677.
    [179] Quideau S A, Chadwick O A, Benesi A, et al. A direct link between forest vegetation typeand soil organic matter composition [J]. Geoderma,2001,104:41-60.
    [180] Li Juan, Zhao Bingqiang, Li Xiuying, et al. Effects of long-term combined application oforganic and mineral fertilizers on microbial biomass, Soil Enzyme Activities and SoilFertility [J]. Agricultural Sciences in China,2008,7(3)336-343.
    [181] Lucía Carrasco, Andreas Gattinger, Andreas Flie bach, et al. Estimation by PLFA ofMicrobial Community Structure Associated with the Rhizosphere of Lygeum spartum andPiptatherum miliaceum Growing in Semiarid Mine Tailings [J]. Microbial Ecology,2010,60(2):265-271.
    [182] Hu Junli, Lin Xiangui, Wang Junhua, et al. Microbial functional diversity, metabolicquotient, and invertase activity of a sandy loam soil as affected by long-term application oforganic amendment and mineral fertilizer [J]. Journal of Soils and Sediments,2011,11:271-280.
    [183] Claassens S, Jansen Van Rensburg PJ, Van Rensburg L. Soil microbial community structureof coal mine discard under rehabilitation [J]. Water, Air, and Soil Pollution,2006,174:355-366.
    [184] Marcin Chodak, Maria Niklińska. The effect of different tree species on the chemical andmicrobial properties of reclaimed mine soils [J]. Biology and Fertility of Soils,2010,46:555-566.
    [185]谢英荷,张淑香,洪坚平,等.煤矸石风化物上不同复垦措施对土壤微生物的影响[J].土壤通报,1995,26(4):183-185.
    [186] Boudjabi S, Kribaa M, Tamrabet L. Contribution of Sewage Sludge to the Fertility of theSoil and the Growth of Barley (Hordium Vulgare L) Variety Jaidor [J]. Efficient Managementof Wastewater,2008,227-235.
    [187] De Leij, Whipps JM, Lynch JM. The use of colony development for the characterization ofbacterial communities in soil and roots [J]. Microbial Ecology,1993,27:81-97.
    [188] Siti Khodijah Chaerun, Nurmi PD. Pangesti, Koki Toyota, et al. Changes in MicrobialFunctional Diversity and Activity in Paddy Soils Irrigated with Industrial Wastewaters inBandung, West Java Province, Indonesia [J]. Water, Air, and Soil Pollution,2011,217(1-4):491-502.
    [189] Jamil M, Qassim M, Umar M. Utilization of sewage sludge as organic fertilizer insustainable agriculture [J]. Journal of Applied Sciences,2006,6:531-535.
    [190] Bucher A E, Lanyon L E. Evaluating soil management with microbial community-levelphysiological profiles [J]. Applied Soil Ecology,2005,29:59-71.
    [191] Ge Y, Zhang J B, Zhang L M, et al. Long-term fertilization regimes affect bacterialcommunity structure and diversity of an agricultural soil in northern China [J]. Journal ofSoils and Sediments,2008,8:43-50.
    [192] Steenwerth K L, Jackson L E, Calderón F J, et al. Soil microbial community compositionand land use history in cultivated and grassland ecosystems of coastal California [J]. SoilBiology&Biochemistry,2002,34:1599-1611.
    [193] Marschner P, Kandeler E, Marschner B. Structure and function of the soil microbialcommunity in a long-term fertilizer experiment [J]. Soil Biology&Biochemistry,2003,35:453-461.
    [194] Pascual J A, Ayuso M, García C, et al. Characterization of urban wastes according tofertility and phytotoxicity parameters [J]. Waste Management&Research,1997,15:103-112.
    [195] Grayston S J, Wang S, Campbell C D, et al. Selective influence of plant species onmicrobial diversity in rhizosphere [J]. Soil Biology&Biochemistry,1998,30:369-378.
    [196] Zhong W, Gu T, Wang W, et al. The effects of mineral fertilizer and organic manure on soilmicrobial community and diversity [J]. Plant and Soil,2010,326:511-522.
    [197] Albiach R, Canet R, Pomares F, et al. Microbial biomass content and enzymatic activitiesafter the application of organic amendments to a horticultural soil [J]. BioresourceTechnology,2000,75:43-48.
    [198] Esperschütz J, Gattinger A, M der P, et al. A. Response of soil microbial biomass andcommunity structures to conventional and organic farming systems under identical croprotations [J]. Fems Micriobiology Ecology,2007,61:26-37.
    [199] Senesi N, Loffredo E. The chemistry of soil organic matter. In: Sparks DL, editor. Soilphysical chemistry [J]. Second ed. Boca Raton, FL: CRC Press,1999,239-370.
    [200] Hao XH, Liu SL, Wu JS, et al. Effect of long-term application of inorganic fertilizer andorganic a mendments on soil organic matter and microbial biomass in three subtropical paddysoils [J]. Nutrient Cycling in Agroecosystems,2008,81:17-24.
