用户名: 密码: 验证码:
完全热耦合精馏塔及其节能效果的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对完全热耦合精馏塔(又称Petlyuk塔),应用化工流程模拟软件ASPEN PLUS,在三塔模型的简捷法所得初始设定参数基础上对完全热耦合精馏塔进行严格模拟,并通过模拟对全热耦合精馏塔的进料板位置、侧线采出位置、中间组分分配比β、气相分割比Rv和液相分割比Rl等参数进行优化。文章以戊烷-己烷-庚烷三元物的分离为例,模拟分析全热耦合精馏塔的特性。
     研究过程中主要针对影响完全热耦合精馏塔操作性能的关键因素——气相分割比Rv、液相分割比Rl的影响进行了探讨,模拟结果表明,气相分割比Rv、液相分割比Rl对全热耦合精馏塔的能量利用情况和操作特性影响显著。当固定Rv(或Rl)为某一值时,Rl(或Rv)有使全塔再沸器热负荷最低的值,变化Rv(或Rl)值可寻找全塔再沸器热负荷最低值,即全热耦合精馏塔在最优条件下操作。另外,研究了Rv和Rl对产品纯度和塔的操作性能的影响。
     将完全热耦合精馏塔应用于多组元物系工业分离,针对乙烯流程中碳三、碳四和碳五分离系统,主要研究进料中中间组分碳四含量较少、各组分均等进料和进料中中间组分碳四含量较多三种情况,将完全热耦合精馏塔和传统精馏塔直接序列、传统精馏塔间接序列、部分热耦合精馏塔直接序列、部分热耦合精馏塔间接序列进行节能对比,结果显示热耦合精馏塔具有较好的节能效果。当中间组分含量较多时完全热耦合精馏塔分离为最优,节能百分率15.7%;中间组分碳四含量较少、均等进料情况下,部分热耦合精馏塔分离最优,节能百分率分别为16.8%和14.1%。并对这五种塔系进行公用工程费用和年度总费用分析,结果显示,由于精馏塔塔顶冷凝器采用丙烯冷剂制冷,导致全热耦合精馏塔和部分热耦合精馏塔间接序列消耗费用较传统精馏塔多,而部分热耦合精馏塔直接序列最经济。
Fully thermally coupled distillation column (Petlyuk) is studied by means of rigorous simulation in this paper. The simulation is performed with commercial software ASPEN PLUS. Primary specifications for the theoretical tray numbers, feed and liquid withdraw locations as well as the reflux ratio are estimated with a shortcut method. By the rigorous simulations, the feed and withdraw tray locations, the overhead fraction of the distributed component in the prefractionator, as well as the split ratios for the gas and liquid phases Rv and Rl respectively are optimized. The ternary mixture of pentane-hexane-heptane is used in the simulation to investigate the characteristics of Petlyuk.
     The study focused on the influence of vapor split ratio Rv, liquid split ratio Rl on the overall expense and characteristics of Petlyuk and it is found that the influence was significant. The optimal value of Rl was firstly found for a particular Rv and a series of trials were made for different values of Rv to find the optimal solutions for both Rl and Rv in terms of energy cost minimization. The influence of parameters Rv and Rl on the product purities and the operability of the Petlyuk was also investigated.
     A Petlyuk for the separation of a multi-component mixture of C3~C5 hydrocarbons that may rise in ethylene process industry was simulated for the following thee different kinds of feed conditions: a. equal composition for the three components, b. the composition of component C4 is abundance and c. the composition of component C4 is lack. The simulated results on the consumptions for the thee cases were compared with those for the direct thermally coupled sequence (CTDC)﹑indirect thermally coupled sequence (ITDC)﹑direct conventional sequence (DCS)﹑indirect conventional sequence(ICS). The comparisons demonstrated that the Petlyuk gave the lowest energy consumption for the case of C4 abundance, 15.7% lower than the DCS. And the CTDC and ITDC consumed lower energy than the Petlyuk for the other two cases, 16% lower for the case of lack of C4 and 14.1% lower for the other respectively comparing to the DCS. Then the utility costs and total annual costs of the five different columns are analysed,the results show that the Petlyuk and the indirect thermally coupled sequence(ITCS)cost more than conventional distillation columns as propylene refrigerant is introduced. Direct thermally coupled sequence(DTCS)is the best among all.
