用户名: 密码: 验证码:
安徽庐枞盆地大矾山明矾石矿床地质特征及成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
庐枞盆地为长江中下游坳陷带中的中生代继承式陆相火山岩盆地,地处扬子板块北缘,呈NE向紧邻郯庐断裂展布。该区既有丰富的金属矿产资源,又有丰富的非金属矿产。庐枞盆地明矾石资源储量居全国第二,是我国明矾石成矿的一级远景区。大矾山明矾石矿床是该区最大的明矾石矿床,明矾石矿产品除明矾外,其综合利用前景广阔。
     本论文选择大矾山明矾石矿床作为主要研究对象,通过岩相学研究、流体包裹体显微测温分析、矿物电子探针分析、形态学研究、同位素测年,结合野外地质特征,对明矾石矿床的地球化学特征、物理化学条件、明矾石的成矿过程及形成模式进行了讨论。得出的主要结论如下:
     大矾山明矾石矿床的成矿时代介于砖桥旋回和双庙旋回之间;成矿作用有两种类型,产生两种不同类型的明矾石矿石,明矾石-黄铁矿矿石产于岩浆热液环境中,明矾石-高岭石矿石产于蒸汽-加热环境。
     明矾石矿物中包裹体均一温度为260-290℃;盐度为3.6%;压力为36.4×10~5~53.7×10~5Pa;为酸性、氧化的环境中形成的。
     成矿元素Al、K主要来自于火山岩地层。由于强烈的酸性硫酸盐蚀变,围岩中的钾长石和火山玻璃被改造,释放出成矿元素,促进了明矾石的形成。同位素分析表明矿床中的硫来自于火山作用后期的岩浆热液。
     成矿流体早期以岩浆热液为主,形成深部含黄铁矿明矾石矿体;晚期热液中有大气水的加入,形成浅部明矾石-高岭石矿体。流体向酸性减弱的方向演化。
     矿床具有明显的蚀变分带特征,核部为硅化带,向外依次为硅化-明矾石化带、高岭土化带、绢云母-绿泥石化带。蚀变分带是由于酸性热液在火山作用过程中酸度逐渐降低形成的。
     基于以上的结论,并与典型的高硫型浅成低温热液矿床对比,大矾山矿床应属高硫型岩浆热液交代矿床。大矾山明矾石矿床的形成标志庐枞盆地高硫型低温热液成矿流体系统的存在,对本区热液成矿作用及低温热液多金属矿床的进一步找寻提供了重要标志,也意味着在大矾山矿区的深部可能存在隐伏岩体,扩大了研究区热液成矿系统找寻的思路。
The luzong Mesozoic volcanic basin is located in the Lower Yangtze fault Belt, the north margin of the Yangtze Block,it extends from nearby the east of the Tan-Lu fault zone to east.There are abundant of metal-rich mineral and non-metallic mineral resources in it.The reserves of alunite in Luzong Basin ranks the second in China,Luzong Basin is also the key propecting area for alunite resource in China.Dafanshan alunite deposit is the largest alunite deposit in this area.
     This paper takes Dafanshan alunite deposit as the main research objiect, discusses the Geochemical Characteristics,the physicochemical conditions,the Ore-forming Process and formation Process of alunite in Dafanshan deposit according to the study of petrographical,micro-thermal analysis of fluid inclusion, electon probe analysis of mineral,SEM studies on alunite samples,isotopic dating, and geologic features.The following conclusions are reached.
     Dafanshan alunite deposit was formed during the deposition of the Zhuanqiao formation and the Shuangmiao formation.The mineralization can be divided into two styles.One is the alunite-pyrite ore,which is formed in magmatic hydrothermal environment.The other is alunite-kaolinite style formed in steam-heated environment.
     The homogenous temperature of fluid inclusions for the first mineralization stage ranged from 260 to 290℃,with salinity 3.6%NaCl equivalent and ore-forming presssure from 36.4×10~5~-53.7×10~5Pa.Alunite was formed in an acidic and oxidation environment.
     Al and K in the deposit were from the volcanic formations.Due to strong acid sulfate alteration,K-feldspar and volcanic glass in the host rock were altered and K and Al were released,faciliating the formation of alunite.Sulfur isotope analysis reveals that the Sulfur in the deposits has a magmatic origin.
     The early ore-forming fluid was mainly of magmatic hydrothermal,from which deposited the alunite-pyrite ore body.The later magmatic hydrothermal fluid mixed with meteoritic water and formed the alunite-kaolinite ore body.The acidity of hydrothermal solution decreased from the upper to lower position in the ore body.
     The deposits exhibits alteration zoning,from an inner silicified to an outer silica-alunite,kaolinite,smectite-chlorite zones.They were formed as a result of the acid hydrothermal gradually reduced during the hydrothermal evolution.
