用户名: 密码: 验证码:
玉米抗旱性QTL定位及抗旱品种选育研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米(Zea mays L.)是世界上主要的粮食作物之一,同时是重要的饲料和工业原料。干旱是世界范围内导致玉米产量损失的主要因素。随着未来气候的变化,如温度上升和降雨分布不均,干旱胁迫对玉米生产地区的影响会更大,而培育抗旱玉米品种是解决这一问题最直接的途径。
     本研究的目的包括3个方面:(1)在干旱和灌溉条件下,利用湖南及我国西南主推的10个玉米杂交种进行抗旱性鉴定方法与指标研究;(2)为了阐明玉米抗旱性的遗传基础并定位相关的数量性状位点,利用抗旱自交系临1和敏感的湘97-7组配160个F2:3家系的定位群体,于2011年在长沙县高桥和长沙市马坡岭,分别在大田干旱胁迫和正常水分条件下进行表型鉴定所考察的性状包括抽雄至吐丝间隔(ASI)、株高、千粒重和产量,并用抗旱系数来衡量抗旱性;(3)根据抗旱性鉴定筛选出来的指标,选育出适宜湖南特殊生态环境的抗旱自交系和杂交种。
     本研究的主要结果如下:
     1.干旱对玉米产量及主要农艺性状有显著影响。通过产量及产量抗旱系数相关分析筛选出产量、抽雄至吐丝间隔(ASI)、根深、株高和千粒重等5个指标可作为玉米抗旱性鉴定的良好参数,本研究提出5个性状的隶属度均值作为综合隶属度指标来评价玉米品种的抗旱性。该方法鉴定抗旱性强的品种是富友9号、洛玉1号、临奥1号、科玉2号、农大108,抗旱性中等的为渝单7号、联合3号,抗旱性较差的有东单57、科玉1号、东单16。利用综合隶属度值评价抗旱性评价的结果与这些品种多年生产上抗旱表现相一致。
     2.在正常水分和干旱胁迫条件下,ASI、株高、千粒重和产量在160个F2:3家系定位群体中呈连续性变异,基本符合正态分布,表现为数量性状的遗传特点。在不同水分条件下,ASI和产量都表现为显著负相关,而株高、千粒重和产量呈极显著正相关。
     3.110个SSR标记构建连锁图,图谱总长1246.1cM,标记间平均距离11.33cM,覆盖了玉米全基因组100个区域(bin)中的85个。连锁图谱上SSR标记的排列顺序和染色体区域信息基本上和IBM22008Neighbors Frame参考图谱一致。
     4.各抗旱相关性状所定位的QTL介于8个~14个之间,共检测到43个QTL。单个QTL解释的表型变异介于6.27%-18.27%之间。不同水分条件下所定位到的QTL大多数不相同,表明对干旱胁迫存在不同的适应机制。抗旱性相关性状所定位到的QTL,除第2和10染色体外,在其它染色体上都有分布,主要集中在第1染色体1.02-03和1.06-07区域,以及第3染色体3.04-05区域。在第1染色体标记umc2224和bnlg176区间同时检测到与株高、千粒重和产量有关的QTL簇;标记bnlg1556和umc1128区间检测到与ASI和产量有关的QTL簇。在第3染色体标记umc1773和umcl311区间同时检测到与株高、千粒重和产量有关的QTL簇。这些QTL簇聚集区可能有助于通过分子标记辅助选择的方法提高干旱地区玉米的抗旱性。
     5.选育出优质、高产、抗旱的玉米杂交种湘康玉2号,2011年经湖南省审定(湘审玉2011002号)。湘康玉2号在2009和2010年湖南省区试中,平均产量7851.8kg/hm2,日产量71.25kg/hm2,与对照临奥1号相比分别增产9.60%和9.95%,增产点次率100%。经抗旱性对比试验证明,湘康玉2号在主要抗旱性指标产量、ASI、根深、株高和千粒重的抗旱性指数均高于敏感对照东单16。
Maize (Zea mays1.) is the main food crops in the world,and is important forage and industrial raw materials.Drought is a major cause of yield loss in maize production all over the world, which is expected to increase with climatic changes predicted in the future as temperatures rise and rainfall distribution changes in many maize production areas. The alternative approach to solve this problem has been directed towards developing high yielding maize varieties under drought conditions.