    [201] Gil-Sotres F, Trasar-Cepeda C, Leir s MC, et al. Different approaches to evaluating soilquality using biochemical properties [J]. Soil Biology and Biochemistry,2005,37:877-887.
    [202] Dick R P. A review: long-term effect of agricultural systems on soil biochemical andmicrobial parameters. Agriculture, Ecosystems&Environment,1992,40:25-36.
    [203] Larson W E, Pierre F J. Conservation and enhancement of soil quality [A]. In Proc. Of theInt. Workshop on evaluation for sustainable land management in the developing world.International Board for Soil Resource and Management (IBSRAM). Proceeding no.123vol.2.Bangkok, Thailand,1991.
    [204] He J Z, Xu Z H, Hughes J. Molecular bacterial diversity of a forest soil under differentresidue management regimes in subtropical Australia [J]. FEMS Microbiology Ecology,2006,55:38-47.
    [205] Widmer F, Fliebach A, Laczko E, et al. Assessing soil biological characteristics—comparison of bulk soil community DNA, PLFA, and BIOLOG analyses [J]. Soil Biologyand Biochemistry,2001,33:1029-1036.
    [206] Jordan D, Kremer R J, Bergfield W A, et al. Evaluation of microbial methods as potentialindicators of soil quality in historical agricultural fields [J]. Biology and fertility of soils,1995,19(4):297-302.
    [207] L X N, Meng X N, Ma W Z, et al. Soil quality and its development. Acta AgricultureZhejiangensis,2004,16(2):105-109.
    [208] Augé R M. Water relation, drought and vesicular-arbuscular mycorrhizal symbiosis [J].Mycorrhiza,2001,11:3-42.
    [209] Wright S F, Upadhyaya A. Extraction of an abundant and unusual protein from soil andcomparison with hyphal protein of arbuscular mycorrhizal fungi [J]. Soil Science,1996,161:575-586.
    [210] Comis D. Glomalin: Hiding place for a third of the world’s stored soil carbon [J]. AustraliaFarm,2004,14:64-66.
    [211]李涛,赵之伟.丛枝菌根真菌产球囊霉素研究进展.生态学杂志,2005,24(9):1080-1084.
    [212] Stefano Bedini, Luciano Avio, Emanuele Argese, et al. Effects of long-term land use onarbuscular mycorrhizal fungi and glomalin-related soil protein. Agriculture, Ecosystems andEnvironment,2007,120:463-466.
    [213] Anne C. Preger, Matthias C. Rillig, Annika R. Johns, et al. Losses of glomalin-related soilprotein under prolonged arable cropping: A chronosequence study in sandy soils of the SouthAfrican Highveld. Soil Biology and Biochemistry,2007,39:445-453.
    [214] Jastrow, J D, Miller R M, Lussenhop J. Contributions of interacting biological mechanismsto soil aggregate stabilization in restored prairie. Soil Biology and Biochemistry,1998,30:905-916.
    [215] Miller R M, Jastrow J D. Mycorrhizal fungi influence soil structure [A]. In: Kapulnik Y, eds.Arbuscular Mycorrhizas: Physiology and Function [M]. Dordrecht: Kluwer Academic Press,2000,4-18.
    [216] Matthias C Rillig, Sara F Wright, Valerie T. Eviner. The role of arbuscular mycorrhizal fungiand glomalin in soil aggregation: comparing effects of five plant species. Plant and Soil,2002,238:325-333.
    [217] Kandeler E, Tscherko D, Spiegel H. Long-term monitoring of microbial biomass, Nmineralisation and enzyme activities of a Chernozem under different tillage management.Biology and Fertility of Soils,1999,28:343-351.
    [218] Salinas-García, J R, Velázquez-García J J, Gallardo-Valdez M, et al. Tillage effects onmicrobial biomass and nutrient distribution in soils under rain-fed corn production incentral-western Mexico. Soil&tillage research,2002,66:143-152.
    [219] Driver J D, Holben W E, Rillig M C. Characterization of glomalin as a hyphal wallcomponent of arbuscular mycorrhizal fungi [J]. Soil Biology and Biochemistry,2005,37:101-106.
    [220] van der Heijden M G A, Klironomos J N, Ursic M, et al. Mycorrhizal fungal diversitydetermines plant biodiversity, ecosystem variability and productivity [J]. Nature,1998,396:69-72.
    [221] Rillig M C, Wright S F, Nichols K A, et al. Large contribution of arbuscular mycorrhizalfungi to soil carbon pools in tropical forest soils [J]. Plant and Soil,2001,233:167-177.
    [222] Steinberg P D, Rillig M C. Differential decomposition of arbuscular mycorrhizal fungalhyphae and glomalin [J]. Soil Biology and Biochemistry,2003,35:191-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700