用户名: 密码: 验证码:
中国汉族人群PAX1/SIM2/WNT3A/TBX6/DVL2/LMX1A基因多态性与先天性脊柱侧凸遗传易感性的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     先天性脊柱侧凸(congenital scoliosis,CS)定义为“由于胚胎期脊柱椎体发育异常而引起的脊柱侧凸”,它在脊柱的冠状面、矢状面和水平面上可引起侧凸、前凸、后凸和旋转畸形。CS是由于胚胎期中轴骨发育障碍引起的,而胚胎发育过程中一种重要的过渡性组织——“体节(somite)”决定中轴骨的形成,已证明体节发育受影响可导致脊椎畸形,包括椎体形成障碍(半椎体、楔形椎和蝴蝶椎)和椎体分节不良。椎体畸形可因发育相关基因突变所致,也可能是妊娠中环境因素或这两个因素共同作用所致,其确切病因还不清楚。近年来,随着分子生物学和遗传学水平的发展,国外已开始了CS候选基因的初步研究,CS的遗传病因学假说开始引起越来越多学者的重视。目前的研究支持CS是一种多基因遗传疾病,一个或多个基因导致不同的表型,任何一个基因均可能使患者处于易感状态,环境因素的影响使基因表型趋于复杂化。
     近20年通过对小鼠的胚胎学研究获得了大量关于脊椎发育的分子胚胎学信息,研究进展表明相对于物种进化来说不同物种间在核苷酸序列和氨基酸序列上有较高的保守性,因此我们可以系统回顾有关小鼠骨骼、尾部或神经肌肉突变表型的基因组数据以发现人类CS的可能候选基因,通过基因图的位置以同线性保守基因序列为基础进一步确立人类的可能候选基因。Giampietro等2003年报道利用人-小鼠同线性分析发现了小鼠的27个突变基因座及对应的人类CS的候选基因,还推荐了7个重要的候选基因——PAX1、DLL3、WNT3A、MYLK、LMX1A、FBN2和SIM2。从小鼠基因组数据库中我们还可发现TBX6、DVL2等基因也是人类CS的候选基因。
     目前对人类先天性脊柱侧凸(CS)的候选基因研究尚处于初步阶段,国内尚是空白。
     研究目的:
     ■通过对7个候选基因(PAX1、SIM2、WNT3A、TBX6、DVL2、LMX1A、DLL3)上的SNPs的筛查,探索候选基因与人类CS之间的关联,依据研究结果提出可能的病因学假说
     ■通过对候选基因SNPs基因型与CS临床表型的关联分析,探索可能潜在的致病基因,从遗传学上丰富CS临床表型的内容
     ■从基因水平探索候选基因与CS及CS不同临床表型之间的关系
     研究方法:本研究采用医院为基础的病例-对照研究设计。
     ■研究对象:根据入选和排除标准入选2005年10月——2007年9月期间北京协和医院骨科收治并已确诊的127例中国汉族先天性脊柱侧凸(CS)患者。127例非先天性脊柱侧凸对照为性别、年龄、民族与病例相匹配,年龄差别≤3岁的同期北京协和医院收住的感染(43%)、炎症性疾病(41%)、创伤(11%)、过敏性疾病及其他(5%)患者。
     ■研究方法:
     (?)QIAamp DNA Blood Mini Kit试剂盒提取全血DNA;
     (?)根锯国际人类基因组单体型图计划(http://www.Hapmap.org)提供的基因型数据,应用Haploview 4.0软件选取各候选基因的标签SNPs,优先选取杂合度高于10%,位于外显子区域或有错义突变的SNPs和位于3′-、5′-调控区的SNPs作为遗传标记,共选取24个SNPs;
     (?)将病例组根据椎体畸形特点、畸形部位、椎体畸形受累程度、有无合并肋骨畸形和有无合并椎管内畸形进一步分为不同的临床表型;
     (?)在所有127例CS患者和127例对照中应用超高通量的SNP分型系统——SNPstream UHT Genotyping System对所选SNPs进行基因型鉴定;
     (?)拟合优度x~2检验(Goodness-of-fit Chi-square test)分析病例、对照组基因型频率的分布是否符合H-W平衡;
     (?)基于基因型/等位基因频率的关联分析;
     (?)在基因型/等位基因频率关联分析基础上,应用在线软件(SNPstats)进行非条件Logistic回归模型评估单位点基因型与CS发生风险的相关程度,并计算优势比(OR)及95%可信区间(CIs);
     (?)连锁不平衡和单倍体型分析:应用Haploview 4.0和UNPAHSED软件计算对照组人群中同一基因SNPs两两间连锁不平衡统计值D'和r~2,并评估所有单倍体型在病例组和对照组之间的分布差异。
     研究结果:
     ■先天性脊柱侧凸(CS)病例组和对照组年龄、性别分布无统计学差异。
     ■因DLL3基因的3个标签SNPs引物设计失败,故研究中放弃该基因;最终对筛查所得到的分布于6个基因(PAX1,SIM2、WNT3A、TBX6、DVL2、LMX1A)的20个SNPs数据进行统计分析,20个SNP位点均具有多态性。
     ■PAX1基因筛选两个位点:SNP1(rs17861031)和SNP2(rs6047590),其基因型分布在病例组和对照组中均符合Hardy-Weinberg平衡;两位点间不存在连锁不平衡;两位点的基因型/等位基因与CS的发生风险之间不存在相关性。
     ■SIM2基因共筛选3个位点:SNP3(rs2073601)、SNP4(2073417)和SNP5(2051397),其中SNP4基因型分布在病例组和对照组中不符合Hardy-Weinberg平衡,另两个位点均符合Hardy-Weinberg遗传平衡;三位点两两间不存在连锁不平衡;三个位点的基因型/等位基因与CS的发生风险之间不存在相关性。
     ■WNT3A基因共筛选2个位点:SNP6(rs964941)和SNP7(rs752107),其基因型分布在病例组和对照组中均符合Hardy-Weinberg平衡:两位点间不存在连锁不平衡;两位点的基因型/等位基因与CS的发生风险之间不存在相关性。
     ■TBX6基因共筛选2个位点:SNP8(rs2289292)和SNP9(rs3809624),其基因型分布在对照组中均符合Hardy-Weinberg平衡,但在病例组中不符合Hardy-Weinberg平衡;病例/对照组中等位基因分布频率分别为:SNP8C=108(0.43)/135(0.53),SNP8T=146(0.57)/119(0.47),SNP9C=144(0.57)/120(0.47),SNP9T=110(0.43)/134(0.53),单位点分析显示两位点等位基因在病例和对照组中的分布频率统计学上存在显著差异(P=0.017和P=0.033),进一步分析得知SNP8等位基因T、SNP9等位基因C与CS的易感性升高相关;病例/对照组中基因型分布频率统计学无显著差异;在非条件Logistic回归分析中,经年龄和性别校正后,SNP8位点基因型分布符合Dominant遗传模型(OR=0.56;95%CI=0.33-0.96,p=0.03,AIC=355.2)和Log—additive(OR=0.69;95%CI=0.50-0.97,p=0.029,AIC=354.9)遗传模型,后者最佳(AIC值较小);在多位点单倍体分析中,发现2种阳性单倍体:TBX6基因的SNP08T-SNP09C和SNP08C-SNP09T。
     ■DVL2基因共筛选5个位点:SNP10(rs2074222)、SNP11(rs222837)、SNP12(rs222835)、SNP13(rs10671352)和SNP14(rs222836),其基因型分布在病例和对照组中均符合Hardy-Weinberg平衡;5个位点处于完全连锁不平衡状态(各位点两两间:D′=1;r~2>0.5);5个位点的基因型/等位基因/单倍体型与CS的发生风险之间不存在相关性。
     ■LMX1A基因共筛选6个位点:SNP15(rs1819768)、SNP16(rs12023709)、SNP17(rs16841013)、SNP18(rs4656435)和SNP19(rs4657412)和SNP20(rs4657411),其基因型分布在病例和对照组中均符合Hardy-Weinberg平衡;在基于基因型的“病例-对照”关联分析中,筛到阳性位点SNP15和SNP16,病例/对照组中基因型分布频率分别为:SNP15AA=7(0.16)/17(0.13)、SNP15AC=62(0.49)/45(0.35)、SNP15CC=58(0.46)/65(0.51),SNP16AA=58(0.46)/65(0.51)、SNP16AG=62(0.49)/45(0.35)、SNP16GG=7(0.16)/17(0.13),单位点分析显示两位点基因型在病例和对照组中的分布频率统计学上存在显著差异(P=0.026和P=0.026),进一步分析得知SNP15基因型A/C、SNP16基因型A/G与CS的易感性升高相关;在非条件Logistic回归分析中,经年龄和性别校正后,SNP15和SNP16两位点基因型分布均符合Ressessive(OR=0.38;95%CI=0.15-0.94,p=0.029,AIC=354.9)或Overdominant(OR=1.73;95%CI=1.05-2.8,p=0.032,AIC=355.1)遗传模型,但前者最佳(AIC值较小);SNP15、SNP16、SNP17和SNP20处于连锁不平衡状态,SNP18和SNP19也处于完全连锁不平衡状态,但单倍体型与CS的发生风险之间不存在相关性。