     The objective of this study included three aspects.(1) In order to evaluate drought resistance criteria,10main maize varieties in Hunan and Southwest of China were tested under the irrigation and no irrigation regimes.(2) To understand the genetic causes underlying drought resistance and identify relevant quantitative trait locus (QTL), a F23mapping populations with160families derived from crosses of Lin1(drought resistance) and Xiang97-7(drought sensitive) were phenotyped under the well watered (WW) and water stressed (WS) treatments in two environments including Gaoqiao and Mapoling of Chang sha in2011. For the four target traits of anthesis to silking interval (ASI), plant height,1000kernel weight and grain yield were measured and the drought resistance coefficient (DRC) for each trait was considered as measurements for drought resistance.(3) Based on identification of drought resistance criteria, selection of drought inbred lines and hybrids are suitable for special ecological conditions in Hunan. The main results obtained in this paper were as follows:
     1. Drought had a significant influence on yield and main agronomic characters of maize. According to the correlation analysis of yield and its drought resistant coefficient,5parameters of yield, ASI, root depth, plant height and1000kernal weight were selected to be used as drought resistance criteria of maize. In this study,5parameters'average value of membership as comprehensive membership grade was used to evaluate the drought resistance of mazie varieties. The results indicated that the varieties with higher drought resistance is Fuyou9, Luoyul, Lin'aol, Keyu2, Nongdal08; the varieties with medium drought resistance is Yudan7, Lianhe3and the varieties with lower drought resistance is Dongdan57, Keyul, Dongdanl6. The results of comprehensive membership grade were consistent with many years of the drought resistance field performance of maize varieties.
     2. The phenotypic frequency of ASI, plant height,1000kernel weight and grain yield in F2:3mapping populations with160families revealed a quantitative variability and fitted a fairly normal distribution in both the well watered and water stressed treatments, which indicated these traits should be quantitative traits. ASI and grain yield was a significant negative correlation, but among plant height,1000kernel weight and grain yield were a significant positive correlation in both water regimes conditions.
     3. A linkage map was constructed based on110polymorphic simple sequence repeat (SSR), resulting in a length of1246.1cM across maize genome, with an average inter-marker distance of11.33cM, which resulted in coverage of85bin among the100bin across all maize genome. The arraying order and bin map of markers in the linkage map was in good agreement with IBM2008Neighbors Frame reference map.
     4. A total of43QTL were identified, with a minimum of8and a maximum of14for drought related traits. Phenotypic variation associated with each QTL ranges from6.27% to18.27%. Very few QTL were detected in two water treatments, indicating the different mechanisms may indeed coexist that together contribute to adaptation to drought stress. The QTL for drought related traits appeared to be dispersed across10different chromosomes, except chromosomes2and10. Most QTL for drought related traits in this study tended to cluster in some areas of the chromosome1and3, and mainly in bin1.02-03,1.06-07and3.04-05. Two QTL clusters on chromosome1flanked by the markers umc2224and bnlgl76for plant height,1000kernel weight and grain yield, and bnlgl556and umcl128for ASI and grain yield were identified. A cluster of QTL flanked by the markers umc1773and umc1311for plant height,1000kernel weight and grain yield were identified on chromosome3. These novel QTL clusters generated in this study may be used to enhance maize drought resistance by marker assisted selection (MAS) in water limited environments
     5. Xiangkangyu2was breeded, and was registered by Hunan Evaluation Committee of Crop Variety in2011(Xiangshenyu2011002). Xiangkangyu2is a high quality, high yield and drought resistant maize hybrids,The average yield and daily output were7851.8kg/hm2and71.25kg/hm2on regional test of Hunan province during2009and2010. Compared with the control Lin'aol, the average yield and daily output of Xiangkangyu2increased by9.60% and9.95%, respectively. Xiangkangyu2showed a significant yield increase than Lin'aol in all regional test sites. Compared with the control Dongdan16(drought sensitive) in the drought resistance contrast test, the DRC for major drought resistance parameters including grain yield, ASI, root depth, plant height and1000kernal weight were higher in Xiangkangyu2.