     Based on the above characters,as well as compareing with typical high sufidation epithermal hydrothermal deposits in the world,the Dafanshan alunite ore deposit was regarded as a high sulfidation magmatic hydrothermal replacement deposit.The formation of the Da fanshan alunite deposit indicates that there existed a high sulfidation epithermal hydrothermal metallogenic system in Luzong basin in late Mesozoic,this discovery provides an important indication for the Cu-Au hydrothermal ore-forming mineralization and epithermal hydrothermal polymetallic deposits in this area.We also deduced that a bured pluton may be under the Dafanshan mining area.This expands the idea of exploring deposits formed in porphyry mineralization in the study area.
引文
[1] Alpers, C.N., and Brimful, G.H.. Middle Miocene climatic change in the Atacama Desert, northern Chile: Evidence from supergene mineralization at La Escondida.Geological Society of America Bulletin, 1988, v. 100: 1640-1656.
    [2] Alpers, C.N., Rye, R.O., Nordstrom, D.K., White, D.L., and King, B.S. Chemical,crystallographic, and isotopic properties of alunite and jarosite from acid hypersaline.Australian lakes: Chem. Geology, 1992, v. 96.
    [3] Aoki, M.. Mineralogical features and genesis of alunite solid solution in high temperature magmatic-hydrothermal systems. Journal of the Geological Survey of Japan, 1991,v. 277: 31-32.
    [4] Aoki, M., Comsti, E.C., Lazo, F.B., and Matsuhisa, Y. Advanced argillic alteration and geochemistry of alunite in an evolving hydrothermal system at Baguio, northern Luzon Phillipines. Resource Geology, 1993, v. 43: 155-164.
    [5] Arehart GB., and O' Neil J.R., 1993. D/H ratios of supergene alunite as an indicator of paleoclimate in continental settings: Climate change in continental isotope records. Geophysics Monographs, 1993. v. 78, 277-284.
    [6] Arndt N.T. and Christensen U. The role of lithospheric mantle in continental flood volcanism: Thermal and geochemical constraints, 1992, v. 97: 10967- 10981.
    [7] Arribas, A., Jr., Cunningham, C.G, Rytuba, J.J., Rye, R.O., Kelly, W.C., McKee, E.H.,Podwysocky, M.H., and Tosdal, R.M. Geology, geochronology, fluid inclusion, and stable-isotope geochemistry of the Rodalquilar Au alunite deposit, Spain. Economic Geology, 1995, v. 90: 795-822.
    [8] Arribas, A., Jr., Hedenquist J.W., et al. Contemporaneous formation of adjacent porphyry and epithermal Cu-Au deposits over 300 Ka in northern Luzon, Philippines.Geology, 1995, v. 23, 4: 337-340.
    [9] Arribas, A., Jr., Rytuba, J.J., Rye, R.O., Cunningham, C.G, Podwysocko, M.H., Kelly,W.C., Arronas, A., Sr., Mckee, E.H., and Smith, J.G.. Preliminary study of the ore deposits and hydrothermal alteration in the Rodalquilar caldera complex, southeastern Spain: U.S. Geol. Survey Open- File Rept, 1989, 89-327, 39p.
    [10] Ashley, R.P. Occurrence model for enargite-gold deposits. US. Geological Survey
    [22] Boynton W.V. Geochemistry of the rare earth elements: meteorite studies. In:Henderson P. (ed), Rare earth element geochemistry. Elservier, 1984., pp. 63-114
    [23] Briqueu L., Bougault H and Joron J.L. Quantification of Nb, Ta, Ti and V anomalies in magmas associated with subduction zones: Petrogenetic implications. Earth Planet.Sci. Lett., 1984. 68: 297-308.
    [24] Callaghan, E. Mineral resource potential of Piute County, Utah and adjoining area: Utah Geol. Mineralog. Survey Bull, 1973, 102, 135p.
    [25] Carpenter M. A. and Powell R., Thermodynamics of noncorergent cation ordering in minerals: I. An alternative approach. American Mineralogist, 1994, v. 79, 1053-1067
    [26] C.L. Deyell, GM. Dipple. Equilibrium mineral-fluid calculations and their application to the solid solution between alunite and natroalunite in the EI Indio-Pascua belt of Chile and Grgentina. Chemical Geology, 2005, v. 215:219-234.
    [27] C.L. Deyell, R.O. Rye, GP. Landis, T. Bissig. Alunite and the role of magmatic fluids in the Tambo high-sulfidation deposit, EI Indio-Pascua belt, Chile. Chemical Geology,2005,v.215: 185-218.
    [28] Cooke, D.R. and Simmons, S.F. Characterisitcs and genesis of epithermal gold deposits In Hagemann, S.G and Brown, P.E. eds., Gold 2000. Review in Economic Geology, 2000, vol.13., 221-244.
    [29] Cooke D.R., Deyell C.L. Descriptive names for epithermal deposits: Their implications for inferring fluid chemistry and ore genesis. Millpress Science Publishers,2003. 457-460.
