用户名: 密码: 验证码:
薄壁梁动态撞击的变形吸能特性的仿真与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前的国内正碰试验中,关于乘员保护指标规定的法规试验, 仅对乘员伤害指标及汽车前部的吸能性进行总体评价,而不能进一步根据用户要求同时对汽车前部各个构件的改进设计得出有价值的评价,也就是不能提供汽车车身安全设计的前部构件的参数化模型。所以有必要建立车身前部撞压变形特性和吸能特性与乘员伤害评价指标之间的相关性参数模型。这种参数化模型的研究是建立在对车身前部各个吸能部件撞压变形和吸能特性的研究基础上的。在研究的初始阶段,可以先对关键部件进行变形和吸能特性的基础性研究。本论文对轿车正碰中的主要吸能件前纵梁薄壁结构进行了碰撞模拟仿真,从乘员保护的角度出发,就其变形和吸能特性进行了一些参数化的探讨和分析,提出了前纵梁薄壁结构的一些改进措施,获得了相对较好的变形和吸能特性。
    本论文的主要内容如下:
    1. 在阅读大量文献的基础上,介绍了实车碰撞试验法规的现状和发展趋势;考察了国内外汽车被动安全性研究现状,概述了汽车被动安全的研究方法、取得的最新成果及最新发展动态。对国内外正面碰撞研究的情况以及国内正面碰撞研究的局限性也进行了介绍。结合乘员保护对前纵梁薄壁结构研究的意义进行了阐述,并介绍了汽车抗撞性模拟仿真的研究情况和一般所用到的仿真软件。
    2. 介绍了碰撞软件广泛采用的显式非线性有限元理论。概述了显式非线性有限元理论的一些主要的方程和算法。
    3. 基于乘员保护,根据整车的理想碰撞力响应,推出前纵梁的理想碰撞力-变形曲线,并结合常用的吸能特性评价参数,给出了前纵梁薄壁结构的评价方法。
    运用碰撞仿真软件对小红旗前纵梁薄壁结构进行了建模,就建模中的应注意的各个细节进行了讨论。例如网格的划分,材料和焊点的定义,时间步长和沙漏参数的控制的等。并对建模方法进行了验证。碰撞试验和
    
    
    仿真模拟的碰撞力-变形曲线的对比结果表明,本文的所采用的建模方法与实际是相符合的。可以用来对一系列材料和建模方法相同的薄壁直梁进行建模。
    为了得到薄壁直梁设计的参数化经验,本文建立了小红旗的前纵梁薄壁结构模型。结合薄壁梁的变形和吸能评价参数,对一系列影响薄壁直梁变形和吸能特性的参数进行了讨论。讨论了薄壁直梁截面的形状和焊接形式,触发诱导机构位置、大小和形状,薄壁梁的壁厚以及加强板结构等对薄壁直梁变形和吸能特性的影响。最后给出了相对吸能特性较好的薄壁直梁模型。
    本文的数值仿真方法、研究内容和结果对于前纵梁的设计有一定的技术参考价值,。从建立整车变形和吸能特性与乘员响应之间的相关性参数化模型的角度出发,本文是进行汽车正面碰撞下车身前部变形特性对乘员伤害指标影响研究的一个基础性研究,上述工作将对进一步研究汽车正面碰撞下车身前部变形特性对乘员伤害指标影响,进而实现汽车的轻量化设计、总吸能的提高、碰撞力-波形曲线的改善等有重要意义。
The actual legislated regulations about vehicles’ front collisions can only estimate the occupant’s injury index and the energy absorbing characteristic of the vehicles’ front structure as a whole, but can not educe valuable conclusions on improvement design of each component of the frontal structures to satisfy the producer’s requirements. So it is necessary to establish the interrelated parameters’ model between occupant’s response and the characteristic of deformation and energy absorbing of vehicle’s front end. The study of the interrelated parameters’ model of this kind is base on the research on the characteristic of deformation and energy absorbing of each component of the front structures. In the initial stage of this study, we can study the characteristic of deformation and energy absorbing of key component of the front structure. The front side rail is the key energy absorbing component of the vehicles’ front structure. In this paper, the numerical crash simulation on the front side rail is made. Aimed at occupant security, the characteristic of deformation and energy absorbing of the front side rail is also discussed. At last, some measures about improvement on the characteristic of deformation and energy absorbing of the front side rail are obtained.
    (1) The internal and external status, research and developing methods, up to date achievements and developing trends of the automobile passive safety are introduced. The status and the shortage of the actual legislated regulations for full frontal collision are discussed. The internal and external research on full frontal collision and the shortage of the civil research are introduced. Combined with occupant security, the meaning of research on the front side rail is discussed. The development of crash simulation and the simulation software are also introduced.
    (2) The theory of the explicit nonlinear finite element which is largely adopted in the crash simulation software is introduced.
    (3) Based on occupant security, the optimized force-deformation curve of the front side rail is derived from the optimized curve of full vehicle.
    
