用户名: 密码: 验证码:
含喹啉配体的铝和镓(Ⅲ)金属配合物的合成与电致发光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光材料是一种在电场激发下产生发光现象的物质。有机发光二极管是未来一种理想的平板显示器。尤其作为平板显示中的背光源及一般的固态照明有很大的应用前景。为此,人们在进一步优化器件的同时,也致力于合成具有优良性能的新材料,以提高电致发光效率。例如,合成具有高荧光效率、高电荷传输以及适当的HOMO/LUMO能级的材料。鉴于电子传输材料电子迁移率总体落后于空穴传输材料的空穴迁移率,导致器件效率降低的现状,本论文设计并合成了具有优良电子传输性能的有机半导体材料,采用稳态和瞬态的方法研究了目标产物的光、电性能。
     1、合成了双(8-羟基喹啉)乙酰丙酮合铝配合物(Alq2A)。发现室温下,这种配合物无论在溶液、粉末还是固体膜状态下均具有较强的荧光发射。通过荧光量子效率计算,表明此种配合物具有比三(8-羟基喹啉)铝更高的荧光量子效率,约为6.75倍。通过量子化学模拟计算得知:此种配合物的发光主要是由于配体与配体之间的π-π*跃迁产生,配合物的铝中心对增强配体的荧光发射起重要作用。
     2、作为合成Alq2A时出现的反应副产物,通过单晶X射线衍射分析,得到其分子结构。首先报道乙酰丙酮铝具有强烈的荧光性能和很高的荧光寿命。
     3、用瞬态电致发光方法研究了Alq2A在有机发光二极管中载流子的传输特性。实验中采用了不同纯度的Alq2A材料进行研究,结果发现纯度对电子传输性能的影响很大。为了与Alq3的载流子迁移率进行对照,在同样的实验条件下研究了Alq3的载流子的电子迁移率。研究发现:Alq2A具有比Alq3更高的电子迁移率,且电子迁移率受纯度影响很大。
     4、用稳态电流-电压特性考察Alq2A的发光性能以及定性研究其电子传输性能。分别以Alq2A和Alq3作为发光层的器件结构中,两个器件的发光光谱位置几乎不发生改变,发射峰位于513nm附近;Alq2A器件具有比Alq3器件更高的效率,前者比后者流明效率高75%,功率效率高165%。研究表明,导致Alq2A器件效率高的原因主要由以下三个因素决定:a.较高的电子迁移;b.较高的荧光量子效率; c.优良的成膜性能。此外,设计器件排除势垒对电荷注入的影响,间接证明Alq2A具有比Alq3更好的电子传输性能。
     5、合成一种喹啉类镓的配合物-二(2-甲基-8-羟基喹啉)氯化镓(GaMq2Cl),这种配合物具有良好的热稳定性,其分解温度348℃;在紫外光的激发下,其粉体产生发射峰在471nm的蓝色荧光,以GaMq2Cl作为发光层制备了发光器件,实现了发射峰在502nm的蓝绿光电致发光。
     通过以上研究,得到了一些有意义的结论:
     (1)、第二配体乙酰丙酮的引入对铝配合物的光致发光效率及载流子传输性能有重要的影响。化合物中载流子传输的平衡对提高有机电致发光器件的发光性能具有极大的影响。使用载流子传输平衡和高效光致发光的材料都能得到高性能的有机电致发光器件。
     (2)、在特定条件下得到的乙酰丙酮铝具有很强的荧光性能和荧光寿命,揭示分子结构并非是物质荧光性能的唯一决定因素。
     (3)、由乙酰丙酮与8-羟基喹啉为配体的混配络合物的形成能力随中心金属离子Al和Ga的不同而有很大的差异,在实验所述条件下,Ga离子的存在,可能导致配体乙酰丙酮与8-羟基喹啉在配体内界不能相亲相溶,而产生相互排斥,故在相同实验条件下未生成与双(8-羟基喹啉)乙酰丙酮合铝相类似的结构。
Organic electroluminescent (EL) materials are the substances that give out lights when excited by electric field. Organic light-emitting diodes (OLED) is one of the most promising candidates for the next generation display technologies. Especially, OLEDs also have great potential for backlights in flat-panel displays and general solid state lighting application. Along with the implementation of further architectural refinements, the enhancement of the electroluminescence efficiency passes obviously through the synthesis of the new molecules possessing very dedicated capacities. For instance and good quantum yield, high charge mobility are generally required to achieve good device output. Considering low efficiency is resulted from the fact that electron-transporting materials exhibit poorer mobility than hole-transporting ones, we designed a series of emissive materials having the required charge transporting properties, and investigated their optical and electrical properties by steady and transient state measurement.
     1. An aluminum complex, bis(8-hydroxyquinoline) acetylacetone aluminum (Alq2A) was synthesized, which has luminescence in solution, powder and solid state at room temperature. Its fluorescence quantum yields was determined to be 6.75 times that of Alq3. Analysis of the electronic structure of Alq2A calculated by quantum chemical simulation revealed that the fluorescent emission of Alq2A originates from ligand-centeredπ-π* transition. The Al (Ⅲ) centers play an important role in enhancing the fluorescent emission of the ligands.
     2. Tris(acetylacetone) aluminum (Alacac), as a byproduct in the third chapter, was obtained and investigated. Its crystalline structure was determined from X-ray diffraction data on single crystals. It was discovered firstly that the complex has intense fluorescence and good fluorescence life.
     3. The transport properties of charge carrier in bilayer organic light-emitting diodes were studied by transient electroluminescence. The electron mobility of Alq2A with different purity was found to be obviously dependent on its purity, i.e. higher purity led to higher electron mobility. The measurement of electron mobility of Alq3 indicated that the electron mobility of Alq2A is higher than that of Alq3.
