用户名: 密码: 验证码:
玉米丝黑穗病抗性种质创制与选择
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米丝黑穗病是由丝轴黑粉菌(Sporisorium reilianum)引起的严重威胁玉米产量的主要病害之一。作为我国玉米主产区之一的吉林省,该病也大面积发生,已经成为限制吉林省玉米单产和总产提高的制约因素。采用种子包衣等技术可以减少丝黑穗病的发病,但增加了玉米生产成本和环境压力。选育抗病品种是解决玉米丝黑穗病的经济有效途径,而研究玉米丝黑穗病发病条件并创制抗病育种材料是其重要前提。到目前为止,经我国几代农业科学工作者的努力,对玉米丝黑穗病症状、病原菌、侵染循环、侵染规律等都已研究得比较清楚。然而,对玉米抗丝黑穗病发病条件的关键制约因素研究的却很少,限制了对育种材料的有效鉴定和选择,更缺乏对抗丝黑穗病分子标记辅助育种的应用研究。
     对丝黑穗病抗病QTL的定位是开展分子标记辅助育种工作的前提和基础。吉林省农业科学院与中国农业大学合作,利用高抗丝黑穗病自交系吉1037与感病黄早四杂交和回交群体进行玉米丝黑穗病抗病基因的精细定位研究与作图。将抗病基因定位在第二染色体(bin2.09)和第五(bin5.03)染色体区段,发展SNP、CAPS、STS共6个标记,最终将主效QTL限定在分子标记STS6及STS8的170kb抗病区段qSHR1范围内,在此区间发展14个分子标记,每个标记平均物理距离只有lOkb,小于0.2cM遗传距离。
     为了提高抗丝黑穗病的选择效率和育种进程,大幅提高我省玉米抗病育种水平,本研究拟开展在明确玉米丝黑穗病发病条件的关键制约因素的基础上,探索人为控制发病条件,创新人工接种鉴定技术,特别是在海南的接种鉴定技术,为玉米抗丝黑穗病QTL定位研究提供了技术保障。同时,利用与中国农业大学合作研究开发的主效QTL分子标记,将分子标记辅助选择与常规育种相结合,采用杂交-回交-自交的方法,建立玉米抗丝黑穗病分子标记育种平台。主要试验结果如下:
     通过研究不同接种浓度对玉米抗病和感病品种丝黑穗病发病率的影响,我们认为当接种浓度≥0.1%时,侵染率达到最大值,发病率不会因为接种浓度(土壤中病菌浓度)的增加而升高。也就是说当土壤中丝黑穗病菌浓度达到一定数目时,侵染率即可达到最大值,发病率不会因为土壤中病菌浓度的增加而升高。方差分析表明,在≥0.1%接种浓度条件下,不同接种浓度对玉米丝黑穗病发病率的影响差异不显著,感病品种与抗病品种之间差异达到极显著水平。通过不同播期对玉米丝黑穗病发病率的影响研究,得知夏播也能够使玉米发病。通过对感病品种不同组织器官的DNA检测发现,茎髓组织的DNA要比叶片的DNA更精准可靠。据此明确了玉米丝黑穗病侵染率与发病率存在差异,且侵染率大于发病率,并通过对茎髓DNA进行特意引物的PCR分子检测而得到证实。
     通过水分胁迫处理接种5叶后玉米幼苗研究发现,水分胁迫处理比对照(正常降水)的发病率显著提高,发现并说明出苗后水分胁迫是诱发玉米丝黑穗病发生的主要限制因素之一。由此我们提出在异地通过模拟控制发病条件,不但在北方,而且在海南进行较为准确的丝黑穗病接种鉴定成为可能。海南接种鉴定技术的成功,为抗病性鉴定提供了一种新的有效方法,使得自交系和杂交种选育材料过程中的抗病鉴定由每年的一季变为两季,加速了玉米抗丝黑穗病育种的研究进程。
     本研究经过一代杂交、6代回交、2代自交的选择,成功选育了黄早四近等基因导入系,为QTL精确定位提供了基础材料。获得的27份黄早四近等基因导入系,无论从表型还是配合力,都已经非常接近黄早四,从而解决了育种和生产过程中黄早四不抗玉米丝黑穗病的难题。
     对吉林省玉米吉853、8902、JV022等10个骨干自交系与高抗自交系吉1037进行杂交,回交转育,对后代材料在人工接种抗病鉴定的基础上,利用与中国农业大学合作开发紧密连锁的抗病QTL区段内的分子标记进行抗丝黑穗病分子标记选择,经一代杂交,5代回交,2代自交获得了161份纯和抗病基因型自交系,99.38%达到中抗以上水平,其中高抗占77.02%,成功的将10个骨干自交系的抗性提高到抗以上水平,其中高抗自交系占40%。
     利用改良后的10个抗病骨干自交系,组配优良抗病杂交组合,效果显著。本文针对对吉单209和吉单517的改良做以概述。在不改变其它农艺性状的前提下,利用抗病8902改良系改良吉单209,改良后的吉单209抗病杂交组合超过配制组合的77%,84.6%的杂交组合产量增幅在10%以上,最高达到26.7%;利用抗病JV022改良系改良吉单517,改良后的吉单517抗病杂交组合达到80%,62.5%的杂交组合产量超过14%,最高达到23.4%。利用吉853改良系改良吉单209和吉单517,改良后的杂交种全部表现为抗性,81.8%的杂交组合增产超过10%,最高达到13.8%和19.9%;同时利用8902改良系和吉853改良系改良吉单209,改良后的吉单209抗病杂交组合超过配制组合80%,93.3%抗病杂交组合产量增长超过12%。利用10个抗病骨干自交系改良杂交种,无论是抗性还是产量,双亲都是抗病改良系的杂交种的效果明显优于单个亲本为抗病改良系的杂交种。因此即使在玉米丝黑穗病大发生年份,仍会使之表现为高抗、高产稳产。
Maize head smut is a serious threat to maize production of disease caused by the wire axis black powder bacteria (Sporisorium reilianum). Jilin province as one of the China's major maize-producing areas, Maize head smut also occurred widely, has become the constraints limit of the Jilin maize yield and total output increase. Such as seed coating technology can reduce the incidence of head smut, increasing maize production costs and environmental pressures. The breeding of resistant cultivars is the cost-effective way to solve the maize head smut disease. Therefore, it is necessary to understand head smut disease conditions and establish resistant breeding materials. So far, the efforts of several generations of agricultural scientists, maize head smut symptoms, pathogen infection cycles, and infection law, have studied more clearly. However, the key constraints of maize resistance to head smut disease conditions are rarely studied, and the effective identification and selection of breeding materials are limited, applied research of marker-assisted breeding against head smut is lacked.