     ■在各SNP位点基因型与临床表型Ⅰ(根据CS畸形特点进一步分层)的关联分析中,我们发现LMX1A基因的SNP15位点基因型AC型、SNP16位点基因型AG型、SNP17位点基因型CT型与有椎体形成障碍CS的易感性升高有关;TBX6基因的SNP8位点基因型TT型、SNP9位点基因型CC型与有分节不良CS的易感性升高有关。
     ■在各SNP位点基因型与CS其他临床表型(性别、畸形部位、椎体受累程度、有无合并肋骨畸形和椎管内异常)的关联分析中,没有发现阳性位点。
     结论:
     ■在中国汉族人群中TBX6和LMX1A基因遗传变异与先天性脊柱侧凸(CS)发生相关,有可能是决定CS个体遗传易感性的重要因素。
     ■不同基因的遗传变异可能与先天性脊柱侧凸(CS)不同临床表型的发生相关,LMX1A基因可能与有椎体形成障碍CS的易感性升高有关;TBX6基因可能与有分节不良CS的易感性升高有关。
     ■在中国汉族人群中PAX1、SIM2、WNT3A和DVL2基因可能不是引起先天性脊柱侧凸(CS)及其不同临床表型的主要因素,有待于进一步深入研究。
Background
     Congenital scoliosis(CS) is defined as a lateral curvature of the spine due to a developmental abnormality,which arise from defects in the development of the axial skeleton.During embryogenesis,the axial skeleton is formed by a process called somitogcnesis,which produces transient segments of tissue known as somites. Disruptions in somitogenesis have been shown to result in vertebral malformations, including uneven segments(hemivertebrae and wedge vertebrae),fused segments (block vertebrae),and problems in midline fusion(butterfly vertebrac).Vertebral defects can arise from the disruption of genes involved in development. environmental insults during gestation,or a combination of these two factors.As the development of genetics and molecular biology in recent years,several preliminary studies about candidate gene contributed to vertebral malformation in human were reported and the genetic etiology hypothesis of CS has caused more and more interests.More evidences suggest that CS may be multigenetic disease.The interaction of environmental factors and the genes that play a role in regulation of somite segmentation,is thought to be disrupted in congenital vertebral deformities such as congenital scoliosis.A multigenic mechanism could be responsible for the type and spacial identity associated with a particular type of congenital scoliosis.
     Within the past two decades a great deal of information has been learned about the molecular embryology of spine development through the study of mouse and chick embryos.Human and mouse genes share high degree of homology.due the relatively recent evolutionary divergence of these mammals.By studying what happens to the axial skeleton when these genetic instructions are disrupted in the mouse,we have learned a great deal about the most important genes in spinal development.To date,some abnormalities of genes involved in mouse somitogenesis have been found to cause human spinal deformities.Synteny conservation was used as the basis to identify potential human candidate genes by map position.Giampietro therefore undertook a systematic review of mouse mutations with skeletal,tail.or neuromuscular phenotypes and identified 27 potential human candidate genes sites for CS in 2003.Seven of these genes including PAXI、DLL3、WNT3A、MYLK、LMXIA、FBN2 and SIM2 are briefly discussed.Through latest mouse genome database,TBX6 and DVL2 genes were also considered as candidate genes contributed to CS.
     At present,the etiology of congenital scoliosis is still unknown,no molecular analyses and few clinical genetic studies have been reported.
     Objects
     To identify the relationship between candidate genes(PAXI、SIM2、WNT3A、TBX6、DVL2、LMXIA、DLL3)associated with somite developmental pathway and CS with SNPs in Chinese Han population.
     ■To identify the relationship between the genotypes of SNPs and the clinical phenotypes of CS.
     ■To explore possible etiologic hypothesis contributed to the development of CS and the different clinical phenotypes of CS from gene level.
     Methods
     ■A hospital-based case-control design was applied in this study.
