用户名: 密码: 验证码:
桥联聚倍半硅氧烷杂化材料及其金属配合物的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥联聚倍半硅氧烷是一类新型的具有特殊性能的杂化材料,其前驱体单体的通式为:(R'O)3Si-R-Si-(OR')3,式中R'是烷基,R是作为“桥联”的有机功能性基团。有机桥联基团通过Si-C共价键使有机和无机组分相连并均匀分布于整个材料中,不存在普通杂化材料出现的两相分离以及相界面结合性弱的特点。它集无机材料优异的力学性能、高耐热性和有机材料柔韧性好、强度高等特点为一体,较普通的物理填充生成的杂化材料具有更为优异,在手性催化剂载体、介孔材料等领域有了广泛的应用,作为金属吸附材料或金属配位的功能材料的研究已经成为近几年的热点。此类金属配位的功能材料的结构特点是,有机桥联基团中具有与金属离子强烈配位的原子(N、O、S等)。当前,大部分的研究都集中在光电材料以及重金属吸附材料等领域,本文选择了含具有与金属离子强烈配位能力的芳环亚胺及联吡啶基的两类有机桥联的桥联倍半硅氧烷为前驱体,通过溶胶-凝胶法制备了相应的桥联聚倍半硅氧烷及其金属配位聚合物,经过表征,研究了它们的热性能、结构性能并测定相应配位聚合物的磁性能,得到了一些创新性结果。研究的主要内容包括:
     (1)以合成的三种含芳基亚胺桥联倍半硅氧烷为单体,加入镍盐(醋酸镍),盐酸作为催化剂,利用溶胶-凝胶法制备了此类桥联聚倍半硅氧烷2,2'-PSBBS(3a,b)、4,4'-PSBBS(3')及其配合物2,2'-PSBBSS-Ni(4a,b)、4,4'-PSBBS-Ni(4')。通过红外、紫外等分析手段发现在配合物中相应吸收峰出现一定程度的红移,结合元素分析验证了配合物的结构。同时,运用TGA、SEM、XRD等测试手段对它们相应的性能进行测试,结果表明,这些桥联聚倍半硅氧烷金属配合物的热稳定性较相应的桥联聚倍半硅氧烷有一定程度的提高,聚合物均为均一的球状粒子,有一定的团聚,相应的金属配合物表现出无定形、非晶态结构,在小角XRD中并无衍射信号,为非介孔材料。在低温下对三种金属配合物的磁性能进行研究,它们的居里-外斯温度都为正,表明它们都具有铁磁性,其中2,2'-PSBBS-Ni(4a)具有较大的矫顽力(1820 Oe)、剩余磁感强度(2.51 emu/g)以及磁滞回线面积,表现出硬铁磁性,而2,2'-PSBBS-Ni(4b)和4:4'-PSBBS-Ni(4')具有较小的矫顽力(350 Oe和36 Oe)、剩余磁化强度(0.1966 emu/g和0.005 emu/g)以及磁滞回线面积,表现出软铁磁性,但是4,4'-PSBBS-Ni(4')在70K时存在一个从铁磁体到抗磁体的转变温度而表现出特殊的性质。
     (2)以合成的含联吡啶基桥联倍半硅氧烷BPYBS(4)为单体,分别加入镍盐(醋酸镍)或铽盐(氯化铽),以盐酸作为催化剂,经过水解缩聚也制备了此类桥联聚倍半硅氧烷BPYPBS及配合物BPYPBS-Ni2+和BPYPBS-Tb3+。运用与上述相同的分析测试手段对它们进行了结构的表征和性能的测试。结果表明,这两种配合物热稳定性较BPYPBS有一定的提高,聚合物为均一的球状粒子,有团聚现象,经XRD分析,BPYPBS及其配合物BPYPBS-Ni2+和BPYPBS-Tb3+为无定形、非晶态结构,并且为非介孔材料。两种配合物的磁性能研究表明两者都具有铁磁性,BPYPBS-Ni2+具有较大的矫顽力、剩余磁感强度以及磁滞回线面积,表现出硬铁磁性,而BPYPBS-Tb3+具有很小的矫顽力、剩余磁感强度以及磁滞回线面积,表现出软铁磁性。
Bridged polysilsesquioxanes are a kind of novel hybrid material, which exhibit many excellent properties. The general formula of their precursors is (R'O)3Si-R-Si-(OR')3, where R' stands for alkyl while R represents an organic functional group. The organic bridging group covalently bond to the component by Si-C bond throughout the whole material. Compared to normal hybrid materials, there is no two-phase separation and weak interfacial bonding occuring in bridged polysilsesquioxanes. It combines excellent mechanical properties, heat resistance of inorganic materials and good flexibility, high intensity of organic materials together and is superior to those of ordinary hybrid materials. Bridged polysilsesquioxanes have been widely applied as chiral catalyst support and mesoporous materials. It also has attracted increasing attention in the field of metal absorption materials and metal-coordinated functional materials in recent years. Generally, this kind of bridged materials always posseses special atoms (N,O, S, etc.), which have a strong coordination ability with metal ions. However, most studies have focused on those of photo-electric materials and heavy metal absorption materials. In this paper, the preparation of two serieses of novel bridged polysilsesquioxanes and their metal coordination polymer based on aromatic imine and bipyridyl are presented. Their thermal properties, structure properties and magnetic properties were investigated. Some significant results were also obtained. The main results are outlined below:
     (Ⅰ) Bridged polysilsesquioxanes 2,2'-PSBBS-(3a,b)、4,4'-PSBBS (3') and their metal coordinated polymer 2,2'-PSBBS-Ni (4a,b)、4,4'-PSBBS-Ni (4') were prepared by sol-gel method from three kinds of aromatic imine-bridged silsesquioxanes and Nickle salt (Nickel acetate) under the catalysis of diluted hydrochloric acid. The structures of the coordinated polymers were verified with infrared ray spectrometry, ultraviolet spectrometry and elemental analysis. It was found that the corresponding absorption peak of the coordinated polymer showed an obvious red shift. At the same time, the properties of these polymers were investigated with thermogravimetric analysis (TGA), scanning electron microscope (SEM) and X-ray diffraction (XRD). The TGA results suggested that the thermal stabilities were improved compared to those of corresponding bridged polysilsesquioxanes. Based on the SEM images, it was displayed that the homogeneous and spherical particles were formed. From the XRD investigation, it was found that the coordinated polymer were all amorphous and non-crystalline. The fact that there were no diffractive signals in the small-angle XRD also suggested that they were not mesoporous materials. The magnetic properties of the three imine-bridged polysilsesquioxanes and their coordinated polymers were examined. The Courier temperature was above zero, which means they all showed ferromagnetism. The fact that 2,2'-PSBBS-Ni (4a) exhibited large coercive force (1820 Oe), remanent magnetization (2.51emu/g) and area of magnetic hysteresis loop suggested a hard-ferromagnet. However,2,2'-PSBBS-Ni (4b) and 4,4'-PSBBS-Ni (4') were a soft- ferromagnet. It is worth noting that there existed a transition temperature at 70K for 4,4'-PSBBS-Ni (4'), above which it was a diamagnet and below a ferromagnet.