    [30] Corbett G. Epithermal gold for explorationists. AIG Journal- Applied Geoscientific Practice and Research in Australia, 2002. April: 1-26.
    [31] Cunningham, C.G., Rye, R.O., Steven, T.A., and Mehnert, H.H. Origins and exploration signficance of replacement and vein- type alunite deposits in the Marysvale volcanic field, west central Utah: Econ. Geol, 1984, v. 79, p. 50-71.
    [32] Czamanske G.K. and Rye R.O. Experimentally determined sulfur isotope fractiontions between sphalerite and galena in the temperatutre range 600 to 275℃. Econ. Geol.,1974,v. 69, 17-25.
    [33] Deen, J.A., Drexler, J.W., Rye, R.O., and Munoz, J.L. A magmatic fluid origin for the Julcani destrict, Peru: Stable isotope evidence [abs]: Geol. Soc. America Abstract with Programs, 1987, v. 19, p. 638.
    [34] Deyell, C.L. Alunite and high sulfidation Au-Ag-Cu mineralization in the EI Indio-Pascua Belt, Chile- Argentina. PhD thesis, Univ. British Columbia, Vancouver, Canada.,2001.
    [35] Deyell C.L., Cooke D.R. Mineralogical and isotopic evidence for the genesis of the Kelly gold- sliver deposit, Baguio District, Philippines: Eiverse mineral assemblages in an evolving epithermal system. Millpress Science Publishers, 2003. 469-472.
    [36] Deyell C.L., Dipple G.M. Equilibrium mineral-fluid calculations and their application to the solid solution between alunite and natroalunite in the EI Indio-Pascua belt of Chile and Argentina. Chemical Geology, 2005. v. 215, p. 219-234.
    [37] Deyell C.L., Rye R.O., Landis G.P., and Bissig T. Alunite and the role of magmatic fluids in the Tambo high- sulfidation deposit, EI Indio- Pascua belt, Chile. Chemical Geology, 2005. v. 215. p. 185-218.
    [38] Ebert, S.W., and Rye, R.O. Secondary precious metal enrichment by steam-heated fluids in the Crowfoot- Lewis hotspring gold-silver deposit and relation to paleoclimate. Economic Geology,1997, 92, 578-600.
    [39] Ewart A., The mineralogy and petrology of Tertiary- Recent orogenic volcanic rocks with special regerence to the andisitic- basaltic composition range. In: Thorpe R.S.(ed.),Andesites. Chichester, 1982
    [40] Field, C.W. Sulfur isotopic method for discriminating between sulfates of hypogene and supergene origin: Econ. Geol., 1966, v. 71, p. 113-125.
    [41] Field, C.W., and Gustafson, L.B. Sulfur isotopes in the porphyry copper deposit at EI Salvado, Chile: Econ. Geol., 1976. v. 71, p. 1533-1548.
    [42] Field, C.W., and Lombardi, G Sulfur isotopic evidence for the supergene origin of alunite deposits: Mineralium Deposits, 1972, v. 7, p. 113-125.
    [43] Fournier. Hydrothmal processes related to movement of fluid from plastic into brittle rock in the magmatic- hydrothermal environment. Economic Geology, 1999, 94,1193-1212.
    [44] Frey F.A. Rare earth element abundance in upper mantle rocks. Henderson P. Rare Earth Element Geochemistry. Amsterdam: Elsevier, 1984. 153-203.
    [45] Gerlach, T.M., and Casadevall, T.M. Fumarole emissions at Mount St. Helens volcano, June 1980 to October, 1981: Degassing of a magma- hydrothermal system. Journal of Volcanology and Geothermal Research, 1986, 28, 141-160.
    [46] Groothenboer J. and Schwarcz H.P. Experimentally determined sulfur isotope fractionations between sulfide minerals. Earth Planet. Sci. Lett. 1969, 7, 162-166
    [47] Hall D.L., Sterner S.M., Bodnar R.J.. Freezing point depression of NaC1- KC1- H_2O solutions. Econ Geol, 1988, 83: 197-202
    [48] Harvey, B.A., Myers, S.A., and Klein, T. Yanacocha gold district, northern Peru:Pacrim '99 Congress, Bali, Indonesia, 1999, Proeedings: Parkville, Victoria,Australasian Institute of Mining and Metallurgy, 1999, p. 445(R)C459
    [49] Hayba, D.O., Bethke, P.M., Heald, P, and Foley, N.K. Geologic, mineralogic, and geochemical characteristics of volcanic- hosted epithermal precious- metal deposits.Reviews in Economic Geology, 1985. v. 2, 129-167.
    [50] Heald P, Foley N K, Hayba D.O. Comparative anatomy of volcanic-hosted epithermaldeposits: acid-sulfate and adular- ia-sericite types. Economic Geology, 1987, 82(1):1-26.