引文
[1] Linnhoff B, Dunford H, Smith R. 1983a. Heat integration of Distillation Columns into Overall Processes. Chem.Eng.Sci.,38(8):1175~1188
    [2] MixTJ,DweckJ S,Weinberg M,Armstrong R C.1978.Chem.Eng.Prog.,74(4):49
    [3]韩志伟,精馏技术进展与设计,南化科技信息,1996,1:48~52
    [4]钱建兵,朱慎林,板式塔及分离技术最新进展,浙江化工,2003,34(11):
    [5]余国琮,袁希钢,我国蒸馏技术的现状与发展,现代化工,1996,16(10):7~12
    [6]徐世民,王军武,许松林,新型蒸馏技术及应用,化工机械,2004,31(3):183~187
    [7]周明,许春建,吸附蒸馏-复合新分离过程,自然科学进展-国家重点实验室通讯,1995,5(2):147~152
    [8]谷明星,余国琮,一种新型复合分离过程—吸附蒸馏,化工进展,1992,11(5):2~5
    [9]林浩,甄卫军,膜蒸馏分离技术研究的进展及其应用,新疆石油学院学报,2001,13(3):56~61
    [10]刘立华,膜蒸馏技术进展,唐山师范学院学报,2002,24(5):27~29
    [11]杨志才,李伯春,有惰性气体存在的精馏过程,石油化工,1992,21(4):237~241
    [12]曹国锋,刘红天,脱臭馏出物中天然维生素E提取,粮食与油脂,2001(5):42~43
    [13]曾爱武.精馏技术在精细化学品分离中的应用[J].精细化工原料及中间体,2005,(9):8~l1.
    [14]刘兴高,精馏过程的建模、优化与控制,北京:科学出版社,2007.5~6
    [15]邹仁鋘,石油化工分离原理与技术,北京:化学工业出版社,1988.189
    [16]《化学工程手册》编辑委员会,化学工程手册,第11篇,精馏,化学工业出版社,1989,158~163
    [17]王梦华,精馏过程节能技术探讨,齐鲁石油化工,2003,31(4):324~326
    [18]冯霄,化工节能原理与技术,北京:化学工业出版社,2004.100
    [19]王建忠,马文婵,王鹏辉,精馏过程的节能现状与对策,河北化工,2006,29(4):27~30
    [20]李鑫钢,现代蒸馏技术,北京:化学工业出版社,2009.118~121
    [21]王维德,进料热状况对精馏能耗影响[J],华侨大学学报(自然科学版),2008,2:260—262
    [22]冯霄,化工节能原理与技术,北京:化学工业出版社,2004.99~101
    [23]徐兆瑜,浅议化工节能的一些措施和新进展[J],石油和化工节能,2008,4:3-7
    [24] Thompson, R. W.; King, C. J. Systematic Synthesis of Separation Schemes. AIChE J. 1972, 18, 941
    [25] Fresher D C,Trans.Inst.Chem.Eng.1951(29);149
    [26] Rathore R N S,Van Wormer K A, Powers G J.AIChE J.1974(20):491
    [27] Tyreus B D,Luyben W L.Hydrocartx. Processing.I975,July;93
    [28] Tyrens B D,Luyben W L. Chem.Eng.Prog.1976(73):59
    [29] Ka tzom,et a1.U.S. 4217178.1980
    [30] Omideyi T O,Kasprzyckij,Watson F A.The Eeonomics of Heat Pump Assisted Distillation System-I.A Design and Economic Model[J].Journal of Heat Recovery Systems,1984,4(3):187-200.
    [31] Gopichand S,Omideyito,Kasprzyckij,et a1.The Economics of Heat Pump Assisted Distillation Systems-Ⅱ.Analysis of Ethano1 water Mixtures[J].Journal of Heat Recovery Systems,1984,4(4):271-280.
