用户名: 密码: 验证码:
希夫碱锌配合物电致发光材料的合成及物理性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光器件(OLEDs)驱动电压低、发光亮度大、视角宽、响应速度快、制作工艺简单,是新一代平板显示技术中的一大亮点,是21世纪首选的绿色照明光源之一。目前阻碍OLEDs走向实用化和市场化的关键问题是其发光效率低、工作寿命短、性能稳定性差。进一步开发高效率与物理性质稳定的有机电致发光材料、选择合适的电极材料、探索新的制膜工艺、优化器件结构、提高器件发光效率和寿命等,仍然是现阶段乃至今后研究工作的主要目标。
     本文主要合成了两种希夫碱锌有机金属配合物电致发光材料,并对其与电致发光相关的物理性能进行了系统地研究,在新型材料与器件结构的设计以及材料结构与光电性能的研究方面取得了进展。
     1、通过液相反应合成并利用真空升华提纯得到了两种高纯度的希夫碱有机金属配合物水杨醛缩邻苯二胺锌((Zn(salph))和水杨醛缩1,6己二胺锌(Zn(salhex)),通过元素分析、核磁共振谱与红外光谱确认了它们的分子结构;利用热重-差热曲线表征了它们的热稳定性;采用X射线衍射法分析了它们的物相结构;使用扫描电子显微镜观察了它们的形貌特征。实验结果表明:①、Zn(salph)的玻璃化温度为183℃,分解温度高达449℃,是一种长条状多晶态的发光材料;②、Zn(salhexl的开始分解温度为325℃,是一种片状多晶态的发光材料。
     2、利用紫外-可见吸收光谱和荧光发射光谱研究了水杨醛缩邻苯二胺锌和水杨醛缩1,6己二胺锌的发光行为,并结合电化学循环伏安法确定了它们的电子能级结构,对它们的光物理、光化学行为进行了系统地研究。实验结果表明:①、Zn(salph)在紫外光的激发下,在四氢呋喃溶液体系中的荧光发射峰位在508 nm处,为蓝绿色荧光,荧光量子效率高;Zn(salph)的最高占据轨道(HOMO)能级为-5.24eV,最低未占据轨道(LUMO)能级为-2.60eV,光学禁带宽度为2.64eV。②、Zn(salhex)粉末在紫外光的激发下,最大发射峰波长为485 nm,光谱的FWHM为66.6nm,色坐标为x=0.2250,y=0.3247,为蓝绿光发射;Zn(salhex)的最高占据轨道(HOMO)能级为-6.25eV,最低未占据轨道(LUMO)能级为-3.39eV,光学禁带宽度为2.86eV。
     3、利用真空蒸镀法分别以水杨醛缩1,6己二胺锌和水杨醛缩邻苯二胺锌为发光层制备了双层结构器件ITO/NPD/Zn(salhex)/Al和双量子阱结构器件ITO/CuPc/Alq_3/Zn(salph)/Alq_3/Zn(salph)/Alq_3/Al。
     4、此外,还合成了其它四种希夫碱类有机金属配合物,并通过比较它们与Zn(salph)的荧光发射光谱初步探讨了希夫碱类有机金属配合物的发光机理。
Organic light-emitting devices(OLEDs) is not only a great point of newflat panel displays, but also one of the first choices of green lighting sourceof the 21 century, during to their merits such as low drive voltage, highbrightness, wide visual angle, quick response, and simple fabricationtechnics. As the present time, low power-conversion efficiency, short usefullife and bad long-term stability are the critical problems to block the utilityand marketization of OLEDs. However, exploiting organic light-emittingmaterials with high efficiency and stable physical characteristics, choosingappropriate electrode materials, searching for new film fabrication technics,and optimizing device configuration, improving the efficiency and usefullife of device are the primary aims of study work.