     ■A total of 127 patients(55 boys,72 girls,mean age 12.90 y/o)diagnosed with clinically confirmed congenital scoliosis admitted in Peking Union Medical College(PUMC) Hospital were enrolled in this study according the inclusion and exclusion criterias between October 2005 and September 2007.The diagnosis of scoliosis-free control subjects(55 boys,72 girls, mean age 13.27y/o) consisted of infection(43%)、inflammatory disease (41%)、trauma(11%)、hypersensitivity disease and others(5%) at the same hospital during the same study period.All the control subjects were frequency-matched to the cases on age(±3 years),gender,and nation (Chinese Han).
     ■Genomic DNA was extracted from peripheral blood leukocytes of each subject who had signed informed consent,using QIAamp DNA Blood Mini Kit.
     ■Based on genotype data from the International HapMap project (http://www.Hapmap.org),the tagging single nucleotide polymorphisms (tSNPs) initially were selected using Haploview 4.0 software.The MAF(minor allele frequency) of all selected SNPs were above 10%.The missense or nonsense mutation SNPs in exons,or the SNPs located in promoters,5'UTR or 3'UTR were prefered.
     ■Hardy-Weinberg equilibrium both in control and in case groups were analyzed through Goodness-of fit Chi-square test.
     ■Case group were classified into different clinical phenotypes according to vertebral defect type、the location of deformity、the extent of developmental disruption、combined rib malformations and neural canal deformity.
     ■Genotying of all selected SNPs was done by SNPstream technology (Beckman Couher SNPstream) which is the combination of the fidelity polymerase mediate reaction,single base primer extension and microarray methods.As a high throughput genotyping system,SNPstream technology has been widely used in biochemistry and genetic research.
     ■All the data of 20 SNPs with polymorphism are analyzed by the association analysis based on a single SNP,the association analysis between phenotypes and SNPs.
     ■Odds radios(ORs) and 95%confidence intervals(CIs) were computed by the unconditional logistic regression to estimate the relative risk for the single locus genotypes using online software—SNPstats.
     ■And pairwise linkage disequilibrium values D' and r~2 were calculated in the control population using Haploview 4.0 software.Haplotype frequencies were estimated and difference in haplotype distributions between cases and controls were assessed using UNPAHSED software.
     Results
     ■There were no significant difference of average age and sex proportion between case group and control group(p>0.05).
     ■We failured in designing premier of three tSNPs of DLL3 and discasded the gene in this study.Eventually 20 common SNPs of PAXI.SIM2,WNT3A, TBX6,DVL2,and LMXIA genes were chosen to be tagging SNPs and all SNPs have polymorphism.
     ■SNP1(rs17861031) and SNP2(rs6047590) of PAXI gene were genotyped and both polymorphisms were in Hardy-Weinberg equilibrium both in control and in ease groups.Both polymorphisms were not in linkage disequilibrium.No association is obseiwed between SNP1 and SNP2 genotypes/allele polymorphisms and risk of CS.
     ■Three SNPs including SNP3(rs2073601),SNP4(rs 2073417) and SNP5 (rs 2051307)of SIM2 gene were genotyped and both polymorphisms of SNP3 and SNP5 were in Hardy-Weinberg equilibrium both in control and in case groups.All polymorphisms were not in linkage disequilibrium.No association is observed between SNP3.SNP4 and SNP5 genotypes/allele polymorphisms and risk of CS.
     ■Two SNPs including SNP6(rs964941) and SNP7(rs752107) of WNT3A gent were genotyped and both polymorphisms were in Hardy-Weinberg equilibrium both in control and in case groups.Both polymorphisms were not in linkage disequilibrium.No association is observed between SNP6 and SNP7 genotypes/allele polymorphisms and risk of CS.