引文
[1]白守信,张遂申,梁仰止.春小麦品种的抗旱性比较研究[J].西北植物研究,1981,(2):46-51
    [2]鲍巨松,杨成书,等.不同生育时期水分胁迫对玉米生理特性的影响[J].作物学报,1991,17(4):261-265
    [3]陈军,戴俊英.干旱对不同耐性玉米品种光合作用及产量的影响[J].作物学报,1996,22(6):757-762
    [4]丁雪,王学臣.干旱胁迫下ABA对气孔运动的作用机制[J].干旱地区农业研究,1993,11(2):50-56
    [5]董永华,史吉平,韩建民,等.干旱对玉米幼苗PEP羧化酶活性的影响[J].玉米科学,1995,(2):54-57
    [6]杜金友,靳占忠,张洪亮,等.不同玉米自交系干旱胁迫条件下的生理变化.张家口农专学报,2003,(3):4-6
    [7]付芳婧,赵致,张卫星.水分胁迫下玉米抗旱性与光合生理指标研究[J].山地农业生物学报,2004,23(6):471-474
    [8]高世斌,李晚忱,荣廷昭.玉米耐旱相关性状的QTLs研究[J].分子植物育种,2003,1(5):701-706
    [9]龚明.作物抗旱性鉴定方法与指标及其综合评价[J]云南农业大学学报,1989,4(1):73-80
    [10]关义新,戴俊英,陈军,等.土壤干旱下玉米叶片游离脯胺酸积累及其与抗旱性的关系[J].玉米科学,1996,4(1):43-45
    [11]郭卫东,沈向,李嘉瑞,等.植物抗旱分子机理[J].西北农业大学学报,1999,27(4):102-108
    [12]韩建民,史吉平,商振清.渗透胁迫对玉米幼苗不同叶片、叶位水分状况及SOD、POD活性的影响[J].华北农学报,1995,10(1):128
    [13]韩金龙,王同燕,徐子利,等.玉米抗旱机理及抗旱性鉴定指标研究进展[J].中国农学通报,2010,26(21):142-146
    [14]郝转芳,李新海,张世煌.玉米耐旱QTL定位研究进展[J].玉米科学,2007,15(2):49-52
    [15]何小红,徐辰武,蒯建敏,等.数量性状基因作图精度的主要影响因子[J].作物学报,2001,27(4):469-475
    [16]侯荷亭,侯旭东.高粱抗旱性状的变异系数与杂种优势[J].山西农业科 学,1997,25(3):9-11
    [17]侯建华,吕风山.玉米苗期抗旱性鉴定研究[J].华北农学报,1995,10(3):89-93
    [18]胡瑞法,Erika C H M,张世煌,等.采用参与式方法评估中国玉米研究的优先序[J].中国农业科学,2004,37(6):781-787
    [19]Hujmacher B.气孔和非气孔因素对棉花光合速率的控制作用[J].国外农学一棉花,1986,(1):24-28
    [20]霍仕平,晏庆九,宋光英,等.玉米抗旱性的遗传和抗旱品种的性状选择[J].玉米科学,1995,3(2):18-20
    [21]Ivanevic M,周听,张显.玉米叶片ABA合成的遗传特征对快速干旱胁迫及田间条件的反应[J].国外农学一杂粮作物,1993,(4):12-14
    [22]姜丽丽,樊明寿,郭九峰.干旱和灌溉两种处理条件下玉米株高、产量的QTL分析[J].华北农学报,2007,22(4):86-90
    [23]孔祥彬,白星焕,王同芹,等.玉米抗(耐)旱性的分子遗传研究进展[J].玉米科学,2009,17(5):58-60
    [24]孔占样,李德新,赵岩,等.玉米不同生育时期耗水量及抗旱性的研究[J].辽宁农业科学,1996,(2):11-14
    [25]兰巨生,胡福顺,张景瑞.作物抗旱指数的概念和统计方法[J].华北农学报,1990,5(2):20-25
    [26]李德顺,刘芳.浅谈玉米抗旱性鉴定研究现状及进展.杂粮作物[J].2010,30(2):98-100
    [27]李博,田晓莉,王刚卫,等.苗期水分胁迫对玉米根系生长杂种优势的影响[J].作物学报,2008,34(4):662-668
    [28]李广敏,唐连顺,商振清,等.渗透胁迫对玉米幼苗保护酶系统的影响及其与抗旱性的关系[J].河北农业大学学报,1994,17(2):1-5
    [29]李建生.玉米分子育种研究进展[J].中国农业科技导报,2007,9(2):10-13
    [30]李霞,李云荫,曹敏.水分胁迫对抗旱性不同的冬小麦品种叶片蛋白质影响的比较[J].华北农学报,1993,8(4):20-25
    [31]李雪华,李新海,郝转芳,等.干旱条件下玉米耐旱相关性状的QTL一致性图谱构建[J].2005,38(5):882-890
    [32]李玉玲,李学慧,董永彬,等.利用相同来源F2:3和BC2S1群体定位玉米生育期QTL[J].2007,22(6):38-43
    [33]李运朝,王元东,崔彦宏,等.玉米抗旱性鉴定研究进展[J].玉米科学, 2004,12(1):63-68
    [34]黎裕,王天宇,石云素,等.应用生理学方法和分子手段进行抗旱育种[J].玉米科学,2004a,12(2):16-20
    [35]黎裕,王天宇,石云素,等.玉米抗旱性的QTL分析研究进展和发展趋势[J].干旱地区农业研究,2004b,22(1):32-39
    [36]刘丹.水分胁迫与植物的呼吸作用[J].云南农业太学学报,1990,5(3):177-182
    [37]刘贤德,李新海,张世煌,等.玉米开花期耐旱相关性状的遗传及育种策略[J].玉米科学,2002,10(3):13-18
    [38]罗淑平.玉米抗旱性及鉴定指标的相关性分析[J].干旱地区农业研究,1990,8(3):72-78
    [39]裴英杰,郑家玲,庾红,等.用于玉米品种抗旱性鉴定的生理生化指标[J].华北农学报,1992,7(1):31-35
    [40]彭勃,王阳,李永祥,等.不同水分环境下玉米产量构成因子及籽粒相关性状的QTL分析[J].2010,36(11):1832-1842