     The QTL position in the Head smut disease resistance is to carry out the premise and basis of molecular marker-assisted breeding. Therefore, Jilin Academy of Agricultural Sciences made cooperation with China Agricultural University to study maize head smut resistance gene meticulous location research and mapping, high resistance to head smut inbred lines Ji1037and susceptible Huangzaosi backcross population were test materials. Resistance genes were mapped on the second chromosome (bin2.09) and fifth (bin5.03) chromosomal region, respectively. Using the new development of six markers, including SNP, CAPS, the STS, narrowed down the target region to170kb between molecular markers STS6and STS8. The total of14molecular markers were developed in this interval. The average physical distance of each tag is only10kb, which is less than0.2cM genetic distance.
     In order to improve the selection efficiency and breeding process of Head Smut resistance and enhance disease resistance breeding of corn in our province, this study is carried out to explore the onset condition which can be controlled and innovate the inoculation technique especially in Hainan on the basis of knowing the key constraints of incidence conditions for Head Smut. The result will Provide support for the Corn Head Smut Resistance QTL mapping. At the same time, using the main QTL molecular markers developed by us and China Agricultural University, Combining marker-assisted selection and conventional breeding, making use of the methods of hybrid-backcrossing then self-crossing, molecular marker breeding platform of corn Head Smut resistance will be build. The main results are as follows:
     Based on the study of influence of the different inoculated concentration between maize resistance and susceptible to head smut incidence, when the inoculated concentration reached to0.1%, the infection rate could reach the maximum, and the incidence rate was not increased because of the increase in inoculation concentration (fungus concentration in the soil). That is to say that when the head smut fungus in the soil concentration reached a certain number, the infection rate could reach the maximum immediately, and the incidence rate was not increased because of the increase in fungus concentration in the soil. According to ANOVA analysis it showed significant differences between resistant varieties and susceptible varieties, and there was no differences to the inoculated concentration the head smut incidence. Based on the study of influence of the different planting date effected the incidence rate, that Summer planting can also make maize disease. However, the accuracy of stem pith'DNA was much higher than that of leaf DNA based on the DNA testing on the susceptible variety of different tissues and organs, which means that maize head smut pathogen infection plant organs was selectable. Analysis of maize head smut infection rate and disease incidence rate was different, using specific PCR molecular markers was confirmed.
     Comparison of the incidence rate between the control (normal precipitation) and water stress condition after the5th leaf emergence showed that incidence rate on water stress condition much higher that the control, suggesting that water stress after seeding is one of the major limiting factors in induced maize head smut. Though, we suggested that made possible a more accurate head smut inoculation in Hainan, with simulating control of disease conditions in different places, not only in the north but also in Hainan. Then the success of the inoculated identified in Hainan, provides a new effective method for resistance identification. The inbred lines and hybrid breeding materials in the process of disease resistance identified by the annual quarter into two quarters accelerated the maize resistant to head smut process of breeding.