    
    Combined with some energy absorbing assessment index, the evaluation methods about the characteristic of deformation and energy absorbing of the front side rail are offered.
    (4) The model of thin-walled beam of the front side rail is set up by the use of the software ESI/PAM-CRASH. The details about modeling the thin-walled beam which include the plot of gridding, the definition of materials and spot weld, the control of time step and hourglass parameter and so on are discussed. The means of modeling are proved to be right by the comparison test curves with the simulation curves. So the means of modeling can be used to model thin-walled beam.
    (5) In order to obtain the parametric design experience of thin-walled beam, a model of thin-walled beam of the front side rail of HongQi CA7200 is set up. Combined with the energy absorbing assessment index, a series of parametric methods about improving the characteristic of deformation and energy absorbing are discussed, including the cross-section ,the mode of jointing, the trigger structure’s place, size and shape, the thickness of beam, the strengthening panel and so on. At last, a improved model of HongQi CA7200 is offered.
    The numerical simulation methods, content and result of this paper have some reference values of technology for the design of the front side rail. From the point of setting up the parametric model between occupant security and the characteristic of the deformation and energy absorbing of the full vehicle, this paper is a basic start of studying the connection between occupant security and the characteristic of the deformation and energy absorbing of the full vehicle. The research and analysis of this paper have important meaning in further studying the characteristic of the deformation of full vehicle and its influence on occupant security index.. Also it is important for the vehicle’s lightweight design.
引文
刘守国.交通事故分析与预防.人民交通出版社,-19所示。
    G.W.特里卡等著,丁美修,王秉玉译.减少交通事故—一项全球性的挑战.上海科学技术出版社,1993
    路平,吴义虎.中国道路交通事故特点分析.第一届国际汽车交通安全研讨会会议论文集,2000
    中国统计年鉴—2000.中国统计出版社,2000
    中国统计年鉴—2001.中国统计出版社,2001
    中国统计年鉴—2002.中国统计出版社,2002
    来自网上国家交通事故官方统计
    Mizuno. Koji. Car Front Impact and Pedestrian Protection Test Procedures. Traffic Safety and Nuisance Research Institute, Ministry of Transport, Japan
    朱西产 汽车正面碰撞试验法规及其发展趋势的地分析 汽车工程 2002001
    程秀生 不同伤害指标对评价胸部侧向碰撞伤害程度的影响 汽车工程 2000年 第22卷第三期
    程秀生 人体胸部侧向碰撞伤害程度的试验研究 兵工学报 1999年第20卷 第一期
    程秀生 人体胸部侧向碰撞模型参数值确定方法 汽车工程 1999年第21卷第1期10-14
    程秀生 周 刚安迪.布伦 碰撞仿真技术在人体腿及膝关节与汽车保险杠碰撞研究中应用 公路交通科技 2001年第18卷第3期83-87页
    程秀生 张吉国 周刚 汽车保险杠参数对人体腿部损伤程度的影响 吉林大学学报(工学版)2003年第2期
    程秀生 模拟汽车侧面碰撞的人体骨盆损伤的试验研究 汽车工程 1998年第20卷第5期266-271页
    韩文涛、李磊、袁志业,现代汽车被动安全技术简介 货车天地 2003
    王瑄,李宏光,赵航.现代汽车安全.人民交通出版社,1997
    (日)加纳重人.汽车的安全技术.丰田汽车公司技术讲座资料,1999.9
    