    [41]山仑,邓西平,张岁岐.生物节水研究现状及展望[J].中国科学基金,2006,(2):66-71
    [42]师公贤,张仁和,薛吉伞,等.玉米几个与抗旱性有关的产量性状遗传研究[J].干旱地区农业研究,2004,22(4):114-117
    [43]宋凤斌,戴俊英,张烈,等.水分胁迫对玉米花粉活力和花丝受精能力的影响[J].作物学报,1998,24(3):368-374
    [44]宋凤斌,徐世昌.玉米抗旱性鉴定指标的研究[J].中国生态农业学报,2004,12(1):127-129
    [45]孙彩霞,沈秀瑛,郝宪彬,等.根系和地上部生长指标与玉米基因型抗旱性的灰色关联度分析[J].玉米科学,2000,8(1):31-33
    [46]孙喜云,张艳,卢广远.玉米抗旱育种的研究进展[J].中国种业,2011(1):16-17
    [47]孙祖东,陈怀珠,杨守臻,等.大豆抗旱性研究进展[J].大豆科学,2001,20(3):221-223
    [48]田齐建,曹秋芬,张效梅,等.DNA分子标记技术与玉米育种[J].玉米科学,2005,13(2):18-21
    [49]王崇桃,李少昆.玉米生产限制因素评估与技术优先序[J].中国农业科学,2010,43(6):1136-1146
    [50]王芳,王化俊,王汉宁.玉米基因组DNA的提取及SSR分析[J].玉米科学, 2006,14(2):30-32
    [51]王凤格,赵久然,郭景伦,等.一种改进的玉米SSR标记的PAGE/快速银染检测新方法[J].农业生物技术学报,2004,12(5):606-607
    [52]王畅,林秋萍,贡冬花,等.夏玉米的干旱适应性及其生理机制的研究[J].华北农学报,1990,5(4):54-60
    [53]王黄英,郭还威,罗坤,等.几个玉米品种抗旱性的直接鉴定[J].玉米科学2000,8(1):40-41
    [54]王建康.数量性状基因的完备区间作图方法[J].作物学报,2009,35:239-245
    [55]王茅雁,邵世勤,张建华,等.水分胁迫对玉米保护酶系活力及膜系统结构的影响[J].华北农学报,1995,10(2):43-49
    [56]王士谦.玉米抗旱性的研究进展[J].河北科技师范学院学报,2005,19(3):76-80
    [57]王万里.植物对水分胁迫的反应[M].北京:北京科学出版社,1983,24-29
    [58]王伟东,王璞,王启现.灌浆期温度和水分对玉米籽粒建成及粒重的影响[J].黑龙江八一农垦大学学报,2001,13(2):19-24
    [59]王西瑶.玉米抗旱性的生理生化机制研究进展[J].四川农业大学学报,1996,14(3):352-357
    [60]王秀全,刘吕明,余先驹,等.玉米抗旱性的相关研究[J].玉米科学,1997,5(4):8-18
    [61]王阳,刘成,王天宇,等.干旱胁迫和正常灌溉条件下玉米产量性状的QTL分析[J].植物遗传资源学报,2007,8(2):179-183
    [62]王泽立,李新征,郭庆法,等.玉米抗旱性遗传与育种[J].玉米科学,1998(3):9-13
    [63]王泽立,张恒悦,阎先喜等.玉米抗旱品种的形态解剖学研究[J].西北植物学报,1998,18(4):581-583
    [64]王振镒,郭蔼光,罗淑萍,等.水分胁迫对玉米SOD和POD活力及同工酶的影响[J].西北农业大学学报,1989,17(1):48-49
    [65]吴子皑.玉米抗旱育种[J].玉米科学,1994,2(1):6-9
    [66]肖荷霞,陈建忠,席国成.耐旱丰产玉米育种的探讨[J].玉米科学,2000,8(1),37-39
    [67]徐蕊,王启柏,张春庆,等.玉米自交系抗旱性评价指标体系的建立[J].中国农业科学,2009,42(1):72-84
    [68]徐云碧.QTL作图效率的影响因素——群体大小[J].浙江农业大学学报, 1994,20(6):573-578
    [69]薛吉全,任建宏,马国胜,等.玉米不同生育期水分胁迫条件下脯氨酸变化与抗旱性的关系[J].西安联合大学学报(自然科学版),2000,3(2):212-251
    [70]严建兵,汤华,黄益勤,等.玉米F2群体分子标记偏分离的遗传分析[J].遗传学报,2003,30:913-918
    [71]闫玉基,张佩兰.玉米抗旱性生理指标筛选鉴定的研究[J].河北省科学院学报,1992,(2):502-541
    [72]张宝石,徐世昌,宋凤斌,等.玉米抗旱基因型鉴定方法和指标的探讨[J].玉米科学,1996,4(3):19-22
    [73]张凤路,Beck D.耐旱和低氮胁迫玉米种质筛选技术[J].玉米科学,2001,9(2):14-17
    [74]张凤路,杨志良,Kirubi D.耐旱性玉米筛选的形态指标研究[J].河北农业大学学报,2003,26(3):22-29
    [75]张海明,王茅雁,候建华,等.干旱对玉米过氧化氢酶、MDA含量及SOD、 CAT活性的影响[J].内蒙古农牧学院学报,1993,14(4):92-95
    [76]张磊.水分胁迫条件下玉米苗期根系性状的QTL定位:[硕士学位论文].石家庄:河北农业大学农学院,2006
    [77]张烈,沈秀瑛,孙彩霞.脯氨酸对玉米苗期抗旱性影响的研究[J].华北农学报,1999,14(1):382-411李金洪,李伯航.干旱条件下抗蒸腾剂对玉米的生理效应研究.河北农业大学学报,1993,16(3):42-45
    [78]张天真.作物育种学总论[M].北京:中国农业出版社,2003.211
    [79]张向前,江院,卢小良.基于基因组学的作物抗旱改良[J].中国农学通报,2007,23(9):90-95
    [80]张正斌,徐萍,张建华.作物抗旱节水相关基因的标记和克隆及转基因研究进展[J].西北植物学报,2002,22(6):1537-1544
    [81]郑桂萍,郭晓红,陈书强,等.水分胁迫对水稻产量和食味品质抗旱系数的影响[J].中国水稻科学,2005,19(2):142-146