     4. The Electroluminescence performance of Alq2A-based OLED was investigated by steady-state current-voltage characteristics, and the electronic transport properties was proved furtherly by qualitative experiment. The emission of the Alq2A-based device peaks at 513 nm, similar to that of Alq3. Alq2A device has an approximately 75% higher current efficiency and 165% higher power efficiency than Alq3 structure. Alq2A complex shows a higher EL efficiency in steady-state EL studies, which is considered to be derived from: 1) improved electron mobility; 2) high fluorescene efficiency; and 3) good film-forming.
     5. An 8-hydroxyquinoline complex, GaMq2Cl, was synthesized and purified by vacuum sublimation. Experimental results show that the complex was a thermally stable material, with decomposition temperature being 348℃. Its powder emitted intensive blue fluorescence with peak wavelength of 471nm under UV irradiation. GaMq2Cl-based device was fabricated, which emitted blue-greenish fluorescence with peak wavelength of 502nm.
     The major results of this thesis were summarized as follows:
     (1) The introduction of the second ligand acetylacetone has great effect on fluorescence quantum efficiency and electron transport property of aluminum complex containing 8-hydroxyquinoline. Organic electro- luminescence materials with balanced electron/hole injection and good carrier-transporting property and good photoluminescence can improve the performance of the fabricated OLEDs.
     (2) Tris(acetylacetone) aluminum synthesized in given conditions has intense fluorescence and good fluorescence lifetime, indicating that molecular structure is not the only-factor affecting fluorescence property.
     (3) The forming ability of mixed ligand complexes containing acetylacetone and 8-hydroxyquinoline differs in center ions Al and Ga, Corresponding Ga complex were not sythesized in the same conditions as for Al complex, indicating that acetylacetone and 8-hydroxyquinoline ligands can not dissolve in inner boundary in the presence of Ga ions.
引文
[1] Pope M, Kallmanm H, Mangnante P J, Electroluminescent in organic crystals[J]. J. Chem. Phys.1963, 38: 2042-2043
    [2] Helfrich W, Schneider W G, Recombination radiation in anthracene crystals. [J] Phys. Rev. Lett. 1965,14: 229-231
    [3] Vincett P S, Barlow W A, Robert G G. Electronical conduction and low voltage blue electroluminescence in vacuum-deposited organic films. [J] Thin Solid Film, 1982, 94: 171-183
    [4] Tang C W, Vanslyke S A, Organic electroluminescence diodes. [J]Appl. Phys. Lett.1987, 51: 913-915
    [5] Adachi C, Tsutsui T, Saito S, Organic electroluminescent device having a hole conductor as an emitting layer.[J] J. Appl. Phys.lett., 1989,55(15):1489-1491
    [6] Adamovich V, Shoustikov A, Thompson M E, TiN as an anode material for organic light-emitting diodes. [J] Adv. Mater. 1999, 11(9): 727-730
    [7] Adachi C, Tokito S, Tsutsui T, et al. Organic electroluminescence device with three-layer structure. [J] Jpn. J. Appl. Phys. 1988, 27(4): 713-715
    [8] Wu C C, Wu C I, Sturm J C, et al. Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic emitting devices. [J] Appl. Phys. Lett. 1997, 70(11): 1348-1350
    [9] Kim J S, Granstrom M, Friend R H, et al. Indium-tin oxide treatments for single- and doule-layer polymeric light-emitting diodes: the relation between the anode physical, chemical, and morphological properties and the device performance. [J] J. Appl. Phys. 1998, 84(12): 6859-6870
    [10]姚华文,汪光裕,有机电致发光显示器件基本原理与进展.激光与光电子学进展,2003,40(12):31-37
    [11]陈江山,有机小分子半导体材料的稳态及瞬态光电特性研究,中国科学院长春应用化学研究所博士学位论文,2006
    [12]高观志,黄维著,固体中的电输运,第一版,北京:科学出版社,1991年
    [13] Chen J, Lee T, Su J, et al. Molecular electronic devices, Yale University, Newhaven, Connecticut, USA
    [14] Malliaras G G, Scott J C, The role of injection and mobility in organic light emitting diodes. J. Appl. Phys., 1998, 83 (10): 5399-5403
    [15] Matsumura M, Akai T, Saito M, et al. Height of the energy barrier existing between cathodes and hydroxyquinoline-aluminum complex of organic electroluminescence devices. J. Appl. Phys. 1996, 79 (1): 264-268
    [16] Parker I D, Carrier tunneling and device characteristics in polymer light-emitting diodes. J. Appl. Phys. 1994, 75 (3): 1656-1666
    [17] Burrows P E, Forrest S R, Electroluminescence from trap-limited current transport in vacuum deposited organic light emitting devices. Appl. Phys. Lett. 1994, 64 (17): 2285-2287
    [18] Scott J C, Malliaras G. G., Salem J R, et al. Injection, transport and recombination in organic light-emitting diodes. SPIE, 1998, 3476: 111-122
    [19] Vestweber H, Pommerehne J, Sander R, et al. Majority carrier injection from ITO anodes into organic light emitting diodes based upon polymer blends. Synth. Met. 1995, 68 (3): 263-268