     ■Two SNPs including SNP8(rs2289292) and SNP9(rs3809624) of TBX6 gene were genotyped.Both polymorphisms were in Hardy-Weinberg equilibrium both in control group,but not in case group.The minor allele frequencies in cases/controls were,respectively,as follows:SNP8C=108 (0.43)/135(0.53).SNP8T=146(0.57) /119(0.47),SNP9C=144 0.57)/120(0.47).SNP9T=110(0.43) /134(0.53).The single locus analysis revealed the allele frequency distributions of SNP8 and SNP9 were statistically significantly different between case patients and control subjects(P=0.017 and P=0.033).In the unconditional logistic regression analysis,after adjustment for age and gender,SNP8 showed significant difference in both dominant(OR=0.56:95%CI=0.33-0.96) and log-additive (OR=0.69;95%CI=0.50-0.97) models,and the P-values were 0.03 and 0.029,respectively.The log-additive model was accepted as the best inheritance model because of the smaller AIC(Akaike information) value (354.9).Both polymorphisms were in full linkage disequilibrium.In the haplotype analysis,we got 2 positive haplotypes:SNP08T-SNP09C and SNP08C-SNP09T
     ■Five SNPs including SNP10(rs2074222),SNP11(rs222837)、SNP12 (rs222835)、SNP13(rs10671352) and SNP14(rs222836) of DVL2 gene were selected to be tagging SNPs.All polymorphisms were in Hardy-Weinberg equilibrium both in control and in case groups.All polymorphisms were in strong linkage disequilibrium(D'=1;r~2>0.5).No association is observed between SNP10.SNP11,SNP12.SNP13 and SNP14 genotypes/haplotype polymorphisms and risk of CS.
     ■Six SNPs including SNP15(rs1819768),SNP16(rs12023709),SNP17 rs16841013),SNP18(rs4656435),SNP19(rs4657412) and SNP20 rs4657411) of LMXIA gene were selected to be tagging SNPs.All polymorphisms were in Hardy-Weinberg equilibrium both in control and in case groups.In the association analysis between the genotypes of SNPs and CS,we got two positive SNPs:SNP15 and SNP16.The minor genotype frequencies in cases/controls were,respectively,as follows:SNP15AA=7 (0.16)/17(0.13).SNP15AC=62(0.49) /45(0.35),SNP15CC= 58(0.46)/65(0.51),SNP16AA=58(0.46)/65(0.51).SNP16AG =62(0.49)/45(0.35),SNP16GG=7(0.16)/17(0.13).The single locus analysis revealed the genotype distributions of SNP15 and SNP16 were statistically significantly different between case patients and control subjects(P=0.026 and P=0.026).In the unconditional logistic regression analysis,after adjustment for age and gender,SNP15 and SNP16 both showed significant difference in both Ressessive model(OR=0.38; 95%CI=0.15-0.94) and Overdominant model(OR=1.73;95%Cl=1.05-2.8), and the P-values were 0.029 and 0.032.respectively.The Resscssive model was accepted as the best inheritance model because of the smaller AIC (Akaike information) value(354.9).SNP15,SNP16;SNP17 and SNP20 were in strong linkage disequilibrium.Both SNP18 and SNP19 were also in strong linkage disequilibrium.But no association is observed between all haplotypes polymorphisms and risk of CS.
     ■In the association analysis between the genotyhpes and the phenotype l(according to vertebral defect type) of CS,we got 5 positive SNPs.SNP15, SNP16 and SNP17 polymorphisms of LMXIA gene may related to CS with failure of formation.SNP8 and SNP9 polymorphisms of TBX6 gene may related to CS with a fallure of segmentation.
     ■In the association analysis between the genotyhpes and other phenotypes of CS,we didn't have got any positive SNPs.
     Conclusion
     ■Genetie variants of TBX6 and LMXIA genes are associated with CS and may play an important role in mediating susceptibility to developing CS in a Chinese Han population.
     ■Genetic variants of different genes may play an important role in mediating susceptibility to different clinical phenotypes of CS in a Chinese Han population.It was suggested that genetic variants of LMXIA gene may related to CS with failure of formation,and genetic variants of TBX6 gone may related to CS with a failure of segmentation.
     ■It was suggested genetic variants of PAX1,SIM2,WNT3A and DVL2 genes may not be associated with the susceptibility to CS and different clinical phenotypes of CS in a Chinese Han population.Further studies are warranted before definitive conclusion can be drawn.
引文
1. Shands AR, Eisberg HB. The incidence of scoliosis in the state o f Delaware. A study of 50,000 minifilms of the chest made during a survey for tuberculosis. J Bone Joint Surg.1955; 37A:1243.
    