    [82]Austin D F and Lee M. Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize [J]. Theor Appl Genet,1996,92:817-826
    [83]Belo A, Zheng P Z, Luck S, et al.Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize [J]. Mol Genet Genomics,2008,279:1-10
    [84]Bernardo R, Yu J. Prospects for genomewide selection for quantitative traits in maize [J]. Crop Science,2007,47:1082-1090
    [85]Bidinger F R, Mahalakshmi Y, Talukdar B S, et al. Improvement of drought r esistance in pearl millet [M]. Los Banos:IRRI.1982.357-375
    [86]Blum A. Breeding programs improving drought resistance to water stress [M]. Boulder:Westview Press,1983.263-275
    [87]Blum A. Plant breeding for stress environment [M]. Florida:CRC Press,1988. 43-77.
    [88]Bolanos J, Edmeades G O, Martinez L. Eight cycles of selection for drought tolerance in lowland tropical maize.Ⅲ. Responses in drought adaptive physiological and morphological traits [J]. Field Crops Res.1993,31:269-286
    [89]Bolanos J, Edmeades G O. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize [J]. Field Crops Res,1996,48: 65-80
    [90]Bruce W B, Edmeades G O, Barker T C. Molecular and physiological approaches to maize improvement for drought tolerance [J]. J Exp Bot,2002, 53(366):13-25
    [91]Buckler E S, Holland J B, Bradbury P J, et al. The Genetic Architecture of Maize Flowering Time [J]. Science,2009,325:714-718
    [92]Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought-from genes to the whole plant [J]. Functional Plant Biology,2003,30, 239-264
    [93]Chugh V, Kaur N, Gupta A K. Evaluation of oxidative stress tolerance in maize (Zea mays L.) seedlings in response to drought [J]. Indian J Biochem Bio,2011,48:47-53
    [94]Collard B C Y, Jahufer M Z Z, Brouwer J B, et al. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement:The basic concepts [J]. Euphytica,2005,142:169-196
    [95]Collins NC, Tardieu F, Tuberosa R. Quantitative trait loci and crop performance under abiotic stress:where do we stand? [J]. Plant Physiology, 2008,147:469-486
    [96]Cook J P, McMullen M D, Holland J B, et al. Genetic Architecture of Maize Kernel Composition in the Nested Association Mapping and Inbred ssociation Panels [J]. Plant Physiology,2011, doi:10.1104/pp.111.185033
    [97]de Vienne D, Leonardi A, Damerval C, et al. Genetics of proteomc variation for QTL characterization:application to d rought stress responses in maize [J]. J Exp Bot,1999,50 (332):303-309
    [98]Duplesiss P P, Dijkiuis F J. The influence of time lag between pollen shedding and silking on the field of maize [J]. S. Afric. J. Agric. Sci,1967,10:667-474.