    [51] Hedenquist, J.W. The ascent of magmatic fluid: discharge versus mineralization. In:Thompson, J.F.H. (Ed), Magmas, Fluids, and Ore Deposits, Mineral. Assoc. Can. Short Course, 1995, v. 23, p. 263-289.
    [52] Hedenquist J.W., et al. The role of magma in the formation of hydrothermal ore deposit. Nature, 1994, 370(18).
    [53] Hedenquist J.W., et al. (b). Geology, Geochemistry, and Origin of High Sulfidation Cu-Au Mineralization in the Nansatsu District, Japan. Economic Geology, 1994. V. 89.1-30.
    [54] Hedenquist J.W. Mineralization associated with volcanic-related hydrothermal systems in the Circum- Pacific Basin [A]. In: Horn M.K., ed. Transactions of Fourth Circum- Pacific Energy and Mineral Resources Conferences, Singapore [C]. Am.Assoc. Pet. Geol., 1987. 513-524.
    [55] Hedenquist, J.W., Abrribas, A, Reynolds J. Evolution of an intrusion-centered hydrothermal system: Far Southeast- Lepanto porphyry and epithermal Cu-Au deposits,Philippines. Economic Geology, 1998, 93(4): 373-404.
    [56] Hedenquist, J.W., Arribas, A., Jr., and Gonzalez-Urien, E. Exploration for epithermal gold deposit. In Hagemann, S.G. and Brown, P.E., eds., Gold 2000. Reviews in Economic Geology, 2000, vol. 13., 245-277.
    [57] Hemley, J.J., Hostetler, P.B., Gude, A.J., and Mountjoy, W.T. Some stability relation of alunite. Economic Geology, 1969, 64, 599-612.
    [58] Hemley, J.J., and Jones, W.R. Chemical aspects of hydrothermal alteration with emphasis of hydrogen metasomatism. Economic Geology,1964, 59, 538-569.
    [59] Henley, R.W., and McNabb. Magmatic vapor plumes and ground-water interaction in porphyry copper emplacement. Economic Geology , 1978, 73,1-20.
    [60] Hofmann A W. Mantle geochemistry: The message from oceanic volcanism.Nature,1997,385: 219-229
    [61] Holland, H.D. Some applications of thermodynamic dta to problems of ore deposits,Ⅱ. Mineral assemblages and the composition of ore-forming fluids. Economic Geology, 1965, 60,1101-1166.
    [62] Hugh RR, Yang XM, Yang XY, Chen SX et al. Translated. Rock Geochemistry. Hefei:Chinese University of Science and Technology Press , 2000. (in Chinese).
    [63] Jambor, J.L. Nomenclature of the alunite supergroup. Canadian Mineralogist, 1999,37,1323-1341.
    [64] Jannas, M.L., Ashley, R.P., and Albers, J.P., Primary and secondary sulfates at Goldfield, Nevada: Econ. Geol., 1971, v. 66, p. 618-626.
    [65] Jannas, R.R., Bowers, T.S., Petersen, U., Beane, R.E. High-sulfidation deposit types in the EI Indio District, Chile. In Skinner, B.J. ed., Geology and ore deposit of the Central Andes, SEG special pub, 1999. #7, p. 27-59.
    [66] Kaijwara Y, Krouse H.R. and Sasaki A. Experimental study of sulfur isotope fractionation between coexistion sulfide minerals. Earth Planet. Sci. Lett, 1969, v. 7,271-277.
    [67] Kawano, M., Tomita, K., Shinohara, Y. Analytical electron microscopic study of the noncrystaline products formed at early weathering stages of volcanic glass. Clays and Clay Minerals, 1997. 45, 440-447.
    [68] Knight, J. E. A thermochemical study of alunite, enargite, luzonite, and tennantite deposits. Economic Geology, 1977. v. 72,1321-1336.
    [69] Le Maitre R.W., Bateman P., Dudek A., Keller J., Lameyre J., Sabine P.A., Schmid R., Sorensen H., Streckeisen A., Wooley A.R., and Zanettin B., 1989. A Classification of igneous rocks and glossary of terms. Oxford: Blackwell.
    [70] Lindgren W. Mineral Deposits M. 4th ed. New York: McGraw Hill, 1933. 1-930.
    [71] Lombardi, G, and Mattias, P. Petrology and mineralogy of the kaolin and alunite mineralizations of Latium (Italy): Geol. Romana, 1979, v. 18, p. 157-214.
    [72] Marumo, K., Matsuhisa, Y., and Nagasawa, K. Hydrogen and oxygen isotopic compositions of kaolin minerals in Japan: Deve. Sedimentary, 1982, 35, 315-320.
    [73] Merello, J.A. Geology, porphyry Cu-Au, and epithermal Cu-Au mineralization of the Tombulilato district, North Sulawesi, Indonesia. Journal of Geochemical Exploration, 1994, 50, 221-256.