    [32] Omideyi T O,Parande M G,Kasprzyckij,et a1.The Economics of Heat Pump Assisted Distilation systems-Ⅲ.A Comparative Analysis On Thee Alcohol Mixtures[J].Journal of Heat Recovery Systems。1984,4(4):281-286.
    [33] Omideyi T O,Parande M G,Supranto S,et a1. The Economies of Heat Pump Assisted Distillation Systems-Ⅳ.Experimental Assessment with Methanol-water Mixtures[J],Joumal of Heat Recovery Systems,1985,5(6):511-518.
    [34] Fonyo Z,Kurratr R,Rippind W T,et a1.Comparative Analysis of Various Heat Pump Schemes Applied to C4 Splitters[J].Com Chem Eng,1995,19(suppl 1):1-6.
    [35] Fonyo Z,Benk N.Enhancement of Process Integration by Heat Pumping[J].Com Chem Eng,1996,20(suppl 1):85—9o.
    [36] Rivera-Ortega P,Picon-Nui-Ez M,Torres-Reyes E,et a1.Thermal Integration of Heat Pumping Systems in Distillatien Columns[J] . Applied Thermal Engineering,1999,19(8):819-829.
    [37] Gebbie J G,Jensen M K,Domanskipiotr A,et a1.Experimental Pure Fluid and Binary Mixture Performance in a Heat Pump Equipped with a Distillation Column [J].International Journal pf Refrigeration,2004,27(8):940-947
    [38]魏奇业等,热泵精馏的控制研究,化工自动化及仪表,2006,33(1):21—2
    [39] Freshwater,D.C.Thermal economy in distillation.Transactions,IchemE,29,149
    [40] Mah Jr, R. J. N., Wodnik R., Distillation with secondary reflux and vaporization: A comparative evaluation, AIChE J., 1977, 23(5), 651-658
    [41] Petlyuk F B,Platonov V M,Thermodynamically optimal methods for separating multi-component mixtures,Int Chem Eng,1965,5(3):555-561
    [42] Kaibel G, Distillation columns with vertical partitions[J].Chem Eng Technol,1987,10:92—98
    [43] Ennenbach F, Kolbe B, Ranke U, Divided wall columns—A novel distillation concept[J]. Process Technology Quarterly, 2000, 5(3): 97—103
    [44] Abdul Mutalib M I,Smith R,Operation and control of dividing wall columns[J]. Trans Inst Chem Eng, Part A, Chem Eng Res Des, 1998, 76: 308—334
    [45] Agrawal R.Multicomponent distillation columns with partition and multiple reboilers and condensers[J].Ind Eng Chem Res, 2001, 40:4258—4266
    [46] Guido D, Constantinos C, Optimal design of thermally coupled distillation columns [J]. Ind Eng Chem Res, 1999, 38:162—176
    [47] Agrawal Rakesh, Zbigniew T, Fidkowski, Are thermally coupled distillation columns always thermodynamically more effcient for termally distillation?, Ind Eng Chem Res,1998,37:3444-3454
    [48] Qlga A, Flores J, Carlos Cardenas, et al, Thermodynamic analysis of thermally coupled distillation columns, Ind Eng Chem Res, 2003,42:5940-5945
    [49] Nelly Ramirez, Arturo Jimenez, Two alternatives to thermally coupled disllation systems with side column, AICHE Jounal,2004,50(11):2971-2975
    [50]叶青等,热偶精馏技术与应用进展,天然气化工,2006,31:53-65
    [51] Plesovskikh V A,Bezdenezhnykh A A,Distilation of multicomponent mixtures of higher aliphatic acids in thermally coupled distillation systems,Theoretical Foundation of Chemical Engineering,2003,37(5):474-481