     (Ⅱ) Bridged polysilsesquioxanes BPYPBS together with its metal coordinated polymer (BPYPBS-Ni2+) and (BPYPBS-Tb3+) were also prepared by sol-gel technology from bipyridyl-bridged silses- quioxanes and the nickle salt (Nickel acetate) or terbium salt (Terbium chloride) under the catalysis of diluted hydrochloric acid. The structure and properties of the polymers were characterized through the same method as described in section (Ⅰ). The results showed that the thermal stabilities of the coordinated polymers were also improved compared to those of bridged polysilsesquioxanes. SEM images showed that the surfaces were homogeneous and the globular particles were also congregated together. In addition, all of them were amorphous and had no mesostructure.The magnetic properties of the two coordinated polymers were tested and both exhibited ferromagnetism. BPYPBS-Ni2+ was a hard-ferromagnet due to its large values of coercive force (1290 Oe), remanent magnetization (7.24 emu/g) and area of magnetic hysteresis loop. However, BPYPBS-Tb3+ was a soft-ferromagnet ascribed to its small values of coercive force (18.74 Oe), remanent magnetization (0.01 emu/g) and area of magnetic hysteresis loop.
引文
[1]Loy, D. A; Shea. K. J. Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials[J]. Chem. Rev. 1995,95:1431-1442
    [2]Shea. K. J; Loy, D. A. A Mechanistic Investigation of Gelation. The Sol-Gel Polymerization of Bridged Silsesquioxane Monomers[J]. Acc. Chem. Res.2001,34:707-716
    [3]Corriu, R. J. P; Leclercq, D. Recent Development of Molecular Chemistry for Sol-Gel ProcessesfJj. Angew. Chem. Int. Ed. Engl.1996,35:1420-1436
    [4]Corriu, R. A new trend in metal-alkoxide chemistry:the elaboration of monophasic organic-inorganic hybrid materials[J]. Polyhedron.1998,17:925-934
    [5]Cerveau, G; Corriu, R. J. P. Some recent developments of polysilsesquioxanes chemistry for material science[J]. Coord. Chem. Rev.1998,178-180:1051-1071
    [6]Cerven, G; Corriu, R. J. P; Framery, E. J. Mater. Chem.2001,2758-2764
    [7]Boury, B; Corriu, R. J. P; Muramatsu, H. Organisation and reactivity of silicon-based hybrid materials with various cross-linking levels[J]. New J. Chem.2002:981-988
    [8]Boury, B & Corriu, R. J. P. Auto-organisation of hybrid organic-inorganic materials prepared by sol-gel chemistry[J]. Chem. Commun.2002,8:795-802
    [9]Corriu, R. J. P. The Control of Nanostructured Solids:A Challenge for Molecular Chemistry[J]. Eur. J. Inorg. Chem.2001,1109-1121
    [10]Liu, J. L; Yan, B. et al. Lanthanide (Eu3、Tb3+) Centered Hybrid Materials using Modified Funct ional Bridge Chemical Bonded with Silica:Molecular Design, Physical Characterization, and Photophysical Properties[J]. J. Phys. Chem. B 2008,112:10898-10907
    [11]Lin, N. N; Li, H. R; Wang, Y. G. et al. Luminescent Triazine-Containing Bridged Polysilsesquioxanes Activated by Lanthanide Ions[J]. Eur. J. Inorg. Chem.2008,4781-4785
    [12]Baney, R. H; Itom, M; Sakskibara, A. et al. Silsesquioxanes[J]. Chem. Rev 1995,95:1409-1430
    [13]Corriu, R. J. P; Leclercq, D. Recent Developments of Molecular Chemistry for Sol-Gel ProcessesfJ]. Angew. Chem. Int. Ed. Engl.1995,35:1420-1436
    [14]Loy, D. A; Shea, K. J. Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials[J]. Chemical Reviews.1995,95:1431-1442
    [15]Loy, D. A; Shea, K. J. Bridged Polysilsesquioxanes.Molecular-Engineered Hybrid Organic-Inorganic Materials[J]. Chem. Rev.2001,13,3306-3319
    [16]Cerveau, G. et al. talior-made silicon-oxygen compd[lect.workshop],1996,273-293
    [17]Corriu, R. J. P; Alauzun, J. Reversible Covalent Chemistry of CO2:An Opportunity for Nano Structured Hybrid Organic-Inorganic Materials [J]. Chem. Mater.2008,20:503-513
    [18]杨东江,徐耀,张磊等.溶胶-凝胶法制备桥式聚倍半硅氧烷/SiO2光学防潮膜[J].化学学报.2005,63:1461-1464
    [19]吴节莉,赵辉鹏,徐敏等.超支化高分子桥联聚倍半硅氧烷复合物的NMR研[J].波谱学杂志.2008,25:1-10
    [20]Yuen, S. M; Ma, C. C. Morphological, electrical, and mechanical properties of multiwall carbon nanotube/polysilsesquioxane composite[J]. J. Appl. Polym. Sci.2008,109:2000-2007
    [21]Dabrowski, A; Barczak, M. Bridged Polysilsesquioxane Xerogels Functionalizated by Amine and Thiol-Groups:Synthesis, Structure, Adsorption Properties[J]. Adsorption.2005,11:501-517
    [22]Dabrowsk, A; Barczak, M. FT-IR/PAS studies of ethylene-bridged polysilsesquiox-anes functionalized with different groups [J]. EPJ Special Topics,2008,154:301-304