    [74] Meyer, C.A., and Hemley, J.J. Walkrock alteration. In Barnes, H.L., ed., Geochemistry of Hydrothermal Ore Deposits. New York, Holt, Rinehart, and Winston,1967, 166-235.
    [75] Ohmoto, H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits:Econ. Geol, 1972, v. 67, p. 551-578.
    [76] Ohmoto H. and Lasaga A.C. Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochim. Cosmochim. Acta, 1982, 46,1727-1745.
    [77] Ohmoto, H., and Rye, R.O. Isotopes of sulfur and carbon, in Barnes, H.L., ed.,Geochemistry of hydrothermal ore deposits; New York, Wiley Intersci., 1979, p.509-567.
    [78] Perello, J.A. Geology, porphyry Cu-Au, and epithermal Cu-Au-Ag mineralization of the Tombulilato district, North Sulawesi, Indonesia. Journal of Geochemical Exploration, 1994. v. 50, 221-256.
    [79] Petersen, U., Noble, D.C., Arenas, M.L., and Goodell, P.C. Geology of the Julcani mining district, Peru: Econ, Geol, 1977, v. 72, p. 931-949.
    [80] Rainbow, A., Clark, A.H., Kurtis T.K., Gaboury, F., and Hodgson, J. The Pierina epithermal Au- Ag deposit, Ancash, Peru: paragenetic relationships, alunite textures,and stable-isotope geochemistry. Chemical Geology, 2005, v. 215. 235-252.
    [81] Richard H. Fifarek, Robert O.Rye. Stable- isotope geochemistry of the Pierina high-sulfidation Au-Ag deposit, Peru: influence of hydrodynamics on SO_4~(2-)-H_2S sulfur isotopic exchange in magmatic- steam and steam- heated environments. ChemicalGeology, 2005, v. 215: 253-279.
    [82] Richet P, Bottinga Y and Javoy M. Areview of hydrogen, carbon, oxygen, sulfur and chlorine isotope fractionation among gaceous molecules. Ann. Rev. Earth Planet. Sci,1977,v. 5,65-110
    [83] Rye, R.O., Bethke, P.M., and Wasserman, M.D. The isotope geochemistry of acid sulfate alteration. Economic Geology, 1992, 87, 225-262.
    [84] Rye, R.O. The evolution of magmatic fluids in the epithermal environment: The stable-isotope perspective. Economic Geology, 1993, v. 88, 733-753.
    [85] Rye, R.O., Stoffregen, R.E., and Bethke, P.M. Stable isotope systematics and magmatic hydrothermal processes in the summitville Cu-Au deposit: U.S. Geol.Survey Open- File Rept, 1990. 90-626, 31p.
    [86] Rytuba, J.J., Arribas, A., Jr., Cunningham, C.G., Podwysocko, M.H., McKee, E.H.,and Castroviejo, R. Rodalquilar deposits (S.E. Spain), first example of caldera- related epithermal gold mineralization in Europe: Part I. Caldera evolution [abs]: Geol. Soc.America Abstracts with Programs, 1988, v. 19, p. A351.
    [87] Savin, S.M., and Epstein, S. The oxygen and hydrogen isotope geochemistry of clay minerals: Geochim. et Cosmochim Acta, 1970, v. 34, p. 24-42.
    [88] Schiller W.W., Gehlen K.V. and Nielsen H. Hydrothennal exchange and fractionation of sulfur isotopes in synthesized ZnS and PbS. Econ. Geol., 1970, v. 65, 350-352.
    [89] Schoen, R., and Rye, R.O. Sulfur isotope distributions in solfataras, Yellowstone National Park: Science, 1970, v. 170, p. 1082-1084.
    [90] Schoen, R., White, D.E., and Hemley, J.J. Argillization by descending acid at Steamboat Springs, Nevada. Clays and Clay Minerals, 1974, v. 22, 1-22.
    [91] Sheppard, S.M.F., and Gustafson, L.B. Oxygen and hydrogen isotopes in the porphyry copper deposit at EI Salvador, Chile: Econ. Geol., 1976, v. 71, p. 1549-1559.
    [92] Silberman M.L., Berger B.R. Relationship of trace-element pattern to alteration- an morphology in epithermal precious-metal deposits. Rev. Econ. Geol., 1985, v. 2:203-232.
    [93] Sillitoe, R.H., and Bonham, H.F., Jr. Volcanic landforms and ore deposits: Econ Geol.,1984.v. 79,p. 1286-1298.
    [94] Sillitoe, R.H., McKee, E.H., and Vila T.. Reconnaissance K-Ar geochronology of the Maricunga gold-silver belt, northern Chile. Economic Geology, 1991, v. 86, 1261-1270.