     This study used of the technology of the hybridization one generation, backcrossing six generation, and self-crossing two generation made a successful switch to education for the Huangzaosi resistance to head smut, and provide the basic materials for the precise positioning of the QTL. After five years, nine generations of selection, we obtained27near-isogenic lines (NILs), from the phenotypic or combining ability, have been very close to Huangzaosi, which resolved the problem of resistant to maize head smut for Huangzaosi in the breeding and production process.
     Making use of the cooperation with the China Agricultural University to develop molecular markers tightly linked to disease resistance QTL, and the use of marker-assisted breeding and hybridization-backcross-self-crossing techniques, in Jilin Province,10inbred lines (Ji853, Ji8902, JV022and so on) were crossed to resistant inbred lines Ji1037by backcrossing and self-crossing, investigating phenotype of offspring material using the artificial inoculation, After hybridization one generation, backcrossing six generation, and self-crossing two generation,We obtained the161pure and disease resistant inbred lines,99.38%has reached middle resistant level, high level occupied77.02%, resulting10convert inbred lines resistance were more than R, and HR was40%.
     Employing the convert lines, we created elite disease resistant cross combination which showed excellent disease resistance. Here, we described the improvement process for Jidan209and Jidan517. Without the change of the premise of the other agronomic traits, utilize of resistant line8902convert Jidan209, more than77%of convert hybrid combinations showed disease resistant,84.6%hybrid combinations increased yield more than10%up to26.7%; Utilize of resistant line JV022convert Jidan517, more than80%of improved hybrid combinations showed disease resistant,62.5%hybrid combinations increased yield more than14%up to23.4%. Utilize of improved line of Ji853improve Jidan209and Jidan517, all convert hybrid combinations showed disease resistant,81.8%hybrid combinations increased yield more than10%up to13.8%and19.9%; Utilize of convert line of Ji853and8902convert Jidan209, more than80%convert hybrid combinations showed disease resistant,93.3%hybrid combinations increased yield more than12%. Using convert10elite disease resistant lines of the effect of hybrids in resistance and yield, parents both resistance was better than single parent. Therefore, these hybrids will remain high resistance and stable yield even if maize head smut occurred widely.
引文
[1]高洁.特用玉米抗丝黑穗病遗传分析及其病菌致病性的遗传多样性:[博士学位论文].吉林长春:吉林农业大学,2005.
    [2]Halisky PM. Smektzer DC.disease of corn, sorghum and sudangrass head smut established in California. California agriculture,1961,1:10-12.
    [3]Potter AA.Head smut of sorghum and maize.J Agr Res,1914,2:339-368.
    [4]Njuguna JGM, Njoroge PG, Jama AN.Epidemiology and maize crop resistance to head smut disease with reference to small-scale maize-dairy farmers inCentral Kenya.The BCPC International Congress:Crop Science and Technology,2003,999-1004,9 ref.
    [5]Dutzmann S,Duben J. Maiskopbr and zukiienftig auch in Deutschl and von Bedeutung. Mais,1993,21: 140-142.
    [6]Gindrat, D.Revue. Head smut of maize in Switzerland.Suissed'Agriculture,1997,29(4):199-200.
    [7]Pacheco, AC. Dittrich RC.Resistance of commercial maize hybrids to head smut. Agropecuaria Catarinense,1999,12(2):44-45.
    [8]白金凯,宋佐衡,陈捷.玉米病害的病菌变异与抗病品种选育.玉米科学,1994,2(1):67-72.
    [9]晋齐鸣,李建平,张秀文.松辽平原玉米主要病虫害综合治理体系的研究.玉米科学,2000,8(2):84-88.
    [10]晋齐鸣,王晓鸣,王作英等.东北春玉米区玉米丝黑穗病大发生原因及对策.玉米科学,2003,11(1):86-87.
    [11]高树仁.玉米抗丝黑穗病遗传分析及数量性状基因定位:[博士学位论文].吉林长春:吉林大学,2005.
    [12]刘纪麟,徐尚众,熊秀珠等.玉米育种学.中国农业出版社,2000.
    [13]马秉元,李亚玲.玉米丝黑穗病早期特异症状.植物保护,1982,3:11.
    [14]Carole Martinez, Marc Bu'ee, Alain Jauneau, Guillaume B'ecard, Robert Dargent, Carson,M.L et al. Recurrent selection for grain yield in a disease stress environment Maydica.1993,38(3):193-199.
    [15]刘惕若,薛国兴.玉米品种对丝黑穗病的抗病性和幼苗诊断的研究.植物保护学报,1983,10(4):274-275.
    [16]刘聪莉.鉴定玉米对丝黑穗病抗性的简易方法.莱阳农学院学报,1997,14(4):259-260.
    [17]Xu M L. Species-Specific Detection of Maize Pathogens Sporisorium reiliana and Ustilago maydis by Dot Blot Hybridiation and PCR-Based Assays. Plant Disease,1999,83(4).
    [18]倪深.玉米抗丝黑穗病相关基因的筛选及抗病机理初探:[硕士学位论文].湖北省:华中农业大学,2006.