    [23]Fujimoto, Y; Heishi, M; Shimojima, A. et al. Layered assembly of alkoxy- substitut-ed bis(trichlorosilanes) containing various organic bridges via hydrolysis of Si-Cl groups [J]. J. Mater. Chem.2005,15:5151-5157
    [24]Shea, K. J; Loy, D. A. A Mechanistic Investigation of Gelation. The Sol- Gel Polymerization of Precursors to Bridged Polysilsesquioxanes[J]. Ace. Chem. Res.2001,34:707-716
    [25]Loy, D. A; Baugher, B. M; Baugher, C. R. et al. Substituent Effects on the Sol-Gel Chemistry of Organotrialkoxysilanes[J]. Chem. Rev 2000,12,3624-3632
    [26]Loy, D. A; Shea, K. J. Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials[J]. Chem. Rev.1995,95:1431-1432
    [27]Sharp, K. G; Scherer, G. W. Interaction of formic acid with the silica gel network[J]. J. Sol-Gel Sci. Technol.1997,8:165-171
    [28]Yuan, C. Y; Dai, S. An Lonic Liquid Solvent Method to prepare Bridged Polysilsesquioxane Aerogels[R]. America:American Chemical Society,2003
    [29]Khiterer, M; Shea, K. J. Spherical, Monodisperse, Functional Bridged Polysilsesquioxane Nanoparticles[J]. Nano Letters.2007,7:2684-2687
    [30]Cerveau, G; Corriu, R. J. P; Framery, E. Sol-gel process-influence of ageing on the textural properties of organosilsesquioxane materials[J].J. Mater. Chem.2001,11: 713-717
    [31]Genevie, A. C; Corriu, R. J. P; Framery, E. Sol-Gel process:influence of the temperature on the textural properties of organosilsesquioxane materials[J]. J. Mater. Chem.2000,10:1617-1622
    [32]Luo, Y; Yang, P. P; Lin, J. Synthesis and characterization of urea bridged hybrid periodic mesoporous organosilica materials[J]. Microporous Mesoporous Mater. 2008,111:194-199
    [33]Cerveau, G; Corriu, R. J. P; Dabiens, B. Polysilsesquioxane materials containing a dienic unit:unexpected reactivity of the organic unit[J]. J. Mater. Chem.2000,10:1113-1120
    [34]Boury, B; Ben; Corriu, R. J. P. Structure of silica-based organic-inorganic hybrid xerogel [J].J. Non-Cryst. Solids.2000,265:41-50
    [35]Li, H. R; Lin, J; Zhang, H. J. Novel, covalently bonded hybrid materials of europium (terbium) complexes with silica[J]. Chem., Commun.2001,13:1212-1213
    [36]Franville, A. C; Zambon, D; Mahiou, R. Luminescence behavior of sol-gel-derived hybrid mater-ials resulting from covalent grafting of a chromophore unit to different organically modified alkoxysilanes[J]. Chem. Mater.2000,12:428-435
    [37]Raehm, L; Mehdi, A; Wickleder, C. et al. Unexpected Coordination Chemistry of Bisphenanthroline Complexes within Hybrid Materials:A Mild Way to Eu2+ Containing Materials with Bright Yellow Luminescence[J]. Am. Chem. Soc.2007,129:12636-12637
    [38]Corriu, R. J. P; Embert, F; Guari, Y. et al. Guilard, Coordination Chemistry in the Solid:Evidence for Coordination Modeswithin Hybrid Materials Different from those in Solution[J]. Chem. Eur. J.2002,8:5732-5741
    [39]Shea, K. J; Moreau, J; Loy, D. A. et al. Bridged Polysilsesquioxanes. Molecular Engineering Nanostructured Hy- brid Organic-Inorganic Materials[J]. Functional Hybrid Materials, Wiley- Interscience, New York,2004,50-85
    [40]Choi, K. M; Shea, K. J. Photonic Polymer Synthesis, Marcel Dekker, New York,199 1998
    [41]Innocenzi, P; Lebeau, B. Organic-inorganic hybrid materials for non-linear optics[J]. J. Mater. Chem.2005,15:3821-3831
    [42]Kagan, C. R; Mitzi, D. B; Dimitrakopoulos, C. D. Organic-Inorganic Hybrid Materials as Semi-conducting Channels in Thin-Film Field-Effect Transistors[J]. Science.1999,286:945-947
    [43]Liu, J; Feng, X. D; Fryxell, G. E. Hybrid Mesoporous Materials with Functionalized Monolayers [J]. et al. Adv. Mater.1998,10:161-165
    [44]Mercier, L; Pinnavaia, T. J. Access in mesoporous materials:Advantages of a unif-orm pore structure in the design of a heavy metal ion adsorbent for environmental remediation[J]. Adv. Mater.1997,9:500-503
    [45]Besson, E; Mehdi, A; Chollet, H. et al. Synthesis and cation-exchange properties of a biszwitteric lamellar hybrid material[J].J. Mater. Chem.2008,18:1193-1195
    [46]Liu, F, Y; Fu, L. S; Wang, J. et al. Luminescent film with terbium-complex-bridged polysilsesquioxanes [J]. New J. Chem.2003,27:233-235
    [47]Yuan, C. Y; Chen, S. Y; Tang, J. C. et al. Physical and electrochemical properties of low Molecure weight poly(ethylene glycol)-bridged polysilsesquioxane organic-ino-rganic composite electrolyes via sol-gel process [J]. J. Appl. Polym. Sci.2007,103: 2752-2758