    [20] Ashcroft N W, Mermin N D, Solid State Physics, New York: Holt, Rinehart and Winston, 1976, 363
    [21] Koehler M, Hümmelgen I A, Temperature dependent tunnelling current at metal/polymer interfaces-potential barrier height determination. Appl. Phys. Lett. 1997, 70 (24): 3254-3256
    [22] Koehler M, da Luz J R, de Lima M G E, et al. Charge injection into conjugated polymer films. Phys. Stat. Sol. A, 1999, 173 (1): 29-39
    [23] Arkhipov V I, Emelianova E V, Tak Y H, et al. Charge injection into light-emitting diodes: Theory and Experiment. J. Appl. Phys. 1998, 84 (2): 848-856
    [24] Scott J C, Malliaras G G, Charge injection and recombination at the metal-organic interface. Chem. Phys. Lett. 1999, 299 (2): 115-119
    [25] Baldo M A, Forrest S R, Interface-limited injection in amorphous organic semiconductors. Phys. Rev. B. 2001, 64 (8): 085201
    [26] Shen Y L, Klein M W, Jacobs D B, et al. Mobility-dependent charge injection into an organic semiconductor. Phys. Rev. Lett. 2001, 86 (17): 3867-3870
    [27] Kapoor A K, Jain S C, Poortmans J, et al. Temperature dependence of carrier transport in conducting polymers: Similarity to amorphous inorganic semiconductors. J. Appl. Phys. 2002, 92 (7): 3835-3838
    [28] Crone B K, Davids P S, Campbell I H, et al. Device model investigation of single layer organic light emitting diodes. J. Appl. Phys. 1998, 84 (2): 833-842
    [29] Berleb S, Mückl A G, Brütting W, et al. Temperature dependent device characteristics of organic light-emitting devices. Synth. Met. 2000, 111-112: 341-344
    [30] Natali D, Sampietro M, Field-dependent mobility from space charge limited current-voltage curves. J. Appl. Phys. 2002, 92 (9): 5310-5318
    [31] Jain S C, Kapoor A K, Greens W, et al. Trap filled limit of conducting organic materials. J. Appl. Phys. 2002, 92 (7): 3752-3754
    [32] Murgatroyd P N, Theory of space-charge-limited current enhanced by Frenkel effect. J. Phys. D: Appl. Phys. 1970, 3 (2): 151-156
    [33] Frenkel J, On Pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev. 1938, 54 (8): 647-648
    [34] Gill W D, Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole. J. Appl. Phys. 1972, 43: 5033-5040
    [35] Manabe K, Hu W, Mastsumura M, et al. Transport of carriers in organic light-emitting devices fabricated with a p-phenylenevinylene-derivative copolymer. J. Appl. Phys. 2003, 94 (3): 2024-2027
    [36] Bozano L, Carter S A, Scott J C, et al. Temperature- and filed-dependent electron and hole mobilities in polymer light-emitting diodes. Appl. Phys. Lett. 1999, 74 (8): 1132-1134
    [37] Jain S C, Geens W, Mehra A, et al. Injection- and space charge limited-currents in doped conducting organic materials. J. Appl. Phys. 2001, 89 (7): 3804-3810
    [38] Mack J X, Shein L B, Peled A, Hole mobilities in hydrazaone- polycarbonate dispersions. Phys. Rev. B. 1989, 39 (11): 7500-7508
    [39] Shein L B, Mack J X, Adiabatic and non-adiabatic small polaron hopping in molecularly doped polymers. Chem. Phys. Lett. 1988, 149 (5): 109-112
    [40] Borsenberger P M, Partmeier L, Bassler H, Charge transport in disordered molecular solids. J. Chem. Phys. 1991, 94 (8): 5447-5454
    [41] Arkhipov V I, B?ssler H, An adiabatic model of dispersive hopping transport.1. General results for weak-field drift and diffusion. Philos. Mag. B, 1993, 68 (4): 425-435
    [42] Langevin P, Recombinaison et mobilities desions dansles gaz, Ann. Chim. Phys.1903, 28, 287-433
    [43] Kepler R G, Beeson P M, Jacobs S J, et al. Elelctron and hole mobility in tris(8-hydroxyquinolinolato-N1,O8) aluminum. Appl. Phys. Lett. 1995, 66 (26): 3618-3620
    [44] Barth S, Müller P, Reil H, et al. Electron mobility in tris(8-hydroxy-quinoline) aluminum thin films determined via transient electroluminescence from single- and multilayer organic light-emitting diodes. J. Appl. Phys. 2001, 89 (7): 3711-3719
    [45] Kalinowski J, Camaioni N, Marco P Di, et al. Kinetics of charge carrier recombination in organic light-emitting diodes. Appl. Phys. Lett. 1998, 72 (5): 513-515
    [46] Chayet H, Pogreb R, Davidov D, Transient uv electroluminescence from poly(p-phenylenevinylene) conjugated polymer induced by strong voltage pulses. Phys. Rev. B, 1997, 56 (20): 12702-12705
    [47] Blom P W M, Vissenberg M C J M, Dispersive Hole Transport in Poly(p-Phenylene Vinylene). Phys. Rev. Lett. 1998, 80 (17): 3819-3922
    [48] Pinner D J, Friend R H, Tessler N, Transient electroluminescence of polymer light emitting diodes using electrical pulses. J. Appl. Phys. 1999, 86 (9): 5116-5130
    [49] Tak Y H, Vestweber H, B?ssler H, et al. Pulsed electroluminescence from organic bilayer light emitting diodes. Appl. Phys. Lett. 1996, 69 (9): 1291-1293
    [50] Chen J S, Ma D G, Liu Y, et al. Studies of kinetics of charge carrier recombinationin organic light-emitting diodes based on beryllium complexes by transient electroluminescence. J. Phys. D: Appl. Phys. 2005, 38 (18): 3366-3370