    [19]Jairo A. Osorio. Development of an Infection Assay for Sporisorium reilianum, the Head Smut Pathogen on Sorghum. Plant Disease,1998,82(11):1232-1236.
    [20]Halisky PM. Head smut of sorghum sudangrass, and corn caused by SPhaeelotheca reiliana Clint.Hilgardia.1963,34:287-304.
    [21]AI-Slhaily IA, Mankin CJ, Semeniuk G Physiologies Peeialization of SPhacelotheca reiliana to sorghum and corn. Phytopathology,1963,53:723-726.
    [22]白金恺,潘顺法,戚佩坤.高粱玉米丝黑穗菌交互接种试验.植物保护学报,1964,3(3):216.
    [23]吴新兰,庞志超,田立民等.高粱丝黑穗菌的生理分化.植物病理学报,1982,12(1):13-18.
    [24]华致莆,白宝璋,赵晓军.玉米丝黑穗病生理分化的研究.吉林农业大学学报,1995,1732-37.
    [25]贺字典,陈捷,高增贵等.玉米丝黑穗病菌生理分化研究.植物保护学报,2006,22(7):428-430.
    [26]郭林.中国黑粉菌的分类研究.第二届日中国际真菌会议学会议论文摘要汇编.北京:中国微生物学真菌学委员会,1992.
    [27]吴新兰.玉米丝黑穗病菌生物学特性的研究.吉林农业科学,1981,4:54-57.
    [28]贾菊生,张前.玉米丝黑穗病菌冬抱子萌发的条件研究.植物保护学报,1990,17(2):109-112.
    [29]Simpson W R. Head smut of corn in Idaho.Plant Disease Reporter,1966,50(4):215-217.
    [30]李兴红,康绍兰,李金云等.玉米丝黑穗病菌冬孢子生物学特性的研究Ⅱ.河北农业大学学报,1995,18(1):57-61,
    [31]康绍兰,李兴红,乔秀娟等.玉米丝黑穗病菌冬孢子生物学特性的研究Ⅰ.河北农业大学学报,1994,17(3):78-84.
    [32]张满良主编.农业植物病理学.世界图书出版公司:1997.
    [33]房德纯.铁岭地区玉米病害调查.铁岭农学院学报,1977,1:46-48.
    [34]张志德.玉米丝黑穗病菌侵染的研究.植物病理学报,1982,12(2):33-40.
    [35]孙艳梅,李莉,陈殿元等.吉林玉米有害生物原色图谱.吉林科学技术出版社:2007.9.
    [36赵羹梅,王淑芳,刘聪莉.玉米丝黑穗病原菌侵染的一些细胞学研究.植物病理学报,1991,21:267-270.
    [37]华南农业大学,河北农业大学主编.植物病理学.中国农业出版社:1985,第二版.157-160.
    [38]王晓鸣,戴法超.玉米病虫害田间手册.中国农业科技出版社:2002.
    [39]袁邦前.玉米丝黑穗病的发生与防治.云南农业,2002,2:16.
    [40]赵晋锋,宋殿珍,张文忠等.玉米丝黑穗病的发生与防治及对抗病育种的一些探讨.山西农业科学,2002,30(2):60-62.
    [41]石红良.玉米丝黑穗病的抗性QTL分析.[硕士学位论文].北京:中国农业科学院,2004.
    [42]Matyac C A. Histological development of phacelotheca reiliana on Zea mays. Phytopathology,1985, 75:924-929.
    [43]Martinez C, Roux C. Dargent R. Biotrophic Development of Sporisorium reilianum f. sp. Zeae in Vegetative Shoot Apex of Maize. Biochemistry and Cell Biology,1999,89(3),247-253.
    [44]王金华,王铨茂.玉米丁布对玉米丝黑穗病菌抗性关系的研究.植物保护学报, 1989,16(3):187-191.
    [45]李兴红,康绍兰等.玉米苗期对丝黑穗病抗性机制初探.河北农业大学学报,1995,18(4):3944.
    [46]杨家书.小麦品种对白粉病抗病性与过氧化物酶的关系.植物病理学报,1984,4:235-239.
    [47]李靖,利容千,袁文静.黄瓜感染霜酶病菌叶片中一些酶活性的变化.植物病理学报,1991,21(4):277-282.
    [48]Heitefuss R, Williams PH植物病理生理学(朱有缸等译).(北京)农业出版社,1991.
    [49]Grisenko G V, Kuz'minskaia T P. Resistance of low-lignin forms to head smut. Kukuruza,1981, (5):29.
    [50]赵羹梅,张鹏宴,蒋小满.过氧化物酶活性与玉米自交系对丝黑穗病抗性的关系.植物病理学报,1996,26(1):37-39.
    [51]倪深,肖炎农,王凤格等.基于PCR技术的玉米丝轴黑粉菌侵染率及扩展进程的研究.中国农业科学,2006,39(9):1804-1809.