    [48]Haehyun, N; Bruno, B. Anisotropic Polysilsesquioxanes with Fluorescent Organic Bridges:transcription of Strong p-p* Interactions of Organic Bridges to the Long-Range Ordering of Silsesquioxanes[J]. Chem. Mater.2006,18:5716-5721
    [49]Zhao, L. H; Loy, D. A & Shea, K. J. et al. Photodeformable Spherical Hybrid Nanoparticles[J]. J. Am. Chem. Soc.2006,128:14250-14251
    [50]Zhao, L. H; Matthias, V; Loy, D. A. et al. Photoresponsive Hybrid Materials:Synthesis and Characterization of Coumarin-Dimer-Bridged Polysilsesquioxanes[J]. Chem. Mater.2008,20: 1870-1876
    [51]Lin, N. N; H, R; Wang. Y. G. et al. Luminescent Triazine-Containing Bridged Polysilsesquioxanes Activated by Lanthanide Ions[J] Eur. J. Inorg. Chem.2008,4781-4785
    [52]Hasegawa, G. Kanamori, K; Nakanishi, K. et al. A New Route to Monolithic Macroporous SiC/C Composites from Biphenylene-bridged Polysilsesquioxane Gels[J]. Chem. Mater.2010, Articles ASAP (As Soon As Publishable)
    [53]Chui, C; Corriu, R. J. P; Dubois, G. et al. Hybrid organic-inorganic materials. Preparation and properties of dibenzo-18-crown-6 ether-bridged polysilsesquioxanes[J]. Chem. Commun.1999,8: 723-724
    [54]Sheng, D; Burleigh, M. C; Ju, Y. H. et al.Hierarchically Imprinted Sorbents for the Separation of Metal Ions[J]. J. Am. Chem. Soc.2000,122:992-993
    [55]Zub. Y. L; Stolyarchuk, N. V; Melnyk, I. V. et al. New adsorbents based on bridged polysilsesquioxanes containing 3-mercaptopropyl functional groups[J]. Mendeleev. Commun.2005,15:168-170
    [56]Dabrowski A, Barczak M. Ethylene and phenylene bridged polysilsesquioxanes functionalized by Amine and thiol groups as adsorbents of volatile organic compou-nds[J]. Applied. Surface.Science.2007,253:5747-5751
    [57]Bandgar, B. P; Kasture, S. P; Kamble,V. T. et al. Chemoselective acetylation of Alcohols, Amines and Thiols without Catalyst and Solvent[J]. Synth. Commun.2001, 31:2255-2258
    [58]Shea, K. J; Small, J. H. Bridged Polysilsesquioxanes Xerogels[R]. America:American Chemical Society, 2004
    [59]Chen, C. T; Suslick, K. S. One-dimensional coordination polymers:Applications to material science[J]. Coord. Chem.Rev.1993,128:293-322
    [60]Day, P. Coordination complexes in two dimensional magnets and superconductors[J]. Coord. Chem.Rev.1999,190-102,827-839
    [61]Yaghi, O. M; Li, H; Davis, C. et al. Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids[J]. Acc. Chem. Res.1998,31:474-484
    [62]Hagrman, P. J; Hagrman, D; Zubieta, J. Organic-Inorganic Hybrid Materials:From Simple Coordination Polymers to Organodiamine-Templated Molybdenum Oxides[J]. Angew. Chem. Int. Ed.1999,38:2638-2684
    [63]Kahn, O; Martinez, C. Spin-Transition Polymers:From Molecular Materials Toward Memory Devices[J]. Science.1998,279:44-48
    [64]Cote. A. P & Shimizu, G. K. H. The supramolecular chemistry of the sulfonate group in extended solids[J], Coord. Chem.Rev.2003,245:49-64
    [65]Li, M. X; Xie, G. Y; Gu, Y. D. et al. Synthesis, characterization and magnetic properties of one dimensional 4,4'-bipyridine-bridged manganese(Ⅱ) complex:Crystal structure of [Mn(μ-4,4'-bipy)(4,4'-bipy)(NCS)2(H2O)2]n[J].Polyhedron.1995,14:1235-1239
    [66]Hou. H. W; Meng, X. R; Song, Y. L. et al. Two-dimensional rhombohedral grid coordination polymers [M(bbbt)2(NCS)2]n (M= Co, Mn or Cd; bbbt=1,1'-(1,4-bu- tanediyl)bis-1H-benzo-triazole):synthesis, crystal structures and third-order nonlinear optical properties[J]. Inorg. Chem.2002,41:4068-4075
    [67]Dong, Y. B; Smith, M. D; Layland, R. C. et al. Novel hydrogen-bonded two- and three-dimensional networks generated from the reaction of metal nitrate hydrates (M= Cd, Co) with the bidentate linear ligand 4,4-bipyridine[J]. Dalton Trans.2000,5:775-780
    [68]Kaes, C; Katz, A; Hosseini, M. Bipyridine:The Most Widely Used Ligand. A Review of Molecules Comprising at Least Two 2,2'-Bipyridine Units[J]. Chem. Rev.2000,100:3553-3590
    [69]Olenyuk, B; FechtenkOtter, A & Stang, P. J. Molecular architecture of cyclic nanostructures:use of co-ordination chemistry in the building of supermolecules with predefined geometric shapes[J]. J.Chem.Soc. Dalton Trans.1998,1707-1728
    [70]Jones, C. J. Transition metals as structural components in the construction of molecular containers[J]. Chem. Soc. Rev 1998,27:289-299
    [71]MacGillivray, L. R; Atwood, J. L. Structural Classification and General Principles for the Design of Spherical Molecular Hosts[J]. Angew Chem. Int. Ed.1999,38:1018-1033