    2. Giampietro PF, Blank RD, Raggio CL, et al. Congenital and idiopathic scoliosis:clinical and genetic aspects. Clin Med Res.2003; 1:125-136.
    
    3. 叶启彬.脊柱侧弯外科学 (第一版),中国协和医科大学出版社.2003; 23页.
    
    4. McMaster MJ. Congenital scoliosis caused by a unilateral failure of vertebral segmentation with contralateral hemivertebrae. Spine.1998; 23: 2.998-1005.
    
    5. Pourquie O, Kusumi K. When body segmentation goes wrong. Clin Genet.2001;60:409-416.
    
    6. Brand-Saberi B, Christ B. Evolution and development of distinct cell lineages derived from somites. Curr Top Dev Biol. 2000; 48:1-42.
    
    7. Giampietro PF, Raggio CL, Reynolds CE, et,al. An analysis of PAX1 in the development of vertebral malformations. Clin Genet.2005; 68: 448-453.
    
    8. Giampietro PF, Raggio CL, Reynolds C, et,al. DLL3 as a candidate gene for vertebral malformations. American Journal of Medical Genetics Part A.2006;140a:22, 2447.
    
    9. Erol B, Tracy MR, Dormans JP, et al. Congenital scoliosis and vertebral malformations: characterization of segmental defects for genetic analysis. J Pediatr Orthop.2004; 24:674-682.
    
    10. Maisenbacher MK, Han JS, O'Brien ML, et al. Molecular analysis of congenital scoliosis: a candidate gene approach. Hum Genet.2005; 116:416-419.
    
    11. Wynne-Davies, R: Congenital vertebral anomalies: aetiology and relationship to spina bifida cystica. J Med Genet.1975; 12:280-288.
    
    12. Connor JM, Conner AN, Connor RAC, Tolmie JL, Yeung B, Goudie D: Genetic aspects of early childhood scoliosis. Am J Med Genet. 1987; 27:419-424.
    
    13. Cantu JM, Urrusti J, Rosales G, Rojas A. Evidence for autosomal recessive inheritance of costovertebral dysplasia. Clin Genet. 1971; 2:149-154.
    
    14. Rivera H, Perez-Salas JM, Nazara Z, Ramirez ML. A probably distinct autosomal recessive thoraco-limb dysplasia. J Med Genet. 1988; 25:619-622.
    15. Lorenz P, Rupprecht E. Spondylocostal dysostosis: dominant type. Am J Med Genet.1990; 35:219-221.
    
    16. Giacoia GP, Say B. Spondylocostal dysplasia and neural tube defects. J Med Genet.1991;28:51-53.
    
    17. Romeo MG, Distefano G, Di Bella D, Mangiagli A, Caltabiano L, Roccaro S, Mollica F. Familial Jarcho-Levin syndrome.Clin Genet. 1991;39:253-259.
    
    18. Turnpenny PD, Bulman MP, Frayling TM, Abu-Nasra TK,Garrett C, Hattersley AT, Ellard S. A gene for autosomal recessive spondylocostal dysostosis maps to 19q13.1-q13.3.Am J Hum Genet.1999; 65:175-182.
    