    [52]Manninger I. Breeding maize for resistance to common smut and head smut and to stalk and ear rots. Agrartudomanyi Kozlemenyek,1978,37.2/3,175-177.
    [53]Stromberg EL,Stienstra WC,Kommedahl T,et al.Smut expression and resistance of corn to Sphacelotheca reiliana in Minnesota.Plant disease,1984,68(10):880-883.
    [54]Ali A.Inheritance of resistance to head smut disease in maize(Zea mays L.)Dissertation Abstracts International,B(Sciences and Engineering),1985,45:3714-3715.
    [55]Akhtar Ali and Baggett JR. Inheritance of resistance to head smut disease in corn. Amer.Soc.Hort.Sci.1990,115(4):668-672.
    [56]Bernardo R,Bourrier M,Olivier JL.Generation means analysis of resistance to head smut in maize. Agronomie, 1992,12:303-306.
    [57]岳德荣主编.胡吉成文集.吉林科学技术出版社:2006年11月.93.
    [58]梅振邦,徐国英,河成等.玉米对丝黑穗病的抗性遗传规律.山西农业科学,1982,11:10-13.
    [59]马秉元,李亚玲,段双科.玉米对丝黑穗病的抗性与遗传初步研究.中国农业科学,1983,4:12-171.
    [60]段永钊,李兴鑫,艾方珍,等.陕西省玉米丝黑穗病抗源筛选与鉴定.西北农业学报,1992,1(4):83-86.
    [61]孔红良,姜艳喜,王振华,李新海,李明顺,张世煌.玉米抗丝黑穗病QTL分析.作物学报,2005,31(11):1449-1454.
    [62]王振华,鄂文弟,张林,杨传平.Mo17抗玉米丝黑穗病的基因效应分析.中国农学通报,2006,22(2):323-326.
    [63]Oh-BJ, Gowda-PSB, Xu-GW, Frederiksen-RA,Magill-CW Tagging Acremonium wilt., downy mildew and head smut resistance genes in sorghum using RFLP and RAPDmarkers. Sorghum-Newsletter.1993,34.
    [64]Lubberstedt T, Tan G, Liu X, Melchinger A E, Xia X C. QTL mapping of resistance to Sporisorium reiliana in maize. Theor Appl Genet,1999,99 (34):5973-5981.
    [65]Lu XW, Brewbaker JL. Molecular mapping of QTLs conferring resistance to Sphacelotheca reiliana (Kuhn) Clint. Maize Genetics Cooperation Newsletter (MNL).1999,73:36.
    [66]Brewbaker JL,Lu XW.Molecular mapping of QTLs conferring resistance to Sphacelotheca reiliana(Kuhn)Clint.Maize Genetics Cooperation Newsletter (MNL),1999,73:36.
    [67]石红良.玉米丝黑穗病分子标记开发与主效抗病基因定位.[博士学位论文].四川省:四川农业大学,2009.6.
    [68]Li XH, Gao SR Shi HL, et al. Analysis of QTL for resistance to head smut(SPorisorium reiliana) in maize. Field Crops Research,2008,106(2):148-155.
    [69]李建生.玉米分子育种研究进展.中国农业科技导报,2007,9(2):10-13.
    [70]Moose S P, Mumm R H. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol,2008,147:969-977.
    [71]Ribaut J M, de Vicente M C, Delannay X. Molecular breeding in developing countries:challenges and perspectives. Curr Opin Plant Biol,2010,13:213-218.
    [72]Rothstein S J. Returning to our roots:making plant biology research relevant to future challenges in agriculture. Plant Cell,2007,19:2695-2699.
    [73]黎裕,王健康,邱丽娟等.中国作物分子育种现状与发展前景.作物学报,2010,36(9):1425-1430.
    [74]Wei X Jin,Liu L L,Xu J F,Jiang L,Zhang W W,Wang J K,Zhai H Q,Wan J M.Breeding strategies for optimum headingdate using genotypic information in rice.Mol Breed,2009,25:287-298.
    [75]Wang C L,Zhang Y D,Zhu Z,Chen T,Zhao L,Lin J,Zhou L H.Development of a new japonica rice variety Nanjing 46 withgood eating quality by marker assisted selection.Mol PlantBreed,2009,7:1070-1076.
    [76]方宣钧,吴为人,唐纪良.DNA标记在作物育种中的应用.(北京)科学出版社:2002.
    [77]王曦,许尚忠,周忠孝.标记辅助选择及其研究进展.四川畜牧兽医,2002,137(29):57-59.
    [78]张丽.重要水稻育种亲本在两个抗纹枯病数量基因座位(QTL)的基因型鉴定:[硕士学位论文].江苏:扬州大学,2007.5.
    [79]谭彩霞.水稻抗纹枯病近等基因系的构建:[硕士学位论文].江苏:扬州大学,2004.
    [80]Ling Z, Mew TV, Wang J, and Lei C. Development of near-isogeneic lines as international differential of the blast Pathogen. Internatl Rice ResNewsl,1995,20:13-24.