    [99]Duvick D N, Smith J S C, Cooper M. Long-term selection in a commercial hybrid maize breeding program [J]. Plant Breed Rev,2004,24:109-151
    [100]Eathington S. Practical applications of molecular technology in the development of commercial maize hybrids. In:Proceedings of the 60th Annual Corn and Sorghum Seed Research Conferences. Washington, DC: American Seed Trade Association.2005
    [101]Eberhart S A, Russell W A. Stability parameters for comparing varieties [J]. Crop Science,1966,(6):36-40
    [102]Edmeades G O, Bolanos J, Hernandez M, et al. Causes for silk delayin a lowland tropical maize population [J]. Crop Science,1993,33 (5):1029-1035
    [103]Edmeades G O, Bolanos J, Banziger M, Recurrent selection under managed drought stress improves grain yields in tropical maize [M]. Mexico: CIMMYT,1997.415-425
    [104]Elshire R J, Glaubitz J C, Sun Q, et al. A robust, simple genotyping by sequencing (GBS) approach for high diversity species [J]. PLoS ONE,2011, 6(5):e19379
    [105]Finlay K W, Wilkinson G N. The analysis of adaptation in plant breeding programme [J]. Aust J Agric Res,1963, (14):742-757
    [106]Fischer K S, Edmeades G O, Johnson E C. Selection for the improvement of maize yield under moisture deficits [J]. Field Crop Res,1989,22:227-243
    [107]Fischer R A, Maurer R. Drought resistance in spring wheat cultivars. Ⅰ. Grain yield response [J]. Aust J Agric Res,1978,29:897-907
    [108]Frova C, Krajewski P, di Fonzo N, et al. Genetic analysis of drought tolerance in maize by molecular markers. Ⅰ. Yield components [J]. Theor Appl Genet,1999,99:280-288
    [109]Ganal M W, Durstewitz G, Polley A, et al. (2011) A Large Maize (Zea mays L.) SNP Genotyping Array:Development and Germplasm Genotyping, and Genetic Mapping to Compare with the B73 Reference Genome [J]. PLoS ONE,2011,6(12):e28334
    [110]Gemenet D C, Wachira F N, Pathak R S et al., Identification of molecular markers linked to drought tolerance using bulked segregant analysis in Kenyan maize (Zea mays L.) landraces [J]. Journal of Animal and Plant Sciences,2010,9 (1):1122-1134
    [111]Guo J F, Su G Q, Zhang J P, et al. Genetic analysis and QTLmapping of maize yield and associate agronomic traits under semi-arid land condition [J]. African J Biotech,2008,12:1829-1838
    [112]Hall A E. Physiological ecology of crops in relation to light, water, and temperature [M]. New York:Mc Grew Hill Publishing Company,1990. 191-233
    [113]Hallauer A R, Miranda F J B. Quantitative Genetics in Maize Breeding [M]. Ames:Iowa State University Press,1981.469
    [114]Hao Z, Liu X, Li X, et al. Identification of quantitative trait loci for drought tolerance at seedling stage by screening a large number of introgression lines in maize [J]. Plant Breeding,2009,128:337-341
    [115]Hao Z, Li X, Liu X, et al. Meta-analysis of constitutive and adaptive QTL for drought tolerance in maize [J]. Euphytica,2010,174:165-177
    [116]Harjes C E, Rocheford T R, Bai L, et al. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification [J]. Science,2008,319:330-333
    [117]Hayano-Kanashiro C, Calderon-Vazquez C, Ibarra-Laclette E, et al. Analysis of Gene Expression and Physiological Responses in Three Mexican Maize Landraces under Drought Stress and Recovery Irrigation [J]. PLoS ONE, 2009,4(10):e7531
    [118]Herrero M P, Johnson R R. Drought stress and its effects on maize reproductive systems [J]. Crop Science,1981,21 (1):105-110
    [119]Holloway B, Luck S, Beatty M et al. Genome-wide expression quantitative trait loci (eQTL) analysis in maize [J]. BMC Genomics,2011,12:336
    [120]Hsiao T C.Plant responses to water stress [J] Plant physiology,1973,24:519-570
    [121]Huang X, Feng Q, Qian Q, et al. High-throughput genotyping by whole genome resequencing [J]. Genome Research,2009,19:1068-1076
    [122]Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants [J]. Annu Rev Plant Physiol Plant Mol Biol,1996,47:377-403
    [123]Ingvarsson P K, Street N R. Association genetics of complex traits in plants [J]. New Phytologist,2011,189:909-922
    [124]Jansen R C, Nap J P. Genetical genomics:the added value from segregation. Trends Genet,2001,17:388-391
    [125]Jeanneau M, Gerentes D, Foueillassar X, et al. Improvement of drought tolerance in maize:Towards the functional validation of the ZM-ASR1 gene and increase of water use efficiency by over-expressing C4-PEPC [J]. Biochimie,2002,84:1127-1135
    [126]Kramer P J. Drought stress and the origin of adaptation [M]. New York:John Wiley and Sons,1980.7-20