    19. Pool RD. Congenital scoliosis in monozygotic twins.Genetically determined or acquired in utero? J Bone Joint Surg Br.1986; 68:194-196.
    
    20. Ogden JA, Southwick WO. Congenital and infantile scoliosis in triplets. Clin Orthop.1978;(136):176-178.
    
    21. Peterson HA, Peterson LFA. Hemivertebrae in identical twins with dissimilar spinal columns. J Bone Joint Surg [Am] .1967; 49 A:938-942.
    
    22. Hattaway CL. Congenital scoliosis in one ofmonozygotic twins: a case report.JBoneJoint Surg[Am].1977; 59-A: 837-838.
    
    23. McKinley LM, Leatherman KD. Idiopathic and congenital scoliosis in twins.Spine. 1978; 3:227-229.
    
    24. Giampietro PF, Raggio CL, Blank RD. Synteny-defined candidate genes for congenital and idiopathic scoliosis.Am J Med Genet.1999; 83:164-177.
    
    25. Mouse Genome Database (MGD), Mouse Genome Informatics Web site.Available at: http://www.informatics.jax.org/.
    
    26. OMIM~(?) Online Mendelian Inheritance in Man Web site.Available at:http://www.ncbi.nlm.nih.gov/Omim/.
    
    27. GDB Human Genome Database Web site. Toronto (Ontario, Canada): The Hospital for Sick Children, Baltimore (Maryland, USA): Johns Hopkins University, 1990-. Updated daily. Available at: http://gdb.org/.
    
    28. Bell PA, Chaturvedi S, Gelfand CA,et, al. SNPstream UHT: Ultra-High Throughput SNP Genotyping for Pharmacogenomics and Drug Discovery.BioTechniques.2002; 32: S70-S77.
    
    29. Gershon ES, Badner JA, Goldin LR, et al. Closing in on genes for manic-depressive illness and schizophrenia. Neuropsychopharmacology.1998; 18:233-42.
    30.汪维鹏,倪坤仪,周国华.单核苷酸多态性检测方法的研究进腱.遗传,2006,28(1):117-126.
    31.张闻.人类基因功能手册.免费电子版2006(http://zwbi.zoomshare.com).
    32.张闻主编.人类基因聚类.免费电子版2006(http://zwbi.zoomshare.com).
    33.Wallin J,Wilting J,Koseki H,et al.The role of Pax-1 in axial skeleton development.Development.1994:120:1109-1121.
    34.Dietrich S,Gruss P.Undulated phenotypes suggest a role of Pax-1 for the development of vertebral and extravertebral structures.Dev Biol.1995;167:529-548.
    35.Goshu E,Jin H,Fasnacht R,et al.Sim2 mutants have developmental defects not overlapping with those of Sim1 mutants.Mol Cell Biol.2002;22:4147-4157.
    36.Crews ST,Fan CM.Remembrance of things PAS:regulation of development by bHLH-PAS proteins.Curr Opin Genet Dev.1999;9:580-587.
    37.Crews S,Franks R,Hu S,et al.Drosphila single-minded gene and the molecular genetics of CNS midline development.J Exp Zool.1992;261:234-244.
    38.Nusse R,Varmus HE.Writ genes.Cell.1992;69:1073-1087.
    39.Takada S,Stark KL,Shea MJ,et al.Wnt-3a regulates somite and tailbud formation in the mouse embryo.Genes Dev.1994;8:174-189.
    40.P apaioannou,V E.T-box genes in development:from hydra to humans.Int Rev Cytol.2001;207:1-70.
    41.Chapman DL,Papaioannou VE.Three neural tubes in mouse embryos with mutations in the T-box gene Tbx6.Nature.1998;391:695-697.
    42.White PH,Farkas DR,McFadden EE,et al.Defective somite patterning in mouse embryos with reduced levels of Tbx6.Development.2003;130:1681-1690.
    43.Beckers J,Schlautmann N,Gossler A.The mouse rib-vertebrae mutation disrupts anterior-posterior s omite patterning and g enetically interacts with a D eltal null allele.Mech Dev.2000b;95:35-46.
    44.Dunty WC Jr,Bireis KK,Chalamalasetty RB,et al.Wnt3a/beta-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation.Development.2008;135(1):85-94.
    45.Lou X,Fang P,Li S,et al.Xenopus Tbx6 mediates posterior patterning via activation of Wnt and FGF signalling.Cell Res.2006;16(9):771-9.
    46. Yasuhiko Y, Haraguchi S , Kitajime S . et al. T bx6-mediated Notch signaling controls somite-specific Mesp2 expression.Proc Natl Acad USA. 2006;103(10):3651-6.
    
    47. Li LM, Kim JH, Waterman MS. Haplotype reconstruction from SNP alignment. J Comput Biol.2004; 11:505-16.
    
    48. Stumpf MP. Haplotype diversity and SNP frequency dependence in the description of genetic variation. Eur J Hum Genet. 2004; 12:469-77.
    