    [81]Huang N, Angeles ER, Doming J, et al. Pyramiding of baeterial blight resistance genes in riee: marker-assisted seleetionusing RFLP and PCR. Theor APP1 Genet,1997,95:313-320.
    [82]Fan C C, Xiong Y Z, Mao T T.GS3, a major QTL for graiulength and weight and minor QTL for grain width and thielnessin rice, encodes a Putative trans-membrane protein. Theor. Appl. Genet,2006,(112):1164-1171.
    [83]Yong N D. Aeautiously optimistic vision for marker-assisted breeding. Molecular Breeding, 1999:505-510.
    [84]Satoko Kanematsu, Yoshihiko Adachi, Tsutaelto. Mating-type Loci of heterothallic Diaporthe spp: homologous genes are present in opposite mating-types. Current Genetics,2007,52(1):11-22.
    [85]李宏,邱芬奇,李友莲.植物数量性状基因座(QTL)的作图与克隆.科技情报开发与经济,2008,2:145-3.
    [86]H.S.查夫拉编著.许亦农,麻密主译.植物生物技术导论.北京化学工业出版社:2005,原著第二版.
    [87]朱玉贤,李毅.现代分子生物学.北京高等教育出版社:2002,第二版.
    [88]刘树兵,王洪刚.植物的微卫星标记及其应用.山东农业大学学报(自然科学版),2002,33(1):112-116.
    [89]孙洪,程静等ISSR标记技术及其在作物遗传育种中的应用.分子植物育种,2005,3(1):123-127.
    [90]杜春芳,刘惠民,李润植等.单核昔酸多态性在作物遗传及改良中的应用.遗传,2003,25(6):735-739.
    [91]蔡之军.一个水稻核不育基因ms的遗传分析及定位.[硕十学位论文].福建农林大学,2005.
    [92]李海渤.分子标记及其在作物育种上的应用.韶关学院学报(自然科学版),2002,23(12):100-106.
    [93]马克世,胡炳义.分子标记的发展及应用.周口师范学院学报,2006,23(2):81-84.
    [94]李明莹,裴忠有等.分子标记技术及其在作物遗传育种研究上的应用.沈阳农业大学学报,2001,32(2):150-154.
    [95]刘立峰.水、旱稻抗旱相关性状QTL的分子标记辅助选择研究.[博十学位论文].北京:中国农业大学,2005.6.
    [96]张素梅,蒋玉宝,刘保中.分子标记技术在玉米基因定位上的研究进展.生物技术,2006,16(6):80-83.
    [97]徐云碧,朱立煌.分子数量遗传学.中国农业出版社,1994.
    [98]徐吉臣,朱立煌,陈英等.用双单倍体群体构建水稻的分子连锁图.遗传学报,1994,21(3):205-214.
    [99]Paterson A H, DeVerna J W, Lanini B, et al. Fine mapping of quantitative trait loci using seleeted over lapping recombinant chromosaomes, in an interspecies cross of tomato[J].Geneties,1990,124:735-742.
    [100]Eshed Y,Abu A M,Saranga Y,et al. Lycopersicon escμLentum lines containing small overlapping introgressions from L.pennellii.Theoretical and Applied Genetics,1992,83:1027-1034.
    [101]Alpert K B,Tanksley S D.High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw:2.2:a major fruit weight quantitative trait locus in tomato P.N.A.S (USA),1996,93:15503-15507.
    [102]常汝镇.大豆等位基因系的研究和利用.大豆科学,1991,10(1):64-68.
    [103]段红梅.利用大豆SSR标记辅助遗传背景选择的效果分析.[硕士学位论文].北京:中国农业科学院作物品种资源研究所,2002.
    [104]朱友林,刘纪麟.玉米抗大斑病菌基因及其遗传背景与过氧化物酶同工酶关系的研究.中国农业科学,1996(3):27-32
    [105]程品冰,王晓鸣,高巨东.玉米抗大斑病基因Ht 2、Ht3分子标记的应用检测.植物遗传资源学报,2007,8(3):285-288.
    [106]吕香玲,李新海,郝转芳.基于近等基因导入系发掘玉米抗甘蔗花叶病毒主效基因.玉米科学,2007,15(3):9-24.
    [107]田清震,李新海,李明顺等.优质蛋白玉米的分子标记辅助选择.玉米科学,2004(2):108-110.
    [108]Bergman CJ, Fjellstrom RG. Meelung AM Assoeiation between amylase content and a mieros atellite marker across exotic riee germplasm.Rice Genetics Symposium,2000, (4):22-27.
    [109]刘巧泉,蔡秀玲,李钱峰等.分子标记辅助选择改良特性及其杂交稻米的蒸煮与食味品质.作物学报,2006,32(1):64-69.
    [110]李浩杰,李平,高方远,陆贤军,任光俊.ssR标记辅助改良冈46B直链淀粉含量的研究.作物学报,2004,30(11):1159-1163.