    [51] Poplavskyy D, Nelson J, Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound. J. Appl. Phys. 2003, 93 (1): 341-346
    [52] Poplavskyy D, Su W C, So F, Bipolar charge transport, injection, and trapping studies in a model green-emitting polyfluorene copolymer. J. Appl. Phys. 2005, 98 (1): 014501
    [53] Baldo M A, Forrest S R, Transient analysis of organic electrophosphorescence: I. Transient analysis of triplet energy transfer. Phys. Rev. B. 2000, 62 (16): 10958-10966
    [54] Baldo M A, Adachi C, Forrest S R, Transient analysis of organic electrophosphorescence: II. Transient analysis of triplet-triplet annihilation. Phys. Rev. B. 2000, 62 (16): 10967-10977
    [55]郝玉英,有机金属配合物电致发光材料的物理性能研究,太原理工大学博士研究生学位论文, 2006
    [56] Haskal E I, Curioni A, Seidler P F, et al. Lithium-aluminum contacts for organic light-emitting devices. [J] Appl. Phys. Lett. 1997, 71(9):1151-1153
    [57] Hung L S, Tang C W, Mason M G, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. [J] Appl. Phys. Lett. 1997, 70: 152-154
    [58] Tang H, Li F, Shinar J, Bright high efficiency blue organic light-emitting diodes with Al2O3/Al cathodes.[J] Appl. Phys. Lett.1997, 71: 2526-2528
    [59] Jabbour G E, Kippelen B, Armstrong N R, et al. Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices. [J] Appl. Phys.Lett. 1998, 73:1185-1187
    [60] VanSlyke S A, Chen C H, Tang C W, Organic electroluminescence devices with improved stability. [J] Appl. Phys. Lett. 1996, 69: 2160-2162
    [61] Yu W L, Pei J, Cao Y, et al. Hole-injection enhancement by copper phthalocyanine (CuPc) in blue polymer light-emitting diodes. [J] J. Appl. Phys.2001, 89(4):2343-2350
    [62] Shirota Y, Kuwabara Y, Inada H, Multilayered organic electroluminescent device using a novel starburst molecule, 4,4,4-tris(3-methylphenylphenylamino) Triphenyl-amine, as a hole transport material. Appl. Phys. Lett. 1994, 65: 807-809
    [63] Yang Y, Heeger A J, Polyaniline as a transparent electrode for polymer light-emitting diodes: Lower operating voltage and higher efficiency. Appl. Phys. Lett. 1994, 64: 1245-1247
    [64] Shirota Y, Shinkai M. Organic electroluminescence element [P]. US,5256945
    [65] Bettenhausen J, Strohriegl P. Efficient synthesis of starburst oxadiazole compounds. [J] Adv. Mater. 1996, 8: 507-511
    [66] Tokito S, Tanaka H, Koda N, et al. Thermal stability of organic electroluminescent device fabricated using novel charge transporting materials. [J] Macromol. Symp. 1997, 125:181-188
    [67] Burroughs J H, Bradley D D, Brown A R, et al. Light-emitting diodes based on conjugated polymers. [J] Nature, 1990, 347:539-541
    [68] Hebner T R, Wu C C, Marcy D, et al. Ink-jet printing of doped polymers for organic light emitting devices. [J] Appl. Phys. Lett. 1998, 72:519-521
    [69] Aguiar M, Akcelrud L, Karasz F E, Electroluminescent devices based on modified polystyrene.[J]. Synth. Met. 1995, 71: 2187-2188
    [70] Aguiar M, Akcelrud L, Karasz F E, Electroluminescent devices based on modified polystyrene [J]. Synth. Met. 1995, 71: 2189-2190
    [71]王崇,8-羟基喹啉衍生物的配合物合成与荧光性质.南京师范大学硕士学位论文,2004
    [72]杨占坤,8-羟基喹啉铝衍生物电致发光材料的设计合成及EL器件的研究.四川大学硕士学位论文,2002
    [73]张立杰,周雪琴,李巍等,功能小分子电致发光材料的研究进展.化学工业与工程,2003,20(6): 481-487
    [74]李新贝,张方辉,稀土配合物有机电致发光.现代显示,2006(65): 53-59
    [75]郑亮,钟生东,有机电致发光显示及其发展.现代显示,2002(4): 17-22
    [76]姚华文,汪光裕.有机电致发光显示器件基本原理与进展.激光与光电子学进展,2003,40(12):31-37
    [77] Chen C H, Shi J M, Metal chelates as emitting materials for organic electroluminescence. [J]Coord.Chem. Rev.1998, 171:161-174
    [78] Halverson F, Brines J S, Leto J R, Photoluminescence of lathaide complexes(Ⅲ) synergic agent complexes involving extend chromophores. J Chem Phys, 1964,41: 2752-2761
    [79]李文连,有机发光材料、器件及其平板显示—一种新型光电子技术,科学出版社,2002
    [80] Hopkins T A, Meerholz K, Shaheen S, et al. Substituted aluminum and zinc quinolates with blue-shifted absorbance/luminescence bands:synthesis and spectroscopic, photoluminescence, and electroluminiescence characterization.[J] Chem. Mater. 1996, 8: 344-351
    [81] Yu J S, Chen Z J, Sakuratani Y, et al. A novel blue light emitting diode using tris(2,3-methyl-8-hydroxyquinoline)aluminum as emitter. [J] Jpn. J. Appl.Phys. 1999, 38: 6762
    [82] Kido J, Lizumi Y, Efficient electroluminiescence from tris(4-methyl- 8-quinolinolato)aluminum. [J] Chem. Lett. 1997, 73:2721
    [83] Jang H, Do L M, Kim Y, et al. Synthesis and luminescence behaviors of aluminum complex with mixed ligands, [J] Synth. Met. 2001,121:1669-1670
    [84] Hamada Y, Sano T, Fujita M, et al. Organic electroluminiescent devices with derivative-metal complexes as an Emitter.[J]Jpn. J. Appl.Phys.1993, 32, 514-515
    [85] Ma D G, Wang G, Hu Y F, et al. A dinuclear aluminum 8-hydroxyquinoline complex with high electron mobility for organic light-emitting diodes. [J]Appl. Phys.Lett. 2003, 82(24): 1296-1298