    [72]Black, A. J; Champness, N. R; Hubberstery, P; Li, W. S. et al. Inorganic crystal engineering using self-assembly of tailored building-blocks[J]. Coord. Chem. Rev.1999,183:117-138
    [73]Zaworotko, M. J. Crystal engineering of diamondoid networks[J]. Chem. Soc. Rev.1994,23: 283-288
    [74]Burrows, A.D; Mingos, D. M. P; White, A. J. P. et al. Crystal engineering of metal complexes based on charge-augmented double hydrogen-bond interactions between thiosemicarbazides and carboxylates[J]. Chem. Commun.1996,1:97-99
    [75]Desiraju, G. R. Designer crystals:intermolecular interactions, network structures and supramolecular synthons[J]. Chem. Commun.1997,16:1475-1482
    [76]Show, E & Gourdon, A. Observation of supramolecular-dimerization of a dinuclear ruthenium complex by 1H NMR and ESMS[J]. Chem. Commun.1998,17:1909-1910
    [77]Hunter, C. A & Sanders, J. K. M. The nature of.pi.-.pi. interactions[J]. J. Am. Chem. Soc.1990, 112:5525-5534
    [78]Sauvage, J. P; Collin, J. P; Chambron, J. C. et al. Chem. Rev.1994,94:993
    [79]Munakata, M; Wu, L. P; Yamamoto, M. et al. Construction of Three-Dimensional Supramolecular Coordination Copper(Ⅰ) Compounds with Channel Structures Hosting a Variety of Anions by Changing the Hydrogen-Bonding Mode and Distances[J]. J. Am. Chem. Soc.1996,118: 3117-3124
    [80]Sugimori, T; Ohata, N; Kaiwai, K. et al. Structural Dependence of Aromatic Ring Stacking and Related Weak Interactions in Ternary Amino Acid- Copper(Ⅱ) Complexes and Its Biological Implication[J]. Inorg. Chem.1997,36:576-583
    [81]Desiraju, G. R. Designer crystals:intermolecular interactions, network structures and supramolecular synthons[J]. Chem. Commun.1997,16:1475-1482
    [82]Carlucci. L; Ciani. G; Proserpio, D. M. et al. J. Chem. Soc. Dolton. Trans.1997,1801-1803
    [83]Barton, J. K; Dannenberg, J. J; Raphael, A. L. Enantiomeric Selectivity in Bindin Tris (phenanthrolineycinc(Ⅱ) to DNA[J]. J. Am. Chem. Soc.1982,104(18):4967-4969
    [84]倪现花,童碧海&张千峰.功能化环金属铱(Ⅲ)配合物的应用进展[J].安徽工业大学学报2010,12,2-7
    [85]Barton, J. K.; Danishefsky, A. J:Goldberg, J. M. Tris(phenanthroline)ruthenium(Ⅱ): Stereoselectivity in Binding to DNA[J]. J. Am. Chem. Soc.1984,106(7):2172-2176
    [86]宋玉民,康敬万,高锦章.钴配合物与DNA作用的研究.无机化学学报.2000,16:53-57
    [87]Shi, X. H; You, X. Z; Li, C. et al. Synthesis, spectral and magnetic studies on mixed-ligand complexes M(DIAFO)2(NCS)2 and M(DIAFH)2X2 (M= FeⅡ, CoⅡ, NiⅡ). The crystal structure of Co(DIAFO)2(NCS)2[J]. Transition Met. Chem.1995,20:191-195
    [88]Lu, Z. L; Duan, C. Y; Tian, Y. P. et al. Synthesis, Characterization, and Crystal Structure of a Novel Copper(II) Complex with an Asymmetric Coordinated 2,2'-Bipyridine Derivative:A Model for the Associative Complex in the Ligand-Substitution Reactions of [Cu(tren)L]2+[J]. Inorg. Chem.1996,35:2253-2258
    [89]Menon, S; Rajasekharan, M. V. Bischelate Cu(Ⅱ) Complexes of Dafone-synthesis, Structural, EPR and Optical Spectral Studies[J]. Polyhedron 1998,17 (15):2463-2476.
    [90]成义祥,徐端钧,徐元植.铕(Ⅲ)-β-二酮-4,5一二氮芴-9-酮三元配合物的合成.应用化学.1997,14:78-80
    [91]Wang, Y. X; Perez, W; Zhang, G. Y. et al. Inorg. Chem. Syntheses and Electrochemical, Photophysical, and Photochemical Properties of Ruthenium(II) 4,5-Diazafluorenone Complexes and Their Ketal Derivatives[J].1998,37:2051-2059
    [92]Batten, S. R; Hoskins, B. F. J & Robson, R. J. Two Interpenetrating 3D Networks Which Generate Spacious Sealed-Off Compartments Enclosing of the Order of 20Solvent Molecules in the Structures of Zn(CN)(NO3)(tpt)2/3.cntdot.solv (tpt=2,4,6-tri(4-pyridyl)-1,3.5-triazine, solv=.apprx.3/4C2H2Cl4.cntdot.3/4CH3OH or.apprx.3/2CHCl3.cntdot.1/3CH3OH)[J]. J. Am. Chem. Soc,1995,117:5385-5386
    [93]Khatua, S; Kang, J; Huh, J.O. et al. Synthesis, Structure, and Magnetic Properties of Closely Related Mono-and Di-Cu(Ⅱ) Schiff Base Complexes:Formation of Water Clusters and Hydrogen-Bonded Networks [J]. Crystal Growth & Design.2010,10:327-334
    [94]Sui, Y; Li, D. P; Li, C. H. et al. Ionic Ferroelectrics Based on Nickel Schiff Base Complexes [J]. Inorg. Chem.2010,49:1286-1288
    [95]Wang, J. Q; Huang, K; Xue, M. et al. Architecture of a Hybrid Mesoporous Chemosensor for Fe3+ by Covalent Coupling Bis-Schiff Base PMBA onto the CPTES-Functionalized SBA-15 [J]. J. Phys. Chem. C.2008,112:5014-5022
    [96]Reger, T. S; Janda, K. D. Polymer-Supported Mn Catalysts For Asymmetric Epoxidation:A Comparison between Soluble and Insoluble Matrices[J]. J. Am. Chem. Soc.2000,122:6929-6934