     In this paper, two kinds of Schiff base Zinc organic complexes asorganic electroluminescent materials were mainly synthesized. Theirphysical properties in relation to organic electroluminescence were investigated in detail. The developments were obtained in the designs ofnovel materials and device structures and the studies of materialstructure/optical and electrical properties relationships.
     1. Two kinds of Schiff base organic metal complexes, Bis(salicyl-idene)-1, 2-phenylenediamine Zinc(Zn(salph)) and Bis(salicylidene)-1,6-hexanedia-mine Zinc(Zn(salhex)) with high purity, were synthesized byliquid-phase reaction and purified by vacuum sublimation, molecularstructures were confirmed by element analysis, ~1H NMR spectra and FT-IRspectra; their thermal stabilities were characterized by TG-DTA curves;phase structures were analyzed by X-ray diffraction(XRD); theirmicrostructures were identified by scanning electron microscope(SEM).Experimental results showed that:①. Zn(salph) is a clubbed polycrystallinematerial, with glass temperature and decomposition temperature being183℃and 449℃, respectively;②. Zn(salhex) is a sheet polycrystallinematerial, with preliminary decomposition temperature being 325℃.
     2. Zn(salph) and Zn(salhex)'s luminescent properties were studied byUV absorption spectra and fluorescence spectra, In addition, the structuresof energy band, photophysical and photochemical of those were studied bycyclic voltammetry, UV absorption spectra and fluorescence spectra in detail.Experimental results showed that:①. Zn(salph)'s tetrahydrofuran solutionemitted intensive blue-green fluorescence at peak wavelength of 508 nm under UV excitation and had high fluorescent quanta efficiency; HOMOlevel, LUMO level and optical gap of Zn(salph) is -5.24eV, -2.60eV, 2.64eV,respectively.②. Zn(salhex) powder emitted blue-green fluorescence whichthe maximum emission peak is at 485nm, FWHM(FWHM: Full Wave atHalf Maximum) is 66.6nm and CIE(CIE: Commission International deL'Eclairage) coordinates were x=0.225 0 and y=0.324 7; HOMO level,LUMO level and optical gap of Zn(salhex) is -6.25eV, -3.39eV, 2.86eV,respectively.
     3. Double-layer device ITO/NPD/Zn(salhex)/Al using Zn(salhex) asthe emissive layer and Double-quanta-well device ITO/CuPc/Alq_3/Zn(salph)/Alq_3Zn(salph)/Alq_3/Al using Zn(salph) as the emissive layerwere fabricated and investigated by vacuum evaporation, respectively.
     4. Besides, other four Schiff base organic metal complexes weresynthesized and their fluorescence emission spectra were compared withZn(salph)'s to explore luminous mechanisms of them primarily.
引文
[1] 李文连,有机EL新进展,液晶与显示,1996,11(2):155-163
    [2] 朱为宏,田禾,有机分子电致发光材料进展,化学进展,2002,14(1):18-23
    [3] 邱勇,有机EL显示器的产业化进展,国际光电与显示,2000,7:62-64
    [4] 黄春辉,李富友,黄岩谊,光电功能超薄膜,北京,北京大学出版社,2001:238
    [5] Pope M., Kallmann H. P., Magnante P., Electroluminescence ++in organic crystal, J. Chem. Phys., 1963, 38:2042-2043
    [6] Helfrich W, Schneider W G, Recombination radiation in anthracene crystals, Phys. Rev. Lett. 1965, 14:229-231