    [86] Shao Y, Qiu Y, Hu N X, et al. A high thermal stable light-emitting complex based on a tridentate ligand. [J] Chem. Lett. 2000, (9): 1068-1069
    [87] Hamada Y, Organic electroluminescent materials and devices.Amsterdam, Gordon and Breach, 1997, p311
    [88] Sapochak L S, Benincasa F E, Schofield R S, et al. Electroluminiescent zinc(Ⅱ)bis(8-hydroxyquinoline):Structure effects on electronic states and device performance. [J]J. Am.Chem.soc. 2002, 124:6119-6125
    [89] Burrows P E, Sapochak L S, McCarty D M, et al. Metal ion dependent luminescence effects in metal tris-quinolate organic heterojunction light emitting devices. [J] Appl.Phys. Lett. 1994, 64(20): 2718-2720
    [90] Wang Y, Zhang W, Li Y, et al. X-ray crystal structure of gallium tris-(8-hydroxyquinoline):inter-molecularπ-πstacking interactions in the solid state. [J] Chem. Mater. 1999, 11: 530-532
    [91] Wang L J, Jiang X Y, Zhang Z L, et al. Organic thin film electroluminescent devices using Gaq3 as emitting layers. [J] Displays, 2000, 21: 47-49
    [92] Hamada Y, Kanno H, Sano T, et al. Organic light-emitting diodes using a gallium complex. [J] Appl. Phys. Lett. 1998, 72(16): 1939-1941
    [93] Khreis O M, Gillin W P, Somerton M, et al. 980nm electroluminescence from ytterbium tris(8-hydroxyquiniline). [J] Organic electronics, 2001, 2: 45-52
    [94] Bryan P S,Loveechio F V,Vanslyke S A, Mixed Ligand 8-quinolindate aluminum cheLate luminophors.[P] US patent,5 141 671 1992 8 25
    [95] Qiu Y,ShaoY,zhang D Q,et al. Preparation and characterization of high efficient blue-light ermtting materials with a secondary Ligand for organic electroluminescence [J]. Jpn. J. Appl.Phys,2000,39:1151-1153
    [96]姜华,刘云圻,武霞等,小分子配合物电致发光材料研究进展,感光科学与光化学,2002,20:149-158
    [97] Nakamura N,Wakakayashi S,Miyain K,et al. A novel blue Light emitting material prepared from 2 (O-hydroxypheny1) benzoxazole [J]. Chem. Lett. 1994,23: 1741-1742
    [98] Hamada Y,Sano T,Fujita H, et al. White-hght emitting material for organic electroluminescent devices [J] Jpn. J.Appl. Phys.,part 2,1996,35(10B):1339
    [99] Tanaka H,Tokito S,Toga Y,et al.Novel metal-chelate emitting materials based on polycyclic aromatic Ligands for electroluminescent devices [J]. J. Mater. Chem.1998, 8: 1999-2004
    [100] Kim Y K,Lee J G,Kim S W, Blue light-emitting device based on a unidentate organometallic complex containing lithium as an emission layer.[J] Adv. Mater. 1999,l1(17):1463
    [101]余淑娴,胡六根,郑湘娟,稀土有机配合物发光材料及电致发光器件的研究和设计,江西科学,2005,23:109-116
    [102] Hamada Y, Sano T, Fujita M, et al. Blue electroluminescence in thin films of azomethin-zinc complexes. [J] Jpn. J. Appl. Phys. 1993, 32(4A):511-513
    [103] Xu B S, Hao Y Y, Gao Z X, et al., Optical and elec-trical properties of (N,N’-bis(salicylidene)-ethylenediamine)zinc as a novel electroluminescent materials [J], Appl. Phys. Lett. 2007, 90:053903
    [104]陈柳青,许慧侠,王艳丽等,一种新型希夫碱硼配合物的合成及表征,发光学报,2008,29:61-65
    [105]陈柳青,许慧侠,王华等,邻香草醛缩环己二胺类希夫碱及其锌配合物的合成与性能研究,半导体学报, 2007, 28(增):352-355
    [106] Newman C R, Frisbie C D, da Silva Filho D A, et al. Introduction to organic thin film transistors and design of n-Channel organic semiconductors. Chem. Mater. 2004, 16: 4436-4451
    [1] Tang C W, Van Slyke S A, Organic electroluminescence diodes. [J] Appl. Phys. Lett. 1987, 51: 913
    [2]初国强,王子君,刘星元等,有机电致发光现状和发展趋势,光机电信息,2001,8: 14-19
    [3] Sapochak L S, Padmaperuma A, Washton N, et al. Effects of systematic methyl substitution of metal (III) tris(n-methyl-8-quinolinolato) chelates on material properties for optimum electroluminescence device performance. J. Am. Chem. Soc. 2001, 123: 6300-6307
    [4] Lin B C, Cheng C P, You Z Q, et al. Charge transport properties of tris(8-hydroxyquinolinato)aluminum(III): Why it is an electron transporter. [J] J. Am. Chem. Soc. 2005, 127: 66-67
    [5] Aziz H, Popovic Z D, Hu N X, et al. Degradation mechanism of small molecule-based organic light-emitting devices. Science, 1999, 283: 1900-1902
    [6] Hamada Y, The development of chelate metal complexes as an organic electroluminescent material. IEEE, Trans Electron Devices 1997, 44: 1208-1217
    [7]向能军,有机电致发光材料的分子设计、合成、器件制作与发光,中山大学博士学位论文,2005
    [8] Huang C H, Li F Y, Huang W, Introduction to organic light-emitting materials and devices, Shanghai, Fudan University Press, 2005
    [9] Ma D G, Wang G, Hu Y F, et al. A dinuclear aluminum 8-hydroxyquinoline complex with high electron mobility for organic light-emitting diodes. [J] Appl. Phys. Lett. 2003, 82: 1297-1299
    [10] Hopkins T A, Meerholz K, Shaheen S, et al. Substituted aluminum and zinc quinolates with blue-shifted absorbance/luminescence bands: Synthesis and spectroscopic, photoluminescence, and electroluminescence characterization. Chem. Mater. 1996, 8: 344-351