    [97]张栋梅,范玉华,毕彩丰等.一种异双希夫碱及其Cu(Ⅱ)配合物的合成、表征与荧光性质[J].光谱学与光谱分析2007,27:335-338
    [98]Thunus, L; Lejeune, R. C. Overview of transition metal and lanthanide complexes as diagnostic tools[J]. Chem. Rev.1999,184:125-155
    [99]Tsukube, H; Shinoda, S. et al. Lanthanide Complexes in Molecular Recognition and Chirality Sensing of Biological Substrates[J]. Chem. Rev.2002,102:2389-2404
    [100]董文魁,杨汝栋 & 闫兰.镧系大环希夫碱配合物的研究[J].兰州大学学报(自然科学版)2001,37:33-36
    [101]Bian, H. D; Gu, W; Xu, J. Y. et al. The First μ3-oxalato-bridged Copper Complex with Tridentate Schiff Base Ligand N-ethyl-N'-salicylidene-1.2-diaminoethane:Synthesis, Structure and Magnetic Properties[J]. Inorg. Chem.2003,42:4265-4267
    [102]Vaugha, A. E; Bassil, D. B; Barnes, C. L. et al. Contrasting Solvent and Capping Ligand Effects Directing the Photochemistry of Uranyl(VI) Schiff Base Complexes [J].J.Am. Chem. Soc.2006,128:10656-10657
    [103]Herchel, R; Boc, R; Gembicky, M.et al. Magnetic Properties of a Manganese(Ⅱ) Trinuclear Complex Involving a Tridentate Schiff-Base Ligand[J]. Inorg. Chem.2007,46:1544-1546
    [104]Adsule, S; Barve, V; Chen, D. et al. Novel Schiff base copper complexes of quinoline-2-carbox-aldehyde as proteasome inhibitors in human prostate cancer cells[J]. J. Med. Chem. 2006,49:7242-7246
    [105]Balasubramanian, K. P; Parameswari, K; Chinnusamy, V. et al. Synthesis, characte-rization, electro chemistry, catalytic and biological activities of ruthenium(Ⅲ) complexes with bidentate N, O/S donor ligands[J]. Spect.chim.Acta.Part A.2006,65:678-683
    [106]Mohamed, G. G. Synthesis, characterization and biological activity of bis(phenylimine) Schiff base ligands and their metal complexes[J]. Spect.chim.Acta.Part A.2006,64:188-195
    [107]Lv, J; Liu, T; Cai, S. et al. Synthesis, structure and biological activity of cobalt(Ⅱ) and copper(Ⅱ) complexes of valine-derived schiff bases[J]. J. Mol. Struct.2006,100:1888-1896
    [108]Singh, B. K; Jetley, U. K. Sharma, R. K. et al. Synthesis, characterization and boil-ogical activity of complexes of 2-hydroxy-3,5-dimethylacetophenoneoxime(HDM-AOX) with copper(Ⅱ), cobalt(Ⅱ), nickel(Ⅱ) and palladium(Ⅱ)[J]. Spect.chim.Acta. Part A.2006,68:63-73
    [109]Prabhakaran, R; Huang, R; Natarajan, K. X-ray crystallographic investigation and biological activities of Ru(Ⅲ) complexes containing Schiff base and triphenyl phosphine/arsine[J]. Inorg. Chi m. Acta.2006,359:3359-3362
    [110]Gaballa, A. S; Asker, M. S; Barakat, A. S. et al. Synthesis, characterization and biological activity of some platinum(II) complexes with Schiff bases derived from salicylaldehyde,2-furaldehyde and phenylenediamine[J]. Spect.chim.Acta.Part A.2007,67: 114-121
    [111]Kannan, S; Ramesh, R. Synthesis, characterization, catalytic oxidation and biologi-cal Activity of ruthenium(Ⅲ) Schiff base complexes derived from 3-acetyl-6-meth yl-2H-pyran-2,4(3H)-dione[J]. Polyhedron.2006,25:3095-3103
    [112]Mohamed, G. G & Sharaby, C. M. Metal complexes of Schiff base derived from sulphametrole and o-vanilin:Synthesis, spectral, thermal characterization and biological activity Spect. chim.Acta.Part A.2007,66:949-958
    [113]Sinha, D; Tiwari, A. K; European, S. S. et al. Synthesis,characterization and biological activity of Schiff base analogues oftndole-3-carboxaldehyde[J].J. Mol. Struct.2008,43:160-165
    [114]Mascarenhas, C. M; Miller, S. P; White, P. S.et al. First Catalytic Asymmetric Aldol-Tishchenko Reaction-Insight into the Catalyst Structure and Reaction Mechanism[J]. Angew. Chem. Int. Ed. 2001,40:601-603
    [115]Lauterwasser, F; Hayes, P. G; Braese. S. et al. Scandium-Catalyzed Intramolecular Hydroamination. Development of a Highly Active Cationic Catalyst[J]. Organometallics.2004, 23:2234-2237
    [116]Kahn. O; Journaux, P. Y. Joha Wiley&Sons Ltd.1996,66
    [117]Kahn,O; Pei, Y; Verdaguer, M. et al. Magnetic ordering of manganese(Ⅱ) copper (Ⅱ)bimetallic chains; design of a molecular based ferromagnet[J]. J. Am. Chem. Soc.1988,110: 782-789
    [118]Nakatani, K; Bergrat, P; Codjovi. E. et al. Optimization of a molecular-based [manganese copper] magnet:MnCu(pbaOH)(H2O)2 (pbaOH= 2-hydroxy-1,3-pro pylenebis(oxamato)) with Tc= 30 K[J]. Inorg. Chem.1991,30:3977-3978
    [119]Mallah, T; Thiebaut, S & Verdaguer, M. High-Tc Molecule-based Magnets:Ferrimagnetic Mixed-valence Chromium(Ⅲ)-chromium(Ⅱ) with Tc at 240 and 190 Kelvin[J]. Science.1993, 262:1554-1557