    49. Durrant C, Zondervan KT, Cardon LR, et al. Linkage disequilibrium mapping via cladistic analysis of single-nucleotide polymorphism haplotypes. Am J Hum Genet. 2004; 75:35-43.
    
    50. Klingensmith J, Yang Y, Axelrod JD, et al. Conservation of dishevelled structure and function between flies and mice: isolation and characterization of Dvl2.Mech Dev. 1996; 58(1-2):15-26.
    
    51. Hamblet NS, Lijam N, Ruiz-Lozano P, et al. Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure.Development.2002; 129(24):5827-38.
    
    52. Millonig JH, Millen KJ, Hatten ME. The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature.2000;403:764-769.
    
    53. Nielsen DM, Ehm MG, Weir BS. Detecting marker-disease association by testing for hardy-weinberg disequilibrium at a marker locus. Am J Hum Genet. 1998; 63(5):1531-1540.
    
    54. Daly MJ, Rioux JD, Schaffner SF, et al. High-resolution haplotype structure in the human genome. Nat Genet.2001; 29 (2): 229-232.
    
    55. Chizhikov V, Steshina E, Roberts R, et al., Molecular definition of an allelic series of mutations disrupting the mouse Lmxla (dreher) gene.Mamm Genome.2006;17(10):1025-32.
    1.Shands AR,Eisberg HB.The incidence of scoliosis in the state of Delaware.A study of 50,000 minifilms of the chest made during a survey for tuberculosis.J Bone Joint Surg.1955;37A:1243.
    2.Giampietro PF,Blank RD,Raggio CL,et al.Congenital and idiopathic scoliosis:clinical and genetic aspects.Clin Med Res.2003:1:125-136.
    3.Karlin LI.Congenital scoliosis.Spine 1998:12:1.
    4.叶启彬.脊柱侧弯外科学(第一版).中国协和医科大学出版社.2003年,23页.
    5.Bradford DS,Winter RB,et al(eds):Moe's Textbook of Scoliosis and Other Spinal Deformities.1995,3ed.257-259.
    6.Hedequist D,Emans J.Congenital scoliosis.J Am Acad Orthop Surg.2004:12:266-275.
    7.Gabos PG.Treatment strategies in congenital scoliosis.Contemporary spine surgery.2005;6:47-52.
    8.Hedequist D,Emans J.Congenital scoliosis:a review and update.J Pediatr Orthop.2007;27(1):106-16.
    9.Lonstein JE.Congenital spine deformities:scoliosis,kyphosis,and lordosis.Orthop Clin North AM.1999;30:387-405.
    10.McmMaster MJ,Ohtsuka K.The natural history of congenital scoliosis:a study of two hundred fifty-one patients.J Bone Joint Surg(Am).1982;64:1128-1147.
    11.McMaster MJ,David CV.Hemivertebm as a cause of scoliosis.A study of 104patients.J Bone Joint Surg Br.1986;68:588-595.
    12.Shawen SB,Belmont PJ Jr.Kuklo TR,et al.Hemimetameric segmental shift:a case series and review.Spine.2002;27:E539-E544.
    13.McMaster MJ,Singh H.Natural history of congenital kyphosis and kyphoscoliosis.A study of one hundred and twelve patients.J Bone Joint Surg Am.1999;81:1367-83.
    14.Jaskwhich D,Ali RM,Patel TC,Green DW.Congenital scoliosis.Current Opinion in Pediatrics.2000,12:61-66.
    15.邱贵兴主译.骨科学(第一版).人民卫生出版社.2005年.
    16.Prahinski JR,Polly DW Jr,McHale KA,et al.Occult intraspinal anomalies in congenital scoliosis.J Pediatr Orthop.2000;20:59-63.
    17.Basu PS,Elsebaie H.Noordeen MH.Congenital spinal deformity:a comprehensive assessment at presentation.Spine.2002:27:2255-2259.
    18.Mortier GR.Lachman RS,Bocian M.Rimoin DL.Multiple vertebral segmentation defects:analysis of 26 new patients and review of the literature.Am J Med Genet.1996;61:310-319.
    19.von Koch CS,Glenn OA.Goldstein RB.et al.Fetal magnetic resonance imaging enhances detection of spinal cord anomalies in patients with sonographically detected bony anomalies of the spine.J Ultrasound Med.2005;24:781-789.
    20.Griffiths PD,Paley MN,Widjaja E,et al.In utero magnetic rcsonanceimaging for brain and spinal abnormalities in fetuses.BMJ.2005:331:562-565.
    21.Facanha-Filho FA,Winter RB.Lonstein JE.et al.Measurement accuracy in congenital scoliosis.J Bone Joint Surg Am.2001;83-A:42-45.
    22.Suh SW,Sarwark JF,Vora A.et al.Evaluating congenital spine deformities for intraspinal anomalies with magnetic resonance imaging.J Pediatr Orthop.2001:21:525-531.