    [11] Leung L M, Lo W Y, So S K, et al. A high efficiency blue emitter for small molecule-based organic light-emitting diode. [J] J. Am. Chem. Soc. 2000, 122: 5640-5641
    [12] Brinkmann M, Gadret G, Muccini M, et al. Correlation between molecular packing and optical properties in different crystalline polymorphs and amorphous thin films of mer-tris(8-hydroxyquinoline)aluminum(III) [J] J. Am. Chem. Soc. 2000, 122: 5147-5157
    [13] Bae C B, Lee S H, Choi S Y, et al. Synthesis and characterization of monomeric, oligomeric, and polymeric aluminum 8-Hydroxyquinolines. Inorg. Chem, 2005, 44: 7911-7917
    [14] Yu G, Yin S W, Liu Y Q, et al. Structures, electronic states, and electroluminescent properties of a zinc(II) 2-(2-hydroxyphenyl)benzothiazolate complex. J. Am. Chem. Soc. 2003, 125: 14816-14824
    [15] Pommerehne J, Vestweber H, Guss W, et al. Efficient two layer leds on a polymer blend basis. Adv. Mater. 1995, 7: 551-554
    [16]朱东霞,苏忠民,王悦,双西佛碱金属配合物的合成、光致发光/电致发光性质及理论研究,东北师范大学博士学位论文,2005
    [17]施跃文,陈征红,氟代Alq3衍生物的发光行为,浙江大学硕士学位论文,2006
    [18] Bella S D, Fragala I, Ledoux I, Solution NMR study of the electronic structure and magnetic properties of cluster ligation mutants of the four-iron ferredoxin from the hyperthermophilic archaeon pyrococcus furiosus. [J]J. Am.Chem.Soc. 1997, 119: 9550-9557
    [19] Su Z M, Gao H Z, Cheng H, et al. Electronic property and molecule design for luminescent metal complexes of tris(8-hydroxyquinoline)gallium [J]. Science in China (Series B), 2003, 43: 657-669
    [20]王华,8-羟基喹啉金属配合物分子空间结构与材料性能关系研究,太原理工大学博士学位论文,2007
    [1] Zanjanchi M A, Hemmati M, Verification of extra-framework aluminum in zeolite L by acetylacetone. Materials Chemistry and Phys, 2004, 85, 334-339
    [2] Lazarev V B, Greenberg J H, Ozerova Z P, et al. DSC and vapour pressure investigation of someβ-diketonates [ J ]. J Therm Anal, 1988, 33: 797 - 799
    [3] Wells A F,Structural inorganic chemistry(5 th Ed. ) [M ]. Oxford: Clarendon Press, 1984
    [4] Nakamoto K, Martell A E, Infrared spectra of metal-chelate compounds. I. A normal coordinate treatment on bis-(acetylacetonato)-Cu(II), J. Chem. Phys. 1960, 32: 588
    [5] Richardson M F, Wanger W F, Sands D E, Some adducts of rare earth acetylacetonates, J. Inorg.Nucl. Chem. 1969, 31:1417-1426
    [6] Ismall M, Lyle S, Newberg J E, Preparation and properties of lanthanide complexes of someβ-diketones. J. Inorg. Nucl. Chem. 1969, 31: 1715-1724
    [7] Mcgrady M M, Tobias R S, Synthesis, structure, and bonding of complexes of dimethyl- and diphenyltin ions with bidentate ligands, J. Am. Chem. Soc. 1965, 87: 1909
    [8] Liang C Y, Schimitschek E J, Trias J A, I.R. and Raman spectra of europium(III)β-diketonates, J. Inorg. Nucl.Chem. 1970, 32: 811
    [9] Shephard G S, Thornton D A, Infrared spectra ofα-thenoyl-trifluoro acetonates of metal ions of the first transition series, Helv. Chim. Acta 1971, 54: 2212-2221
    [10] Percy J C, Thornton D A, N-aryl salicylaldimine complexes: Infrared and PMR spectra of the ligands and vibrational frequencies of their metal (II) chelates, J. Inorg. Nucl. Chem. 1972, 34: 3357-3367
    [11] Thornton D A, Infrared spectra of metalβ-ketoenolates and related complexes, Coord. Chem. Rev. 1990, 104: 173-249
    [12] Nakamoto K, McCarthy P G, Ruby A, et al. Infrared spectra of metal chelate compounds. II. Infrared spectra of acetylacetonates of trivalent metals, J.Am. Chem. Soc. 1961, 83: 1066
    [13] Pinchas S, Silver B L, Laulicht I, Infrared absorption spectra of the 18O-Labeled acetylacetonates of Cr(III) and Mn(III), J. Chem. Phys. 1967,46: 1506
    [14]董月云,郑芸,江平开等人,乙酰丙酮铝对环氧树脂、酸酐体系的固化促进作用的研究,绝缘材料,2007,40(1):26-28
    [15] Murray J P, Hill J O, DSC determination of the fusion and sublimation enthalpy of bis (2, 4-pentanedionato) beryllium (Ⅱ) and tris (2, 4-pentanedionato) aluminium (Ⅲ) [ J ]. Thermochim Acta, 1983, 63: 211-218
    [16] Wells A F, Structural inorganic chemistry (5th Ed. ) [M ] Oxford: Clarendon Press, 1984
    [17] Lazarev V B, Greenberg J H, Ozerova Z P, et al. DSC and vapour pressure investigation of someβ-diketonates [ J ]. J Therm Anal, 1988, 33: 797-799
    [1]陈晓红,聚合物电致发光的性质及机理研究,北方交通大学硕士学位论文,2002
    [2] Hosokawa C, Tokailin H, Higashi H, et al.Transient behavior of organic thin film electroluminescence. Appl.Phys.Lett 1992,60: 1020-1022
    [3] Braun D, Moses D, Zhang C, et al. Nanosecond transient electroluminescence from polymer light-emitting diodes. Appl.Phys.Lett 1992,61: 3092-3094
    [4] Dinner D J, Friend R H, Tessler N, et al. Transient electroluminescence of polymer light emitting diodes using electrical puldes. J. Appl. Phys. 1999, 86: 5116-5129
    [5] Ma D G, Hümmelgen I A, Jing X B, et al. Charge transport in a blue-emitting alternating block copolymer with a small spacer to conjugated segment length ratio, J. Appl. Phys. 2000, 87 (1): 312-316.