    [120]徐汉红&朱传方.亚胺及其络合物的可逆热致变色材料[J].化学通报.2000,8:15-20
    [121]杨昌晖,杨志斌&张纯名.新亚胺3,5一二溴水杨醛缩氨基硫脲的合成及其分析应用研究一荧光熄灭法测定微量银[J].分析化学,1993,21:1272-1274
    [122]陈琪,朱海亮,戚穗坚等.六氮杂大环希夫碱与银(Ⅰ)系列配合物的抗肿瘤活性研究[J].中山大学学报(自然科学版).2001,40:66-67
    [1]Alice, A; Ou, D. L; Ormsby, B. et al. Porous silica and polysilsesquioxane with covalently linked phosphonates and phosphonic acids [J]. J. Mater. Chem.,2000,10:2758-2764
    [2]Chui, C, Corriu, R. J. P, Dubois Get al. Hybrid organic-inorganic materials. Preparation and prop-erties of dibenzo-18-crown-6 ether-bridged polysilsesquioxanes [J].Chem Commun.,1999, (8): 723-724
    [3]Liu, F. Y; Fu L. S; Wang J. et al. Luminescent film with terbium-complex-bridged polysilsesquiox-anes [J]. New J. Chem.,2003,27:233-235
    [4]Yuan, C. Y, Chen, S. Y, Tang, J. C. et al. Physical and electrochemical properties of low Molecular weight poly(ethylene glycol)-bridged polysilsesquioxane organic-inorganic composite electrolytes via sol-gel process [J]. J. Appl. Polym. Sci.,2007,103:2752-2758
    [5]Karmakar, T. K; Ghosh, B. K; Usman, A. et al. Magneto-structural correlations:synthesis of a family of end-on azido-bridged manganese(II) dinuclear compounds with S= 5 spin ground state [J]. Inorg. Chem.2005,44:2391-2399
    [6]Fukuhara, C; Asato, E; Shimoji, T. et al. Mixed oxidation state trinuclear cobalt complexes with bridging sulphito and Schiff-base ligands. Part 1. Preparation of the complexes [CoⅡ(μ-SO3)2(μ-L)2COⅢ2(ROH)2](L= Schiff base anion, R= alkyl) and structure determination of [CoⅡ(μ-SO3)2(μ-,-Me2-salpd)2Co2Ⅲ(PrnOH)2]·2PrnOH[J]. J. Chem. Soc. Dalton Trans.1987,6: 1305-1312
    [7]Fukuhara, C; Tsuneyoshi, K. Synthesis and characterization of trinuclear Schiff-base complexes containing sulphur dioxide or hydrogensulphite ions as bridging groups. Crystal structure of [Zn{(μ-CH3CO2)(salpd-μ-O,O)Cu}2][salpd= propane-1,3-diylbis (salicylideneiminate)][J]. J. Chem. Soc. Dalton Trans.1990,11:3473-3479
    [8]Takano, Y; Kitagawa, Y; Onishi, T. et al. Theoretical Studies of Magnetic Interactions in Mn(Ⅱ) (hfac)_2{di(4-pyridyl)phenylcarbene} and Cu(Ⅱ)(hfac)_2{di(4-pyridyl)phenylcarbene}[J]. J. Am. Chem.Soc.2002,124:450-461
    [9]Chahma, M; Hassan, N; Alberola, A. et al. Preparation and Coordination Complex of the First Imine-Bridged Tetrathiafulvalene-Pyridine Donor Ligand[J]. Inorg. Chem.2007,46:3807-3809
    [10]Ray, M.S; Bhattacharya, R; Chaudhuri, S. et al. Synthesis, characterisation and X-ray crystal structure of copper(Ⅱ) complexes with unsymmetrical tetradentate Schiff base ligands:first evidence of Cu(Ⅱ) catalysed rearrangement of unsymmetrical to symmetrical complex evidence[J]. Polyhedron.2003,22:617-624
    [11]Kohmura, M; Raftery, J; Wernsdorfer, W. et al. Synthesis, structure, and magnetic properties of a [Mn22] wheel-like single-molecule magnet[J]. Inorg. Chem.2004.43(14):4203-4209
    [12]Donahoe, H. B; Benjamin, L. E; Fwnnoy, L. V. Synthesis of Potential Rickettsiostatic Agents Ⅰ. 4,4'-Dicarboxy-α,ω-diphenoxyalkanes[J]. J. Org. Chem.,1961,26:474-476
    [13]Feng, Y. J; Zhang, X.J; Miao, C.B. Reaction of Aromatic Dialdehyde with 5,5-Dim-ethyl-1,3-cyclohexanedione:Synthesis of Heterocyclic Compounds Containing Two 4 H-Pyran or Two 1,4-Dihydropyridine Building Blocks[J]. Chin. J. Org. Chem.2004,24:950-952
    [14]Pearl, I. A. Reactions of Vanillin and Its Derived Compounds. ⅩⅩⅣ. Some Ethers of Vanillin and Vanillic Acid[J]. J. Am. Chem. Soc.1955,77:757-758
    [15]Franville, A. C; Zambon, D; Mahiou, R. Luminescence Behavior of Sol- Gel-Derived Hybrid Materials Resulting from Covalent Grafting of a Chromophore Unit to Different Organically Modified Alkoxysilanes[J]. Chem. Mater,2000,12:428-435
    [16]侯丽新,贾虎生,郝玉英等.一种锌亚胺配合物的表征及发光性能研究.光学学与光谱分析2008,28:766-769
    [17]万家义,郑振华,王鹏等.水杨醛型Schiff碱配合物的合成、表征与磁性研究.精细化工,2004,21:82-87
    [18]Hao, Y. Y; Li, J; Gao, Z. X. et al. Optical Spectroscopy of 2(salicylaldehyde with aniline)-(1,10-phenanthroline)calcium[J]. Chinese Journal of Luminescence,2006,27:254-256
    [1]Cerveau, G; Corriu, R. J. P; Framery, E. et al. Auto-organization of nanostructured organic-inorganic hybrid xerogels prepared from planar precursors by sol-gel processing[J]. J. Mater. Chem.2004,14: 3019-3025
    [2]Lin, N. N; Huanrong Li, H. L; Wang, Y. G. Luminescent Triazine-Containing Bridged Polysilsesquio-xanes Activated by Lanthanide Ions[J]. Eur. J. Inorg. Chem.2008:4781-4785