    [127]Kump K L, Bradbury P J, Wisser R J, et al. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population [J]. Nature Genetics,2011,43:163-U120
    [128]Lander E S, Green P, Abrahamson J, et al. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations [J]. Genomics,1987,1:174-181
    [129]Landi P, Giuliani S, Salvi S, et al. Characterization of root-yield-1.06, a major constitutive QTL for root and agronomic traits in maize across water regimes [J]. J Exp Bot,2010,61:3553-3562
    [130]Lebreton C, Lazic-Jancic V, Steed A, et al. Identification of QTL for drought responses in maize and their use in testing causal relationships between traits [J]. J Exp Bot,1995,46:853-865
    [131]Levitt J. Response of plants to environmental stresses [M]. New York: Academic press,1980.325-328
    [132]Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping [J]. Genetics,2007,175:361-374
    [133]Li H, Hearne S, Banziger M, et al. Statistical properties of QTL linkage mapping in biparental genetic populations [J]. Heredity,2010,105:257-267
    [134]Li L, Hao Z F, Li X H, et al. An analysis of the polymorphisms in a gene for being involved in drought tolerance in maize [J]. Genetica,2011,139:479-487
    [135]Li Y, Liu C, Shi Y, et al. Genetic location and evaluation of chromosomal segments for drought tolerance at flowering stage in maize using selected backcross populations [J]. Plant Breeding,2009,128,342-347
    [136]Lu G H, Tang J H, Yan J B, et al. Quantitative trait loci mapping of maize yield and its components under different water treatments at flowering time [J]. J Integr Plant Biol,2006,48:1233-1243
    [137]Lu Y L, Zhang S H, Shah T, et al. Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize [J]. Proc Natl Acad Sci USA,2010,107:19585-19590
    [138]Marino R, Ponnaiah M, Krajewski P, et al. Addressing drought tolerance in maize by transcriptional profiling and mapping [J]. Mol Genet Genomics, 2009,281:163-179
    [139]McCouch S R, Cho Y G, Yano M, et al. Report on QTL nomenclature [J]. Rice Genet Newsl,1997,14:11-13
    [140]Messmer R, Fracheboud Y, Banziger M, et al. Drought stress and tropical maize:QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits [J]. Theor Appl Genet,2009,119:913-930
    [141]Messmer R, Fracheboud Y, Banziger M, et al. Drought stress and tropical maize:QTLs for leaf greenness, plant senescence, and root capacitance [J]. Field Crops Research,2011,124:93-103
    [142]Myles S, Peiffer J, Brown P J, et al. Association Mapping:Critical Considerations Shift from Genotyping to Experimental Design [J]. Plant Cell, 2009,21:2194-2202
    [143]Nelson D E, Repetti P P, Adams T R, et al. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres [J]. Proc Natl Acad Sci USA,2007,104:16450-16455
    [144]Passioura J B. Roots and drought resistance [J]. Agric Water Management, 1983,7:265-280
    [145]Pelleschi S, Leonardi A, Rocher J P, et al. Analysis of the relationships between growth, photosynthesis and carbohydrate metabolism using quantitative trait loci (QTLs) in young maize plants subjected to water deprivation [J]. Molecular Breeding,2006,17:21-39
    [146]Prioul J L, Pelleschi S, Sene M, et al. From QTLs for enzyme activity to candidate genes in maize [J]. J Exp Bot,1999,50 (337):1281-1288
    [147]Rafalski A. Applications of single nucleotide polymorphisms in crop genetics [J]. Curr Opin Plant Biol,2002,5:94-100
    [148]Rahman H, Pekic S, Lazic-Jancic V, et al. Molecular mapping of quantitative trait loci for drought tolerance in maize plants [J]. Genet Mol Res,2011,10 (2):889-901
    [149]Ribaut J M, Banziger M, Hoisington D. Genetic dissectin and plant improvement under abiotic stress conditions:drought tolerance in maize as an example [J]. JIRCAS Working Rep,2002,23:85-92
    [150]Ribaut J M, Hoisington D A, Deutsch J A, et al. Identification of quantitative trait loci under drought conditions in tropical maize:Ⅰ. Flowering parameters and the anthesis silking interval [J]. Theor Appl Genet,1996,92:905-914
    [151]Ribaut J M, Jiang C, Gonzalet-de-Leon D, et al. Identification of quantitative traits loci under drought conditions in tropical maize:Ⅱ. Yield components and marker- assisted selection strategies [J]. Theor Appl Genet,1997,94: 887-896
    [152]Ribaut J M, Ragot M. Marker-assisted selection to improve drought adaptation in maize:the backcross approach, perspectives, limitations, and alternatives [J]. J Exp Bot,2007,58 (2):351-360