    [6] Koehler M, da Luz M G E, Hümmelgen I A, Electrical characteristics in unipolar conjugated polymer devices: The case of modified transport properties in the neighbourhood of the top electrode/polymer interface. J. Phys. D: Appl. Phys. 2001, 34 (13): 1947-1950.
    [7] Baldo M A, Forrest S R, Interface-limited injection in amorphous organic semiconductors, Phys. Rev. B. 2001, 64 (8): 085201
    [8] Savvateev V, Yakimov A, Davidov D, Transient electroluminescence from poly(phenylenevinylene)-based devices, Adv. Mater. 1999, 11: 519-531
    [9] Masenelli B, Berner D, Bussac M N, et al. Simulation of charge injection enhancements in organic light-emitting diodes. Appl. Phys. Lett. 2001, 79 (26): 4438-4440
    [10] Kim S C, Lee G B, Choi M W, et al. Controlling hole injection in organic electroluminescent device by sputter-grown Cu-phthalocyanine thin films. Appl. Phys. Lett. 2001, 78 (10): 1445-1447
    [11] Hung L S, Tang C W, Mason M G, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Appl. Phys. Lett. 1997, 70 (2): 152-154
    [12] Jabbour G E, Kippelen B, Armstrong N R, et al. Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices. Appl. Phys. Lett. 1998, 73 (9): 1185-1187
    [13] Chen B J, Sun X W, The role of MgF2 buffer layer in tris-(8-hydroxyquinoline) aluminum-based organic light-emitting devices with Mg:Ag cathode. Semicond. Sci. Technol. 2005, 20 (8): 801-804
    [14] Lee C H, Enhanced efficiency and durability of organic electroluminescent devices by inserting a thin insulating layer at the Alq3/cathode interface. Synth. Met. 1997, 91 (1-3): 125-127
    [15] Lee J, Park Y, Lee S K, et al. Tris-(8-hydroxyquinoline)aluminum-based organic light-emitting devices with Al/CaF2 cathode: Performance enhancement and interface electronic structures. Appl. Phys. Lett. 2002, 80 (17): 3123-3125
    [16] Campbell A J, Bradley D D C, Antoniadis H, et al.Transient and steady-state space-charge-limited currents in polyfluorene copolymer diode structures with ohmic hole injecting contacts. Appl. Phys. Lett. 2000, 76: 1734-1736
    [17] Karg S, Dyakonov V, Meier M, et al. Transient electroluminescence in poly(p-phenylenevinylene) light-emitting diodes. Synth. Met. 1994, 67: 165-168
    [18] Savvateev V, Yakimov A, Davidov D, Transient electroluminescence from poly (phenylenevinylene)-based devices. Adv. Mater. 1999, 11: 519-531
    [19] Barth S, Müller P, Reil H, et al. Electron mobility in tris(8-hydroxy-quinoline) aluminum thin films determined via transient electroluminescence from single- and multilayer organic light-emitting diodes. J. Appl. Phys. 2001, 89 (7): 3711-3719
    [20] Chayet H, Pogreb R, Davidov D, Transient uv electroluminescence from poly(p-phenylenevinylene) conjugated polymer induced by strong voltage pulses. Phys. Rev. B. 1997, 56 (20): 12702-12705.