    [7] Vincett P S, Barlow W A, Roberts G G, Electronical conduction and low voltage blue vacuum-deposited organic films, Thin Solid Film, 1982, 94:171-183
    [8] Tang C W, Vanslyke S A, Organic electroluminescent diodes, Appl. Phys. Lett., 1987, 51(12): 913-915
    [9] Adachi C, Tokito S, Tsutsui T, et al., Electroluminescence in organic films with three-layer structure, Jpn. J. Appl. Phys. Part 2, 1988, 27(2):L269-L271
    [10] Adachi C, Tsutsui T, Salto S, Organic electroluminescence device having a hole conductor as an emitting layer, J. Appl. Phys. Lett. 1989, 55(15):1486-1491
    [11] Burroughes J N, Bradley D C, Brown A R, et al., Light-emitting diodes based on conjugated polymers, Nature, 1990, 347:539-541
    [12] 黄春辉,李富友,黄岩谊,光电功能超薄膜,北京,北京大学出版社,2001:76-77,160-171,244-248
    [13] Forrest S.R., Burrow P.E., and Thompson M.E., Organic electroluminescent materials and devices, Gordon & Breach, 1997:447-453
    [14] 李文连,用于有机EL器件的电极材料,液晶与显示,2000,15(2):108-113
    [15] 朱道本,王佛松,有机固体,上海,上海科学与技术出版社,1999:p29
    [16] Ahmed M, Khanl Z H, Electronic absorption spectra of benzoquinone and its hydroxyl substituents and effects of solvents on their spectra, Spectrochimica Acta part A, 2000,56:965-981
    [17] Kasha M, Molecular excitions in small aggregates In: Sepectroscopy of the the Excited State, New York, Plenum Press, 1976, 337-363
    [18] Han E H, Do L M, Yamamoto N, et al. Crystallization of organic thin films for electroluminescent devices, Thin Solid Film, 1996, 273:202-208
    [19] Tokito S, Tanaka, H, Noda K, et al. Thermal stability in oligomeric triphenylamine/tris(8-hydroxyquinoline)aluminum electroluminescent devices, Appl. Phys. Lett., 1997,70:1929-1931
    [20] 方容川,固体光谱学,合肥,中国科技大学出版社,2001,p61
    [21] Yu G, Liu Y Q, Song Y R, et al. A new blue light-emitting material, Synth. Met. 2001,117:211-214
    [22] 宋文波,陈旭,吴芳等,有机/聚合物材料体系能带结构的表征-电化学方法研究,高等学校化学学报,2000,21(9):1422-1426
    [23] Bard A J, Faulkner L R, Electrochemical methods, fundamental and application, Wiley, New York, 1980, p634
    [24] Schmitz C, Schmidt H W, Thelakkat M, Lithium-quinolate complexs as emitter and interface materials in organic light-emitting-diodes, Chem. Mater. 2000, 12:3012-3019
    [25] Wang G M, Ding Y, Wei Y, Relationship between organic thin film uniformity and its electroluminescence, Applied Surface Science, 1966, 93:281-283
    [26] Qiu Y, Qiao J, Photostability and morphological stability of hole transporting materials used in organic electroluminescence, Thin Solid Film, 2000, 372:281-283
    [27] Xu M S, Xu J B, Real-time visualization of thermally activated degradation of the ITO/CuPc/NPB/Alq_3 stack used in one of the organic light-emitting diodes, J. Phys. D:Appl. Phys. 2004, 37:1603-1608
    [28] Xu M S, Xu J B, Visualization of thermally activated degradation pathways of tris-(8-hydroxyquinoline)aluminum thin films for electroluminescence application, Thin Solid Film, 2005, 491:317-322