    [95] Sillitoe, R.H. Styles of high sulfidation gold, silver and copper mineralization in the porphyry and epithermal environments. PacRim '99. Bali, Indonesia, 10-13 October,1999, Proceedings, p. 29-44.
    [96] Sillitoe R.H., et al. High sulfidation deposit in the volcanogenic massive sulfide environment. Economic Geology, 1996, 91(2).
    [97] Sillitoe, R.H. Epithermal models: Genetic types, geometric controls, and shallow features. In Kirkaham, R.V., Sinclair, W.D., Thorpe, R.L., and Duke, J.M., eds.,Mineral Deposit Modelling. Geological Association of Canada, Special paper, 1993, v.40,403-417.
    [98] Simmons, S.F., and Brown, P.R.L. Mineralogic, alteration, and fluid inclusion studies of epithermal gold-bearing veins at the Mr. Muro prospect, central Kalimantan(Borneo), Indonesia: Geology, geochemistry, origin, and exploration. Journal of Geochemical Exploration, 1990, 35, 63-104.
    [99] Stoffregen, R.E. and Alpers, C.N. Woodhouseite and svanbergite in hydrothermal ore deposits: Products of apatite destruction during advanced argillic alteration. Canadian Mineralogist, 1987, 25, 201-211.
    [100] Stoffregen, R.E., and Cygan, G, 1990. An experimental study of Na-K exchange between alunite and aqueous sulfate solutions. American Mineralogist. 75, 209-220.
    [101] Stoffregen, R.E., Alpers, C.N., and Jambor, J.L. Alunite-jarosite crystallography,thermodynamics, and geochronology. In Alpers, C.N., Jambor, J.L., and Nordstrom,D.K., eds., Sulfate Minerals; Crystallography, Geochemistry, and environmental Significance. Reviews in Mineralogy and Geochmistry, 2000, v. 40,454-480.
    [102] Stroffregen, R.E., Rye, R.O., and Wasserman, D.M. Experimental determination of~(18)O (sulfate- site) and D franctions between alunite and water at 250 to 450℃. [abs.]:Geol. Soc. America Abstracts with Programs, 1989,v. 21, p. A155.
    [103] Taylor, H.P., Jr. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits, in Barnes, H.L., ed. Geochemistry of hydrothermal ore deposits: New York, Wiley Intersci, 1979. 236-277.
    [104] Tazaki, K., Tiba, T., Aratani, M., Miyachi, M. Structural water in volcanic glass.Clays and Clay Minerals , 1992. v. 40, 122-127.
    [105] Thompson, A.J.B. Alunite compositions and textures: Relationships to precious metal mineralization. In New Developments in Lithogeochemistry, Mineral Deposit Research Unit Short Course, 1992. v. 8, 20-21
    [106] Thompson, A.J.B., Hauff, P.L., and Robitaille, A.J. Alreration mapping in exploration: Application of short-wave infrared (SWIR) spectroscopy. Society of Economic Geologists Newsletter, 1999, v. 39
    [107] Vasconcelos, P.M. ~(40)Ar/~(39)Ar geochronology of supergene processes in ore deposits.In Lambert, D.D., Ruiz, J., eds., Application of radiogenic Isotopes to Ore Deposits Research and Exploration. Reviews in Economic Geology, 1999. v. 12, 73-113.
    [108] Vasconcelos, P.M., Brimhall, GH., Becker, T.M., and Renne, P.R. ~(40)Ar/~(39)Ar analysis of supergene jarosite and alunite:Implications to the paleoweathering history of the western USA and West Africa. Geochimica et Cosmochimica Acta, 1994. v. 58,401-420.
    [109] Wallace, A.B. Possible signatures of buried porphyry-copper deposits in middle to late Tertiary volcanic rocks of western Nevada: Nevada Bur. Mines Geol. Repe. 1979. v.33.p. 69-76.
    [110] Whitney, J.A. Volatiles in magmatic systems. Econ. Geology, 1984, v. 1, p.155-175.
    [111] Whitney, J.A. Composition and activity of sulfurous species in quenched magmatic gases associated with pyrrhotite-beraing silicic magmas: Econ. Geol, 1988, v. 83, p.86-92.
    [112] White N.C., Hedenquist J.W. Epithermal enviroments and styles of mineralization-cariation and their cause, and guidelines for exploration. Jour. Geochem. Exploration.,1990,36:445-474.
    [113] Yunshuen Wang et al. Fluid inclusion studies of the Chinkuashih high-sulfidation gold-copper deposits in Taiwan. Chemical Geology, 1999. v. 154, p. 155-167.
    [114] Zheng Y-F, Sulphur isotopic fractionation between sulphate and sulphide in hydrothermal ore deposits: disequilibrium vs equilibrium processes. Terra Nova,1991,v.3,510-516.