    [52] Wright R O,Fractionation Apparatus, US Patent, US2471134,1949-5-24
    [53] Stupin W. J., PhD Thesis, University of Southern California, USA, 1970
    [54] Cerda J. & Westerberg W., 72nd AIChE Annual Meeting, San Francisco, 1979
    [55] Fidkowski Z. T. & Krolikowski L., Thermally Coupled System of Distillation Columns: Optimization Procedure. AIChE J.,1986, 32(4), 537-546
    [56] Carlberg N. A. & Westerberg, A. W., Temperature heat diagrams for complex columns. 2: Underwood’s method for side strippers and enrichers, Ind. Eng. Chem. Res.,1989, 28, 1379-1386
    [57] Carlberg N. A. & Westerberg A. W., Temperature-Heat Diagrams for Complex Columns. 3: Underwood’s Method for the Petlyuk Configuration, Ind. Eng. Chem. Res., 1989, 28, 1386-1397
    [58] Ivar J. Halvorsen and Sigurd Skogestad, Minimum Energy Consumption in Multicomponent Distillation. 1.Vmin Diagram for a Two-Product Column, Ind. Eng. Chem. Res. 2003, 42, 596-604
    [59] Ivar J. Halvorsen and Sigurd Skogestad, Minimum Energy Consumption in Multicomponent Distillation. 2.Thee-Product Petlyuk Arrangements, Ind. Eng. Chem. Res. 2003, 42, 605-615
    [60] Ivar J. Halvorsen and Sigurd Skogestad, Minimum Energy Consumption in Multicomponent Distillation. 3.More Than Thee Products and Generalized Petlyuk Arrangements, Ind. Eng. Chem. Res. 2003, 42, 616-629
    [61] Ivar J. Halvorsen and Sigurd Skogestad, Minimum Energy Operation of Petlyuk Distillation Columns - Nonsharp Product Specifications, Proceedings of the 1st Annual Gas Processing Symposium, 2009, Pages 79-87
    [62] Noori Sotudeh, Baham Hashemi Shahaki, A Method for the Design of Divided Wall Columns, Chem. Eng. Technol. 2007, 30, No. 9, 1284–1291
    [63] Fidkowski, Z., & Królikowski, L. Minimum requirements of thermally coupled distillation systems. AIChE Journal, 1987,33,643–653.
    [64] Fidkowski, Z., & Królikowski, L. Energy requirements of nonconventional distillation systems. AIChE Journal, 1990,36,1275–1277.
    [65] Yeomans, H.,&Grossmann, I. Optimal design of complex distillation columns using rigorous tray-by-tray disjunctive programming models. Industrial & ngineering Chemistry Research, 2000,39(11),4326–4335.
    [66] Caballero, J., & Grossmann, I. Generalized disjunctive programming model for the optimal synthesis of thermally linked distillation columns. Industrial & Engineering Chemistry Research, 2001,40(10),2260–2274.
    [67] Kim, Y. H. Structural design of extended fully thermally coupled distillation columns. Industrial & Engineering Chemistry Research, 2001,40(11),2460–2466.
    [68] Kim, Y. H. Structural design of fully thermally coupled distillation columns using a semi-rigorous model. Computers & Chemical Engineering, 2005,29(7),1555–1559.
    [69] Leboreiro, J., & Acevedo, J. Processes synthesis and design of distillation sequences using modular simulators:Agenetic algorithm framework.Computers & Chemical Engineering, 2004,28(8),1223–1236.