    [21] Blom P W M, Vissenberg M C J M, Dispersive hole transport in poly(p-phenylene vinylene). Phys. Rev. Lett. 1998, 80 (17): 3819-3922
    [22] Pinner D J, Friend R H, Tessler N, Transient electroluminescence of polymer light emitting diodes using electrical pulses, J. Appl. Phys. 1999, 86 (9):5116-5130
    [23] Tak Y H, Vestweber H, B?ssler H, et al. Pulsed electroluminescence from organic bilayer light emitting diodes, Appl. Phys. Lett. 1996, 69 (9): 1291-1293
    [24] Chen J S, Ma D G, Liu Y, et al. Studies of kinetics of charge carrier recombination in organic light-emitting diodes based on beryllium complexes by transient electroluminescence. J. Phys. D: Appl. Phys. 2005, 38 (18): 3366-3370
    [25] Kalinowski J, Camaioni N, Di Marco P, et al. Kinetics of charge carrier recombination in organic light-emitting diodes. Appl. Phys. Lett. 1998, 72 (5): 513-515
    [26] Miyata S, Nalwa H S, Organic Electroluminescent Materials and Devices, Amsterdam, Gordon & Breach Publishers, 1997
    [27]李文连著,有机发光材料、器件及其平板显示,第一版,北京:科学出版社,2002
    [28]黄春辉,李富友,黄岩谊著,光电功能超薄膜,第一版,北京:北京大学出版社,2001
    [29]黄春辉,李富友,黄维著,有机电致发光材料和器件导论,第一版,上海:复旦大学出版社,2005
    [30]陈江山,有机小分子半导体材料的稳态及瞬态光电特性研究,中国科学院长春应用化学研究所博士学位论文,2006
    [31] Yan C, Zharnikov M, Golzhauser A, et al., Preparation and characterization of self-assembled monolayers on indium tin oxide, Langmuir , 2000, 16 (15): 6208 -6215
    [32] Park Y, Choong V, Gao Y, et al. Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Appl. Phys. Lett. 1996, 68 (19): 2699-2701
    [33] Wu C C, Wu C I, Sturm J C, Surface modification of indium tin oxide by the plasma treatment: an effective method to improve the efficiency, brightness, and reliability of organic light emitting devices. Appl. Phys. Lett. 1997, 70 (11): 1348-1350
    [34] Pschenitzka F, Sturm J C, Excitation mechanisms in dye-doped organiclight-emitting devices. Appl. Phys. Lett. 2001, 79 (26): 4354-4356
    [35] Burrows P E, Shen Z, Bulovic V, et al. Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices. J. Appl. Phys., 1996, 79 (10): 7991-8006
    [1] Tang C W, Vanslyke S A,Organic electroluminescence diodes.[J]Appl. Phys. Lett.1987, 51: 913
    [2] Burrows P E, Forrest S R, Electroluminescence from trap-limited current transport in vacuum deposited organic light emiting devices. [J]Appl. Phys. Lett.1994, 64: 2285-2287
    [3] Burrows P E, Shen Z, Bulovic V, et al. Relationship between electroluminescence and currenttran sport in organic heterojunction light-emiting devices. J. Appl. Phys.1996, 79 : 7991-8006
    [4] Kalinowski J, Palilis L C, Kim W H, et al. Determination of the width of the carrier recombination zone in organic light-emitting diodes. J. Appl. Phys. 2003, 94(12):7764-7767
    [5] Adachi C, Tsutsui T, Saito S, et al. Organic electroluminescent devices having a hole conductor as emitting layer. Appl. Lett. 1989, 55: 1489-1491
    [6] Shirota Y, Kuwabara Y, Inada H, et al. Multilayered organic electroluminescent device using a novel starburst molecule, 4, 4, 4-tris(3-methylphenylphenylamino) Triphenylamine, as a hole transport material. [J] Appl. Phys. Lett.1994, 65: 808
    [7] Brown A R, Bradley D D C, Burroughes J H, et al. Poly(p-phenylenevinylene) light-emitting diodes: Enhanced electroluminescent efficiency through charge carrier confinement. Appl. Phys. Lett. 1992, 61, 2793-2795
    [8] Forsythe E W, Abkowitz M A, Gao Y L, et al. Influence of copper phthalocynanine on the charge injection and growth modes for organic light emitting diodes. [J] Vacuum Science & Technology A-vacuum surfaces and films, 2000, 18(4): 1869-1874
    [9] Tsutsui T, Adachi C, Saito S, Blue electroluminescence in organic multiplayer thin film devices, Acta Polytechnica Scandinavica Applied Physics, 1990, 145
    [10] Adachi C, Tsutsui T, Saito S, Blue light-emitting organic electroluminescent device. Appl. Phys. Lett. 1990, 56: 799
    [11] Uchida M, Ohmori Y, Morishima C, Visible and blue electroluminescent diodes utilizing poly (3-alkylthiophene)s and poly(alkyflouorene)s, Synth. Met. 1993,55-57: 4168
    [12] Garten F, Hiberen A, Cacialli F, et al. Efficient blue LEDs from a partially conjugated Si-containing PPV copolymer in a double-layer configuration. Adv. Mater. 1997, 9: 127
    [13] Adachi C, Tsutsui T, Saito S, Confinement of charge carriers and molecular excitons with 5-nm thick emitter in organic electroluminescent devices with a double heterostructure. Appl. Phys. Lett., 1990, 57: 53
    [1] Tang C W, VanSlyke S A.Organic electroluminescent diodes [J]. Appl. Phys.Lett., 1987, 51(12): 913-915
    [2]郝玉英,郝海涛,王华等,二(8-羟基喹啉)-二(苯酚)合锆薄膜的制备与性能研究,光谱学与光谱分析,2004,24(12): 1524-1527
    [3]郝玉英,王华,周和丰等,水杨醛缩苯胺锌及其薄膜的谱学性能,光谱学与光谱分析, 2006,26(3): 491-495
    [4] Hamada Y, IEEE Trans. Electron Devices 1997,44: 1208
    [5] Burrows P E, Sapochak L S, McCarty D M, et al. Metal ion dependent luminescence effects in metal tris-quinolate organic heterojunction light emitting devices. [J] Appl. Phys.Lett. 1994, 64(20): 2718-2730
    [6]方容川,固体光谱学,合肥,中国科技大学出版社,2001
    [7]侯丽新,贾虎生,郝玉英,王华,陈柳青,许并社,一种锌-希夫碱配合物的表征及发光性能研究,光谱学与光谱分析(SCI,EI收录) ,2008,28(4), 766-769

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700