    [115] Zhou TF, Fan Y, Yuan F. Advances on petrogensis and metallogeny study of the mineralization belt of the Middle and Lower Reaches of the Yangtze River area. Acta Petrologica Sinica,2008,24(8):1665-1678.(in Chinese with English abstract)
    [116]安徽省地质矿产局327地质队.安徽庐江何家大岭铁矿、黄铁矿地质勘探最终报告(内部资料).1961,6
    [117]安徽省地质矿产局327地质队.安徽庐江明矾石矿大矾山矿区地质勘探总结报告.1962,8
    [118]安徽省地质矿产局.1:50000区域地质调查报告(矾山镇幅、将军庙幅).1981
    [119]安徽省地矿局.1:50000区域地质报告(盛桥幅,槐林咀幅,石涧埠幅,庐江县幅,开城桥幅),1988
    [120]安徽省地质矿产局.1:50000区域地质调查报告(义津桥幅、枞阳县幅、汤沟镇幅).1985
    [121]安徽省地层志.北京:地质出版社,1988
    [122]蔡惟罡.浙江苍南矾山明矾石矿床的地质特征及成因探讨.浙江地质,1986.2(1):45-53
    [123]常丽华,陈曼云,等.透明矿物鉴定手册.北京:地质出版社,2006.73-85
    [124]常印佛,刘湘培,吴言昌.长江中下游铜铁成矿带.北京:地质出版社..1991
    [125]陈根文,夏斌,肖振宇,等.浅成低温热液矿产特征及在我国的找矿方向.地质与资源,2001,10(3):165-171
    [126]陈江峰,喻钢,杨刚.安徽沿江江南中生代岩浆.成矿年代学格架.安徽地质,2005,15(3):261-268
    [127]陈江峰,周泰禧,李学明,等.安徽南部燕山期中酸性侵入岩源区锶、钕同位素制约.地球化学,1993,(3):261-268.
    [128]陈毓川,李兆鼎,毋瑞身.中国金矿床及成矿规律.北京:地质出版社,2001.102-181
    [129]地质矿产部和化学工业部.《明矾石矿产资源对建设保证程度论证》报告,1990
    [130]董元彦,李宝华,路福绥.物理化学.北京:科学出版社.1998
    [131]范裕,周涛发,袁峰,等.安徽庐江-枞阳地区A型花岗岩的LA-ICP MS定年及其地质意义.岩石学报,2008.24(8):1715-1724
    [132]冯守忠.吉林五凤-五星山低硫型浅成热液金矿床地质特征与成矿条件.火山地质与矿产,1998.19(2):113-118
    [133]高天钧,黄仁生.福建省上杭紫金山矿田铜金银矿床类型及对比.火山地质与矿产,1998.19(4):283-294
    [134]郝秀云,刘文达,王静等.福建紫金山金铜矿床地质特征及成因探讨.黄金地质,1999.20(8):8-11.
    [135]胡朋,赫英,张义,等.浅成低温热液金矿床研究进展.黄金地质.2004,10(1):48-54.
    [136]金和海.安徽省庐.枞地区重磁场特征及其地质解释.华东铀矿地质.2004,1:21-29
    [137]李钟模.中国明矾石矿产资源及开发应用现状.化学矿物与加工,2003:39-40
    [138]梁祥济.交代作用体系的一些热力学性质研究.中国地质科学院院报,1992.85-95.
    [139]梁祥济,廖志杰.平阳矾山明矾石矿床形成的一些热力学条件的研究.浙江地质,1998.35-49.
    [140]梁祥济,王福生.浙江平阳矾山明矾石矿床形成机理的试验研究.地质学报,1998.72(2):162-172.
    [141]刘昌涛.安徽庐枞盆地硫铁矿床地质特征及控矿因素.化工矿产地质,1994.
    [142]刘洪,邱检生,罗清华,等.安徽庐枞中生代富钾火山岩成因的地球化学制约.地球化学,2002:31(2)
    [143]刘珺,袁峰,范裕,等.庐枞井边一盘珠洼地区中生代岩浆活动的构造背景.合肥工业大学学报,2005,5:486-490
    [144]卢成忠.萧山岩山明矾石矿区外围矿化带特征及找矿方向.建材地质,1995,2:11-15
    [145]卢焕章,范宏瑞,倪培,等.流体包裹体.北京:科学出版社.2004
    [146]陆志刚,陶奎元,谢家莹,等.次生石英型非金属矿床的成矿作用与成矿模式.见:中国东南大陆火山地质及成矿.北京:地质出版社,1997
    [147]罗大富,林滨霜.永春县达埔溪园明矾石矿床成因初探.西部探矿工程,2005.8:73-74.
    [148]吕惠进.浙江省明矾石矿床地质特征及其成因类型.化工矿产地质,2002.24(3):146-150.