    [70] C. Guitérrez-Antonio, A. Briones-Ramírez, Pareto front of ideal Petlyuk sequences using a multiobjective genetic algorithm with constraints, Comp. Chem. Eng. 2009,33,454–464
    [71] M. Serra, M. Perrier, A. Espuna, L. Puigjaner, Analysis of different control possibilities for the divided wall column: feedback diagonal and dynamic matrix control, Computers and Chemical Engineering. 2001, 25, 859–866
    [72] M. Serra, A. Espua, L. Puigjaner, Controllability of different multicomponent distillation arrangements, Ind. Eng. Chem. Res. 2003,42 (8) ,1773–1782
    [73] Till Adrian, Hartmut Schoenmakers , Marco Boll,Model predictive control of integrated unit operations: Control of a divided wall column, Chemical Engineering and Processing , 2004, 43, 347–355
    [74] Niggemann, G., Hiller, C., Fieg, G. Model validation for dividing-wall columns as basis for process control. WCCE 9, Montreal, Canada, 2009
    [75] Niggemann, G., Hiller, C., Fieg, G. Theoretische Entwicklung und experimentelle Umsetzung von zeitoptimalen Anfahstrategien für Trennwandkolonnen, Jahestreffen der Process Net-Fachausschüsse Adsorption und Fluidverfahenstechnik,Bingen, Deutschland, 2008,13.-14.03
    [76] Hao Ling, William L. Luyben,New Control Structure for Divided-Wall Columns, Ind. Eng. Chem. Res. 2009, 48, 6034–6049
    [77] Hao Ling, William L. Luyben, Temperature Control of the BTX Divided-Wall Column, Ind. Eng. Chem. Res. 2010, 49, 189–203
    [78] Annakou O. & Mizsey P., Rigorous Comparative Study of Energy-Integrated Distillation Schemes[J]. Ind. Eng. Chem. Res. 35, 1996,1877-1885
    [79] Mansour Emtir, Endre Rev & Zsolt Fonyo. Rigorous simulation of energy integrated and thermally coupled distillation schemes for ternary mixture[J]. Applied Thermal Engineering. 2001,21, 1299-1317
    [80] Fidkowski Z. T. & Agrawal R., Multicomponent Thermally Coupled Systems of Distillation Columns at Minimum Reflux[J]. AIChE J. 2001,47(12), 2713-2724,
    [81] B. Suphanit, A. Bischert, P. Naratauksa, Exergy loss analysis of heat transfer across the wall of the dividing-wall distillation column, Energy ,200732 ,2121–2134.
    [82] Young Han Kim., Rigorous design of fully thermally coupled distillation column. Chem. Eng. J. Japan, 2001, 34, 236-243
    [83] Young Han Kim, Structural of Extended Fully Thermally Coupled Distillation Columns, Ind. Eng. Chem. Res., 2001, 40, 2460-2466
    [84] Young Han Kim,Structural Design and Operation of a Fully Thermally Coupled Distillation Column, Chem. Eng. J., 2002, 85, 289-301
    [85] Young Han Kim, An Alternative Structure of a Fully Thermally Coupled Distillation Column for Improved Operability, Chem. Eng. J., 2003, 36(12), 1503-1509
    [86] R. Agrawal, Synthesis of distillation column configurations for a multicomponent separation, Ind. Eng. Chem. Res. 1996,35 , 1059–1071.
    [87] R. Agrawal, Multicomponent distillation columns with partitions and multiple reboilers and condensers, Ind. Eng. Chem. Res. 2001,35 1059–1071.
    [88] G. Kaibel, Distillation columns with vertical partitions, Chem. Eng. Technol. 1987,10(2) ,92–98.
    [89] A.C. Chistiansen, S. Skogestad, K. Lien, Partitioned Petlyuk arrangements for quaternary separations, Distillation and Absorption (1997) 745–756, Symposium Series No. 142.
    [90] A.C. Chistiansen, S. Skogestad, K. Lien, Complex distillation arrangements: extending the Petlyuk Ideas, Comput. Chem. Eng. 21 (Suppl.) (1997) S237–S242.
    [91]许锡恩等,三相热偶和精馏过程的模拟,化工学报,1989,1:28-37
    [92]曲平等,丁二烯分离装置热耦精馏的操作特性,高校化学工程学报,1996,10(2):145-151
    [93]杨德明,烷烃分离热耦精馏的模拟研究,石油化工高等学校学报,2002,15(3),25-27,35
    [94] Ju Yeong Lee, Young Han Kimb, Kyu Suk Hwang,Application of a fully thermally coupled distillation column for fractionation process in naphtha reforming plant,Chemical Engineering and Processing,2004,43,495–501
    [95]吕向红等,液化天然气分离的热耦蒸馏工艺,天然气化工,2006,3l,62-65
    [96]叶青,分隔壁共沸精馏塔分离叔丁醇水混合物的模拟研究,天然气化工,2009,5:17-23
    [97] S. Sander, F. Flisch, E. Geiβer, H. Schoenmakers, O. Ryll, H. Hasse, Methyl acetate hydrolysis in a reactive divided wall column, Chem. Eng. Res. Des. 85 (2007)149–154.