    [29] Gavrilko T, Fedorovich R, Dovbeshko G, et al. FTIR spectroscopic and STM studies of vacuum deposited aluminum(Ⅲ)8-hydroxyquinoline thin films, Journal of Molecular Structure, 2004, 704:163-168
    [30] 杨玉惠,詹义强,丁焕军等,热稳定空穴传输材料的合成及其电致发光器件,发光学报,2003,24(6):583-587
    [31] Hao Yuying, Hao Haitao, Wang Hua, et al. Preparation and characterization of 2(8-hydroxyquinline)-2(phenol) zirconium thin film, Spectroscopy and spcectral analysis, 2004,24(12): 1524-1529
    [32] 杨坚,吴宏滨,侯琼等,一种有机电致发光共聚物的制备和性能,发光学报,2003,24(6):612-615
    [33] Yuji Hamada, Takeshi Sano, Masayuki Fujita, et al. Blue Electroluminescence in Thin Films of Azomethin-Zinc Complexes, Jpn. J. Appl. Phys., 1993, 32Part 2(4A): L511~513
    [34] Tao X T, Suzuki H, Watanabe T, et al. Metal complex polymer for second harmonic generation and electroluminescence applications, Appl. Phys. Lett.,1997, 70:1503-1505
    [35] Shao Y, Qiu Y, Hu W H, et al. A novel asymmetric complex for organic electroluminescence, Adv. Marer. Opt. Electron, 2000, 10(6):285
    [36] Qiao J, Qiu Y, Wang L D, et al. Pure red electroluminescence from a novel host material of binuclear gallium complex, Appl. Phys. Lett., 2002, 81 (26):4913-4915
    [37] 乔娟,邱勇,王立铎,新型有机电致发光材料的分子设计与性能研究,博士学位论文,2003,65-113
    [38] 刘云圻,于贵,武霞等,锌-希夫碱络合物的电致发光性能,发光学报,2000,21(增刊):17-19
    [39] 陈金伙,欧谷平,张福甲等,蓝色有机电致发光材料8-羟基喹啉硼化锂结构表征及其对荧光性质影响研究,兰州大学学报,2005,41(2):86-91
    [40] 郝玉英,高志翔,王华等,水杨醛缩苯胺锌及其薄膜的谱学性能,光谱学与光谱分析,2006(26):491~495
    [41] 郝玉英,王华,郝海涛等,8-羟基喹啉锂的合成、表征及发光特性,发光学报,2004,25(4):419-423
    [42] Yu G, Yin S W, Liu Y Q, et al. Structures, Electronic States, and Electroluminescent Properties of a Zinc(Ⅱ) 2-(2-Hydroxyphenyl)benzothiazolate complex, JACS, 2003 (125): 14816-14824
    [43] 郝玉英,李洁,高志翔等,2(水杨醛缩苯胺)-(1,10-邻菲罗啉)合钙的光谱特性,2006,27(2):254-258
    [44] 吴芳,田文晶,马於光等,有机/聚合物电致发光器件中层间的能带匹配对器件发光性质的影响,发光学报,1998,19(2):159-164
    [45] 左演声,陈文哲,梁伟,材料现代分析方法,北京,北京工业大学出版社,2000,p177
    [46] 李洁,王华,郝玉英等,1,5-萘二胺衍生物的合成及发光行为,发光学报,2005,26(2):247-252
    [47] Cho J S, Kimoto A, Higuchi M, et al. Synthesis of Diphenylamine-Substituted Phenylazomethine Dendrimers and the Performance of Organic Light-Emitting Diodes, Macromal. Chem. Phys., 2005(206): 635-641
    [48] Hou Q F, Zhao L Y, Zhang H Y, Synthesis luminescent properties of two Schiff-Base boron complexes, Journal of Luminscence, 2006(8): 1-5
    [49] Jung S, Kang Y, Kim H Y, et al. Effect of Substitution of Methyl Groups on the Luminescence Performance of Ir(Ⅲ) Complexes: Preparation, Structures, Electrochemistry, Photophysical Properties and Their Applications in Organic Light-Emitting Diodes(OLEDs), Eur. J. Inorg. Chem., 2004, 3415-3424
    [50] 郝玉英,郝海涛,王华等,2(8-羟基喹啉-2-苯酚)合锆薄膜的制备与表征,光谱学与光谱分析,2004,24(12):1524-1528
    [51] Du N Y, Tian R Y, Peng J B, et al. Synthesis and Photophysical Characterization of the Free-Radical Copolymerization of Metaloquinolate-Pendant Monomers with Methyl Methacrylate, Journal of Polymer Science: Part A: Polymer Chemistry, 2005(43): 397-406
    [52] 游效曾,分子材料——光电功能化合物,上海,上海科学技术出版社,2001,p284-p285

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700