    [149]毛景文,等.中国东部中生代浅成热液金矿的类型、特征及其地球动力学背景.高校地质学报,2003,12:621-638
    [150]毛其瑞.综合利用明矾石资源前景广阔.中国资源综合利用,2000,8:39-40
    [151]倪若水,吴其切,岳文浙,等.长江中下游中生代陆相盆地演化与成矿作用.上海: 上海科学技术文献出版社,1998:1-118.
    [152]饶纪龙.地球化学中的热力学.北京:科学出版社,1979
    [153]任启江,刘孝善,徐兆文,等.安徽庐枞中生代火山构造洼地及其成矿作用[M].北京:地质出版社,1991.206.
    [154]任启江,杨荣勇,等.安徽庐江巴家滩岩体岩浆结晶的物理化学条件及其研究意义.矿物岩石.1991,9:48-55
    [155]沙德铭,苑丽华.浅成低温热液型金矿特点、分布和找矿前景,2003,12(2):115-124.
    [156]孙红娟,彭同江,刘颖.蒙脱石的晶体化学式计算与分类.人工晶体学报,2008.37(2):350-355.
    [157]汤元龙.明矾石与火山构造.化工地质,1988.2:16-19
    [158]邢凤鸣,徐祥.安徽沿江地区橄榄安粗岩系的特点和成因.安徽地质,1998.
    [159]孙冶东,杨荣勇,任启江,等.安徽庐枞中生代火山岩系的特征及其形成的构造背景,1994,2:94-102
    [160]涂光炽.1994.中国火山岩型金矿床.中国金矿研究新进展,第1卷(上篇).北京:地震出版社,65-82
    [161]王福生,兰翔,梁祥济.平阳矾山明矾石矿床岩石学特征及其成因浅析.浙江地质.1997.55-63.
    [162]王濮,潘兆橹,翁玲宝,等.系统矿物学(下).1987.地质出版社.
    [163]王勋弟.译自俄《地质与勘探》1993(3).
    [164]吴长年,任启江,阮惠础,等.安徽庐枞盆地东北部火山机构与金的背景值关系研究.矿产与地质.1994,4:108-113.
    [165]毋瑞身.低温浅成热液金矿若干问题探讨[J].贵金属地质,1993,2(1):47-53.
    [166]夏林圻译,1982.A.T.byπαχ著,1974.矿物学中的热力学方法.地质出版社.
    [167]宣之强.中国明矾石矿产及资源.化工矿产地质.1998.20(4):279-286.
    [168]谢智,李全忠,陈江峰,等.2007.庐枞早白垩世火山岩的地球化学特征及其源区意义.高校地质学报,13(2):235-249.
    [169]杨荣勇,任启江,徐兆文,等.安徽庐枞地区巴家滩火山—侵人体的岩浆来源.地球化学.1993,6:197-206
    [170]杨荣勇,任启江,徐兆文,等.安徽庐枞地区中生代火山岩区巴家滩火山穹窿的研究.地质论评,1996,3:136-141
    [171]姚凤良,孙风月.矿床学教程.北京:地质出版社.2006
    [172]袁峰,周涛发,范裕,陆三明,钱存超,张乐骏,段超,唐敏惠.庐枞盆地中生代火山岩的起源、演化及形成背景.岩石学报,2008.24(8):1691-1702.
    [173]翟裕生,姚书振,林新多,等.长江中下游地区铁铜(金)成矿规律.北京:地质出版社,1992.
    [174]张江,紫金山铜金矿床地质地球化学特征.地质与勘探,2001,37(2):17-22
    [175]张德全等.紫金山地区的斑岩.浅成热液成矿系统.地质学报,2003,77(2):253-261.
    [176]张德全,李大新,丰成友,董英君,紫金山地区中生代岩浆系统的时空结构及其地质意义.地球学报,2001,22(5):403-408
    [177]张德全,丰成友,李大新,佘宏全,董英君,紫金山地区斑岩-浅成热液成矿系统的成矿流体演化.地球学报,2005,26(2):127-136
    [178]张乐骏,周涛发,范裕,袁峰.安徽月山岩体的锆石SHRIMP U-Pb定年及其意义.岩石学报,2008,24(8):1725-1733
    [179]赵振华,涂光炽,许继峰,等.中国超大型矿床(Ⅱ).北京:科学出版社,2003
    [180]郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社,2000
    [181]周若、王方正.岩石物理化学.河南科学技术出版社,1987
    [182]钟华邦.我国明矾石矿产资源.江苏地矿信息,1997,2:10-11
    [183]周涛发,宋明义,范裕,等.安徽庐枞盆地中巴家滩岩体的年代学研究及其意义.岩石学报,2007.23(10):583-591
    [184]周涛发,袁峰,范裕,等.庐枞盆地岩浆岩与铜成矿作用关系报告.合肥工业大学,2007b:189-199.
    [185]朱连甫,译.Vami Vdovets A.Z.and Nassurov G.Z.著.全球明矾石矿床的分类、演化及其工业利用.浙江地质科技情报,1996,(4):25-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700