    [111]He P, Li SG Qian Q. Genetic anlysis of rice grain quality. Theor APP1 Genet.1999,98:502-508.
    [112]包劲松,何平,李仕贵.异地比较定位控制稻米蒸煮食用品质的数量性状基因.中国农业科学,2000,33(5):8-13.
    [113]Laneeras JC, Huang ZL, Naivikul O. MaPPing of genes for cooking and eating qualities in Thai jasmine riee(KDML105).DNA Research,2000,28:93-101.
    [114]黄祖六,潭学林,Tragnomrung S稻米直链淀粉含量基因座位的分子标记定位.作物学报,2000,26(6):777-782.
    [115]Stuber CW, Sisco PH, Marker-facilitated transfer of QTL alleles between elite inbred lines and responses in hybred.Proc.46th Annual Corn and Sorghum Industry Research Conf,American Seed Trade Assoc.,1991.41:70-83.
    [116]Stuber CW,Mapping and manipulating quantitative traits in maize.Trends Genet,1995,1:477-481.
    [117]Austin D F,Lee M. Detection of quantitative trait loci for grain yield andyield components in maize across generations in stress and nonstress environ-ments[J].Crop Sci,1998,38(5):1296-1308.
    [118]Duvick D.N. In:Coors CJ, Pandey S, eds. Genetics and exploitation of hetorosis in crops.Madison, WI, USA:CSSA,ASA.1999.
    [119]李新海,傅俊骅,张世煌等.利用SSR标记研究玉米自交系的遗传变异.中国农业科学,2000,33(2):1-9.
    [120]严建兵,汤华,黄益勤等.玉米产量及构成因子主效和上位性QTL的全基因组扫描分析.科学通报,2006,51(12):1413-1421.
    [121]路明,周芳,谢传晓等.玉米穗长上位效应和Q×E互作效应分析.作物杂志,2007,(4):30-32.
    [122]邓启云,袁隆平,梁凤山,李继明,李新奇,王乐光,王斌.野生稻高产基因及其分子标记辅助育种研究.杂交水稻,2004,19(1):6-10.
    [123]杨益善,邓启云,陈立云,邓化冰,庄文,熊跃东.野生稻高产QTL的分子标记辅助育种进展.杂交水 稻,2005,20(5):1-5.
    [124]Castleberry R.M., Crum C.W., Krull C.F.. Genetic improvements of US maize cultivars undervarying fertility and climatic environments. Crop Science 1984,24:33-36.
    [125]Duvick D.N, Edmeades GO, Banziger M,et.al. Developing drought and low N-tolerant maize. E1 Batan, Mexico; CIMMYT,1997,p:332-335.
    [126]Tollenaar M, Wu J. Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Science,1999,39:1597-1604.
    [127]Modarres A.M., Hamilton R.I., Dijak M., Dwyer L.M., Stewart D.W., Mather D.E., Smith D.L. Plant population density effects on maize inbred lines grown in short-season environments.Crop Science, 1998,38:104-108.
    [128]Andrade F.H., Vega C., Uhart S., Cirilo A., Cantarero M., Valentinuz O. Kernel number determination in maize. Crop Science 1999,39:453-459.
    [129]SanchezAC, BrarDS, Huang N et al. Sequence tagged site marker-assisted selection for three bacterial resistance genes in rice. Crop Sci,2000,40:792-797.
    [130]张增艳,张增艳,陈孝,张超,辛志勇,陈新民.分子标记选择小麦抗白粉病基因Pm4b、Pm13和Pm21聚合体.中国农业科学,2002,35(7):789-793.
    [131]王心宇,陈佩度,张守忠.小麦白粉病抗性基因的聚合及其分子标记辅助选择.遗传学报,2001.28:640-646.
    [132]Walker D, Boerma HR, All J, et al. Combining cry1 Ac with QTL alleles from P1229358 to improve soybean resistance to lepidopteran pests. Molecular Breeding,2002,9:43-51.
    [133]陈红旗,陈宗祥,倪深,左示敏,潘学彪,朱旭东.利用分子标记技术聚合3个稻瘟病基因改良金23B的稻瘟病抗性.中国水稻科学,2008,22(1):23-27.
    [134]YoshimuraS, YoshimuraA, IwataN et al. Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers. Mol Breed,1995,1:375-387.
    [135]徐建龙,林贻滋,翁锦屏,赵新立.水稻白叶枯病抗性基因的聚合及其遗传效应.作物学报,1996,22(2):129-134.
    [136]潘海军,王春连,赵开军,等水稻抗白叶枯病基因Xa23的PCR分子标记定位及辅助选择.作物学报,2003,29(4):501-507.