    [3]Fannin, P.C; Kinsella, L; Charles, S.W. Wide-band complex magnetic susceptibility measurements of magnetic fluids as a function of temperature[J]. J. Magn. Magn. Mater.1999,201:91-94
    [4]Vannette, M.D; Sefat, A.S; Jia, S. Precise measurements of radio-frequency magnetic susceptibility in ferromagnetic and antiferromagnetic materials[J]. J. Magn. Magn. Mater.2008,320:354-363
    [5]Zhou, Z.X; Sun, W.L; Tang, J.B. et al. Synthesis of novel copolymers containing tri(ethylene oxide) segments and bithiazole rings on the backbone and magnetic properties of their complexes [J] Polymer. 2006,47:6280
    [6]Kaul, B.B; Durfee, W.S; Yee, G.T. Dialkyldicyanofumarate diesters:Tunable building blocks for molecule-based ferromagnets[J].J. Am. Chem. Soc.1999,121:6862-6866
    [7]Deng, Y.H; Qi, D.W; Deng, C.H. Superparamagnetic High-Magnetization Microspheres with an Fe3O4 @SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins[J]. J. Am. Chem. Soc.2008,130:28-29
    [8]Morosov, A.I; Rynkov, O. Magnetic structure of the interface between ferromagnet and antiferromag-net with parallel anisotropy axes[J]. Phys. Solid. State.2007,49:1940-1943
    [9]Noskova, N.I; Shulika, V.V; Potapov, A.P[J]. Phys. Met. Metall.2006,102:506-511
    [10]Kahn, O; Chemistry and Physics of Supramolecular Magnetic Materials[J]. Acc. Chem.Res.2000, 33:647-657
    [11]Enoki, T; Miyazaki, A. Magnetic TTF-Based Charge-Transfer Complexes[J]. Chem. Rev.2004,104: 5449-5478
    [1]Li, H. R; Lin, J; Zhang, H. J. et al. Novel, covalently bonded hybrid materials of europium (terbium) complexes with silica[J]. Chem. Commun.2001,1212-1213
    [2]Stamatatos, T. C; Diamantopoulou, E; Tasiopoulos, A. et al. pyridinealdoxime:The nature of the inorganic anion does not affect the chemical and structural identity of the cationic cluster[J]. Inorg. Chim.Acta.2006,359:4149-4157
    [3]Song, J. L; Mao, J. G; Zeng, H. Y. et al. Synthesis, crystal structures and properties of two new metal complexes of syn-2pyridinealdoxime with a "metallocrown" unit and a 1D double chain structure[J]. Inorg.Chem.Commun.2003,6:891-895
    [4]Weyhermuller, T; Wagner, R; Khanra, S. et al. A magnetostructural study of linear NiⅡMnⅢNiⅡ.NiⅡCrⅢNiⅡ and triangular NiⅡ3 species containing (pyridine-2-aldo-ximato) nickel(II) unit as a building block[J], Dalton Trans.2005,15:2539-2546
    [5]Greenway, G. M; Greenwood, A; Watts. P. et al. Solid-supported chemiluminescence and electrogenerated chemiluminescence based on a tris(2.29-bipyridyl)ruthenium(II) derivative[J]. Chem. Commun,2006,1:85-87
    [6]Burrows, A.D; Mingos, D.M.P; White, A.J.P. et al. Crystal engineering of metal complexes based on charge-augmented double hydrogen-bond interactions between thiosemicarbazides and carboxylates[J]. Chem Commun.1996,1:97-99
    [7]Desiraju, G. R. Designer crystals:intermolecular interactions, network structures and supramolecular synthons[J]. Chem Commun.1997,16:1475-1482
    [8]Ishow, E; Gourdon, A. Observation of supramolecular-dimerization of a dinuclear ruthenium complex by 1H NMR and ESMS[J]. Chem Commun.1998,17:1909-1910
    [9]Bose, D; Rahaman, S. H; Mostafa, G. et al. Synthesis, structure and properties of [Zn-(dpa)(N3)2] and [Zn(dpa)(N3)(NO3)]2 (dpa=2,2'-dipyridylamine):composition tailored architec tures[J]. Polyhedron.2004,23:545-552
    [10]Chen, Y. Y; Tao, Y. T & Lin, H. C. Novel Self-Assembled Metallo-Homopolymers and Metaloalt-copolymer Containing Terpyridyl Zinc(Ⅱ) Moieties[J]. Macromolecul es.2006,39:8559-8566
    [11]Maerker, G;Case, F. H. The Synthesis of Some 4.4'-Disubstituted 2,2'-Bipyridine[J]. J. A m. Chem. Soc.1958,80:2745-2478
    [12]Araki, K; Mutai, T; Shigemitsu, Y. et al.6-Amino-2,2'-Bipyridine as a New Fluorescent O rganic Compound [J]. J. Chem. Soc. Perkin Trans.1996,2:613-617
    [13]Kavanagh, P & Leech, D. Improved synthesis of 4,4'-diamino-2,2'-bipyridine from 4,4'-dinitro-2,2'-bipyridine-N,N'-dioxide[J]. Tetrahedron Lett,2004,45:121-123
    [14]Hapke, M; Staats, H; Wallmann, I. et al. Synthesis of Amino-Functionalized 2,2'-Bipyridines[J]. Synthesis,2007..17:2711-2719
    [15]唐瑞仁,严子耳,郭灿城等.吡啶-2,6-二甲酸衍生物与Tb(Ⅲ)和Eu(Ⅲ)配合物的合成及荧光性质[J].高等学校化学学报.2006,27:472-477
    [16]李建宇.稀土发光材料及其应用[M].北京:化学工业出版社,2004:183
    [17]张若桦等.稀土元素化学[M].天津:天津化学出版社,1987:190
    [18]Liu, F. Y; Fu, L. S; Wang, J. Luminescent film with terbium-complex-bridged polysilsesquioxanes[J]. New J. Chem.2003,27:233-235

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700