    [153]Riccardi F, Gazeau P, Jacquemot M P, et al. Deciphering genetic variations of proteome responses to water deficit in maize leaves [J]. Plant Physiol Biochem,2004,42:1003-1011
    [154]Russell W A. Comparative performance for maize hybrids representing different areas of maize breeding.29th Ann Corn and Sorghum Res Conf, 1974,29:81-101
    [155]Sari-Gorla M, Krajewski P, di Fonzo N, et al. Genetic analysis of drought tolerance in maize by molecular markers. Ⅱ. Plant height and flowering [J]. Theor Appl Genet,1999,99:289-295
    [156]Sawkins M, DeMeyer J, Ribaut J M. Drought adaptation in maize. In:Ribaut J M. (Ed.), Drought Adaptation in Cereals [M]. Haworth Press Inc, Binghampton,2006.259-299
    [157]Schnable P S, Ware D, Fulton R S, et al. The B73 maize genome:complexity, diversity, and dynamics [J]. Science,2009,326:1112-1115
    [158]Setter T L, Yan J B, Warburton M, et al. Genetic association mapping identifies single nucleotide polymorphisms in genes that affect abscisic acid levels in maize floral tissues during drought [J]. J Exp Bot,2011,62:701 716
    [159]Stuber C W, Edwards M D, Wendel J F. Molecular-marker-facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits [J]. Crop Science,1987,27:639-648
    [160]Su Z J, Li X H, Hao Z F, et al. Association Analysis of the need and rab28 Genes with Phenotypic Traits Under Water Stress in Maize [J]. Plant Mol Biol Rep,2011,29:714-722
    [161]Szalma S J, Hostert B M, LeDeaux J R, et al. QTL mapping with near-isogenic lines in maize [J]. Theor Appl Genet,2007,114:1211-1228
    [162]Tian F, Bradbury P J, Brown P J, et al. Genome-wide association study of leaf architecture in the maize nested association mapping population [J]. Nature Genetics,2011,43:159-U113
    [163]Tuberosa, R, Salvi S. Genomics-based approaches to improve drought tolerance of crops [J]. Trends Plant Sci,2006,11:405-412
    [164]Tuberosa R, Salvi S, Sanguineti M, et al. Mapping QTL regulating morpho-physiological traits and yield:Case studies, shortcomings and perspectives in drought-stressed maize [J]. Ann Bot,2002a,89:941-963
    [165]Tuberosa R, Sanguineti MC, Landi P, et al. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes [J]. Plant Molecular Biology,2002b,48:697-712
    [166]Turner N C. Drought resistance and adaptation to water deficits in crop plants [M]. New York:John Wiley and Sons,1979.343-372
    [167]Turner N C. Crop water deficits:a decade of progress [J]. Advances in Agronomy 1986,39,1-51
    [168]Vargas M, Van Eeuwijk F A, Crossa J, et al. Mapping QTLs and QTL×environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods [J]. Theor Appl Genet,2006,112:1009-1023
    [169]Wei A, He C, Li B, et al. The pyramid of transgenes TsVP and BetA effectively enhances the drought tolerance of maize plants [J]. Plant Biotechnol J,2010,9 (2):216-229
    [170]Xiao Y N, Li X H, George M L, et al. Quantitative trait locus analysis of drought tolerance and yield in maize in China [J]. Plant Mol Biol Rep,2005, 23:155-165
    [171]Xu Y B, Crouch J H. Marker-assisted selection in plant breeding:from publications to practice [J]. Crop Science,2008,48:391-407
    [172]Yan J B, Kandianis C B, Harjes C E, et al. Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain [J]. Nature Genetics,2010, 42:322-327
    [173]Yan J B, Warburton M, Crouch J. Association Mapping for Enhancing Maize (Zea mays L.) Genetic Improvement [J]. Crop Science,2011,51:433-449
    [174]Yang J, Zhu J, Williams R W. Mapping the genetic architecture of complex traits in experimental populations [J]. Bioinformatics,2007,23:1527
    [175]Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice [J]. Plant Mol Biol,1997,35:145-153
    [176]Yu J M, Holland J B, McMullen M D, et al. Genetic design and statistical power of nested association mapping in maize [J]. Genetics,2008,178:539-551
    [177]Yu J M, Pressoir G, Briggs W H, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness [J]. Nature Genetics,2006,38:203-208
    [178]Yu L X, Setter T L. Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit [J]. Plant Physiology,2003,131:568-582
    [179]Zhang L Y, Wang S Q, Li H H, et al. Effects of missing marker and segregation distortion on QTL mapping in F2 populations [J]. Theor Appl Genet,2010,121:1071-1082
    [180]Zhu J J, Wang X P, Sun C X, et al. Mapping of QTL Associated with Drought Tolerance in a Semi-Automobile Rain Shelter in Maize (Zea mays L.) [J]. Agricultural Sciences in China,2011,10 (7):987-996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700