    McNay II Gene H. Numerical Modeling of Tube Crash with Experiment Comparision. SAE Paper No. 880898
    Timothy J. Keer.The Effect of Forming on Automotive Crash Results.2001-01-3050
    D. Cornette.Influence of the Forming Process on Crash and Fatigue Performance of High-Strength Steels for Automotive Components.2002-01-0642
    Srdan Simunovic. Steel Processing Effects on Impact Deformation of Ultralight Steel Auto Body.2001-01-1056
    (Jody Shaw - Uss Div.). Steel Strength and Processing Effects on Impact Deformation for a Crash Energy Management Component.2001-01-1053
    K. Sato, D. Zeng.Crashworthiness of Automotive Stamped Parts Using High Strength Steel Sheets.SAE Paper 2002-01-0641
    Trevor Dutton,S. Iregbu.The Effect of Forming on the Crashworthiness of Vehicles With Hydroformed Frame Siderails.SAE Paper 1999-01-3208
    Anthony C.Y. Lin. Hydroformed Tube Modeling in Crash FEA Model.2003-01-0258
    Mark Kaufman, David Gaines. Integration of Chassis Frame Forming Analysis Into Performance Models to More Accurately Evaluate Crashworthiness.980551
    J. W. Wiese,C. D. Kan. A Comparison of the Safety Performance of Aluminum and Steel in Conventional Automotive Construction.982389
    Ari G. Caliskan. Crashworthiness of Composite Materials & Structures for Vehicle Applications.2000-01-3536
    Frank Billotto. Polyurethane Foam Systems for NVH and Improved Crashworthiness.SAE Paper 2001-01-1467
    Chi-Chin Wu. Effect of Polyurethane Foam on the Energy Management of Structural Components.2000-01-0052
    Dominic McMahon. Engineering Thermoplastic Energy Absorber Solutions for Pedestrian Impact.2002-01-1225
    Darin A. Evans. Engineering Thermoplastic Energy Absorbers for Bumpers.1999-01-1011
    John G. Argeropoulos. Maturing Fiber-Reinforced Thermoplastic Technology for Automobile Body Structural Applications.1999-01-3244
    Andrew Hallas, Joe Carruthers. Honeycomb Materials: a Solution for Safer, Lighter Automobiles.2002-01-2113
    
    Dan Tang. Aluminum Vehicle Side Impact Design, Test and Cae.2002-01-0249
    Horst Lanzerath. Crash Simulation on Body Structural Components Made Out of Extruded Magnesium.2003-01-0259
    Ari Garo Caliskan. Design & Analysis of Composite Impact Structures for Formula One Using Explicit FEA Techniques.2002-01-3326
    Pascal Feillard. Crash Modelling of Automotive Structural Parts Made of Composite Materials.1999-01-0298
    Fuminobu Inotani. Fem Collision Analysis of Automotive Body Members Reinforced With High Structural Foam.2000-01-2731
    Horst Lanzerath. Crash Simulation of Structural Foam.2003-01-0328
    Padraig Naughton. Extension of Material Models and Finite Element Techniques to Improve the Simulation of High Speed Impact of Thermoplastic Materials.1999-01-0300
    侯飞.轿车侧面碰撞新车评价程序及提高轿车侧面碰撞性能的措施.汽车工程2000102
    Fei Hou. Lincap Side Impact Analysis for Qlin. . Proceedings of The Eleventh International Pacific Conference on Automotive Engineering, IPC2001E206
    贾宏波,黄金陵等.车辆典型薄壁梁结构碰撞模拟研究与参数选择.农业机械学报,1998年第一期
    薛梁,姜正旭,林忠钦.汽车碰撞仿真中连接失效的模拟.机械科学与技术,2000年,第19卷,第2期
    朱西产,钟荣华.薄壁直梁件碰撞吸能计算机仿真方法的研究.汽车工程 2000022
    张维刚,钟志华.汽车正碰吸能部件改进的计算机仿真.汽车工程 2001002
    付锐,陈萌三.用筒系吸能结构改进横梁的缓冲性能.汽车工程 2002083
    姜礼尚,庞之垣。有限元法及其理论基础. 人民教育出版社 1980
    孟凡中.弹塑性有限变形理论和有限元方法.清华大学出版社,北京:1985
    [美]冯元桢(著),吴云鹏等(译).连续介质力学导论.重庆大学出版社,重庆:1997
    
    [英]O. C. 监凯维奇(著).有限元法(上册).科学出版社,北京:1985
    徐次达.固体力学加权残值法.同济大学出版社,上海:1987
    I.J.Sparke Optimisation Crash Pulse Through Frontal Structure Design ESV.96-S4-W-21
    Weirzbicki T,Abramowicz W. Development and Implenentation of Special Element for Crash Analysis. SAE paper No. 880895
    Kentaro Sato, Akihide. FEM Simulation to Estimate Crashworthiness of Automotive Parts. SAE Paper 982356.
    薛 量,姜正旭,林忠钦,汽车碰撞仿真中的连接失效模拟 机械科学与技术 2000
    张建伟、刘静岩、林逸,薄壁直梁动态撞击席能特性的管理 数值模拟会议论文集 ChinaPAM 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700