    [137]薛庆中,张能义,熊兆飞,李羽中,朱立煌.应用分子标记辅助选择培育抗白叶枯病水稻恢复系.浙江农业大学学报,1998,24(6):631-638
    [138]Singh S, Sidhu JS, Huang N et al. Pyramiding three bacterial blight resistance genes (Xa-5,Xa-13,Xa-21)using marke-assisted selection into indica rice cultivar PRIO6.Theor Appl. Genet, 2001,102:1011-1015
    [139]罗彦长,王守海,李成荃等.应用分子标记辅助选择培育抗稻白叶枯病光敏核不育系3418S.作物学 报,2003,29(3):402-407.
    [140]Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theoretical and Applied Genetics,2000,100: 1121-1128.
    [141]陈志伟,官华忠,吴为人等.稻瘟病抗性基因Pi-1连锁SSR标记的筛选和应用.福建农林大学学报(自然科学版),2005,34(1):74-77.
    [142]Narqyanan NN, Baisakh N, Cruz CMV et al. Molecular breeding for the development of blast and bacterial blight resistance in rice.IR50.Crop Sci,2002,42:2072-2079.
    [143]柳李旺,朱协飞,郭旺珍,张天真分子标记辅助选择聚合棉花Rf1育性恢复基因和抗虫Bt基因.分子植物育种,2003,1:48-52.
    [144]何光明,孙传清,付永彩,付强,王象坤,赵开军,王春连,章琦,凌忠专.水稻抗衰老IPT基因与抗白叶枯病基因Xa23的聚合研究.遗传学报,2004,31(8):836-841.
    [145]杨子贤,姜恭好,徐才国,何予卿.利用分子标记辅助选择改良93-11对叶枯病和螟虫抗性.分子植物育种,2004,2(4):473-480.
    [146]尹长斌,徐兴伟,吕文彦.标记辅助选择在作物育种中的应用.现代农业科学,2008,15(5):1-2.
    [147]Ming R, Brewbaker JL, Pratt RC, Musket TA, McMullen MD. Molecular mapping of a major gene conferring resistance to maize mosaic virus. Theor Appl Genet,1997,95:271-275.
    [148]杨华.利用phill6和umcl044标记选育抗纹枯病玉米品系.分子植物育种,2007,5(3):347-352.
    [149]杜彦修.两个抗玉米矮花叶病基因的精细定位和作用方式的研究.[硕士学位论文].郑州:河南农业大学,2004.
    [150]李常保,宋建成,姜丽君.玉米抗粗缩病病毒(MRDV)基因的RAPD标记及其辅助选择效果研究.作物学报,2002,28(4):564-568.
    [151]Bentolila S, Guitton C, Boucet N, et al. Identification of and RFLP marker tightly linked to the Ht1gene in maize.Theor Genet.1991,82:393-398.
    [152]Li L J, Song Y C, Yan H M, et al.The Physical location of the gene htl(Helmintho sporium trucicum resestanee) in maize(Zea mays L.).Hereditas,1998,129:101-106.
    [153]David Zaitlin, Sandra J. Linkage of a second gene for NCLB resistance to molecular markers in maize. Maize Genetic Cooperator Newsletter,1992,66:69-70.
    [154]Welz H G, Geiger H H. Genes for resistance to northern corn leaf blight in disease maize populations. Plant Breeding,2000,119:1-14.
    [155]黄烈键,向道权,杨俊品等.玉米RFLP连锁图谱构建及大斑病QTL定位.遗传学报,2002,29(12):1100-1104.
    [156]陈翠霞,邢全华,梁春阳等.南方玉米锈病抗病基因的定位及不同遗传背景对基因标记的比较分析.遗传学报,2003,30(4):341-344.
    [157]刘章雄,王守才,戴景瑞等.玉米P25自交系抗锈病基因的遗传分析及SSR分子标记定位.遗传学报,2003,30(8):706-710.
    [158]黎裕,戴法超,景蕊莲等.玉米弯孢菌叶斑病抗性的QTL分析.中国农业科学,2002,35(10):1221-1227.
    [159]韩继超.两套玉米抗病近等基因系的分子标记辅助选择.[硕士学位论文].武汉:华中农业大学,2009.
    [160]任纬,张长春,严康等.我国玉米种质资源创新的探讨玉米科学,2010,18(5):39-41
    [161]郭庆法,王庆成,汪黎明.中国玉米栽培学.上海:上海科学技术出版社,2004
    [162]王绍平,刘文国.浅谈提高吉林省玉米育种效率的几种技术途径.作物杂志,2007(1):1-3.
    [163]Xu, M. L. et al. Species-Specific Detection of the Maize Pathogens Sporisorium reilianaand Ustilago maydis by Dot Blot Hybridization and PCR-Based Assays. Plant Disease, Vol.83, No.4,1999,390-395.
    [164]曹十亮.玉米抗丝黑穗病遗传育种研究进展.黑龙江农业科学,2009(6):157-159.
    [165]Xian-rong Zhao, Guoqing Tan, Yuexian Xing et al. Marker-assisted introgression of qHSRl to improve maize resistance to head smut.Molecular Breeding DOI 10.1007/s11032-011-9694-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700