    [98] Geiβer, E. Ryll, O., Sander, S., Müller, I., Groβann, C., Kenig, E.Y., Hasse,H. Reaktiv destillation in Trennwandkolonnen: Methylacetat-Hydrolyse als Beispielprozess, Jahestreffen der ProcessNet-Fachausschüsse Adsorption und Fluidverfahenstechnik,Bingen, Deutschland, 13.-14.03.2008.
    [99] I. Müller, E. Kenig, Reactive distillation in a dividing wall column: ratebased modeling and simulation, Ind. Eng. Chem. Res. 46 (11) (2007)3709–3719.
    [100] Schmidt, W., Holtmann, T., Herbrecht, D. Batchdestillation in Trennwandkolonnen,Jahestreffen der ProcessNet-Fachausschüsse Adsorption und Fluidverfahenstechnik, Bingen, Deutschland, 13.-14.03.2008.
    [101] Ivar J. Halvorsen I and Sigurd Skogestad, Optimizing Control of Petlyuk Distillation:Understanding the Steady-State Behavior, Computers chem. Engng. 1997,Vol. 21, Suppl., pp. S249-S254
    [102] Ivar J. Halvorsen1, Sigurd Skogestad, Optimal operation of Petlyuk distillation: steady-state behavior, Journal of Process Control,1999,9: 407-424
    [103] P. Mizsey’, N. T. Hau, N. Benko, I. Kalmar and Z. Fonyo, Process control for energy integrated distillation schemes, Computers chsm. Engng. 1998, Vol. 22, Suppl., pp. S427-S434
    [104]叶青等,用分隔壁精馏塔分离三组分混合物的节能研究,化学工程,2007,35(11),54-57
    [105] Parkinson, G., Dividing-wall columns find greater appeal.Chem Eng Prog, 2007,103(5): 8–11
    [106] Z. Olujic, M. Joeckeb, A. Shilkin, G. Schuch, B. Kaibel. Equipment improvement trends in distillation. Chemical Engineering and Processing,2009,48,1089–1104
    [107] Schultz Michael A, Stewart, et al, Reduce costs with dividing-wall columns[J], Chemical Engineering Progress,2002,98(5):64—71
    [108] Kaibel B, Jansen H, Zich E, Unfixed dividing wall technology for packed and tray distillaion columns, Institution of Chemical Engineering Symposium Series,N0152,2006:1-9
    [109] Kaibel, GeM, Stroeze1, Dividing wall column for continuous fractionation of multicomponent mixtures by distillation[P], US:5 914 012,1999
    [110] Parkinson G, Drip and drop in column internals[J], Chem Eng, 2000, 107(7):27—31
    [111] Deibele Ludwig, Heinz Dieter, Process for the mild distillative separation of mixtures[P], US:20040020757,2004
    [112] Kolbe, Barbel, Wenzel, Sascha,et al,Novel distillation concepts using one-shell columns, Chemical Engineering and Processing, 2004, 43(3):339-346
    [113]刘兆凯,段文立,隔板精馏技术的研究进展和应用现状,石油和化工节能,2007,2:12-15
    [114] Norbert Asprion, Gerd Kaibel ,Dividing wall columns: Fundamentals and recent advances,Chemical Engineering and Processing , 2010, 49:139–146
    [115] J. Stichlmair, Zerlegung von Dreistoffgemischen durch Rektifikation, Chem. Ing.Technol. 1988,60 (10) :747–754.
    [116] J.Stichlmair, Ulmann’s Encyclopedia of Industrial Chemistry, Vol.B3, VCH, Weinheim 1988.
    [117] C. G. Kirkbride, Pet. Ref. 1944, 23, 321
    [118] Hsuan chang, Jia-jan Guo,Heat Exchange Network Design for an Ethylene Process Using Dual Temperature Approach,Tamkang Journal of science and engineering,2005,vol 8,no.4,pp:283-290
    [119] Douglas, J.M., Conceptual Design of Chemical Processes,USA, McGraw-Hill, 1988, pp. 568–577

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700