    23.Hedequist DJ,Emans JB.The correlation of preoperative three-dimensional computed tomography reconstructions with operative findings in congenital scoliosis.Spine.2003;28:2531-2534.Discussion 1.
    24.Newton PO,Hahn GW,Fricka KB,et al.Utility of three-dimensional and multiplanar reformatted computed tomography for evaluation of pediatric congenital spine abnormalities.Spine.2002;27:844-850.
    25.Smith JT,Gollogly S.Dulm HK.Simultaneous anterior-posterior approach through a costotransversectomy for the treatment of congenital kyphosis and acquired kyphoscoliotic deformities.J Bone Joint Surg Am.2005;87:2281-2289.
    26.Emans JB,Caubet JF,Ordonez CL,et al.The treatment of spine and chest wall deformities with fused ribs by expansion thoracostomy and insertion of vertical expandable prosthetic titanium rib:growth of thoracic spine and improvement of lung volumes.Spine.2005;30:S58-S68.
    27.Campbell RM Jr,Hell-Vocke AK.Growth of the thoracic spine in congenital scoliosis after expansion thoracoplasty.J Bone Joint Surg Am.2003;85-A:409-420.
    28.Belmont PJ Jr,Kuklo TR,Taylor KF.et al.Intraspinal anomalies associated with isolated congenital hemivertebra:the role of routine magnetic resonance imaging. J Bone Joint Surg Am.2004:86-A:1704-1710.
    29.Kose N,Campbell RM.Congenital scoliosis.Med Sci Monit.2004;10(5):RA104-110,
    30.Arlet V,Odent T.Aebi M.Congenital scoliosis.Eur Spine J.2003;12(5):456-63.
    31.Thuet ED,Padberg AM.Raynor BL,et al.Increased risk of postoperative neurologic deficit for spinal surgery patients with unobtainable intraoperative evoked potential data.Spine.2005:30:2094-2103.
    32.Mooney JF.Ⅲ,Bernstein R,Hennrikus WL Jr.et al.Neurologic risk management in scoliosis surgery.J Pediatr Orthop.2002:22:683-689.
    33.Hedequist DJ,Hall JE,Emans JB.The salary and efficacy of spinal instrumentation in children with congenital spine deformities.Spine.2004;29:2081-2086.Discussion 7.
    34.Ruf M.Harms J.Hemivertebra resection by a posterior approach:innovative operative technique and first results.Spine.2002;27:1116-1123.
    35.Ruf M,Harms J.Pedicle screws in 1-and 2-year-old children:technique.complications,and effect on further growth.Spine.2002;27:E460-E466.
    36.Kim YJ.Otsuka NY,Flynn JM,et al.Surgical treatment of congenital kyphosis.Spine.2001;26:2251-2257.
    37.Kesling KL,Lonstein JE,Denis F,et al.The crankshaft phenomenon after posterior spinal arthrodesis for congenital scoliosis:a review of 54patients.Spine.2003:28:267-271.
    38.Al-Sayyad MJ,Crawford AH.Wolf RK.Early experiences with video-assisted thoracoscopic surgery:our first 70 cases.Spree.2004:29:1945-1951.
    39.Newton PO,White KK,Faro F.et al.The success of thoracoscopic anterior fusion in a consecutive series of 112 pediatric spinal deformity cases.Spine.2005:30:392-398.
    40.Harry NH,Steven RG,Frank,JE.et al.Rothman-Simeone The Spine.5th Edition (2-Volume Sct)[M].Saunders Elsevier.2006.507-514.
    41.Klemme WR.Polly DW Jr,Orchowski JR.Hemivertebral excision for congenital scoliosis in very young children.J Pediatr Orthop.2001;21:761-764.
    42.Ruf M,Harms J.Posterior hemivertebra resection with transpedicular instrumentation:early correction in children aged 1 to 6 years.Spine.2003: 28:2132-2138.
    43.Bollini G,Docquier PL.Viehweger E,et al.Lumbar hemivertebra resection.J Bone Joint Surg Am.2006;88:1043-1052.
    44.Hedequist DJ,Hall JE,Emans JB.Hemivertebra excision in children via simultaneous anterior and posterior exposures.J Pediatr Orthop.2005;25:60-63.
    45.仉建国,邱贵兴,刘勇等.前后路一期半椎体切除术矫治脊柱侧后凸.中华骨科杂志.2004:24:257-261.
    46.Shono Y,Abumi K,Kaneda K.One-stage posterior hemivertebra resection and correction using segmental posterior instrumentation.Spine.2001;26:752-757.
    47.仉建国,邱贵兴,于斌等.后路半椎体切除术治疗先天性脊柱侧后凸的初步结果.中华骨科杂志.2006;26:156-160.
    48.Shimode M,Kojima T,Sowa K.Spinal wedge osteotomy by a single posterior approach for correction of severe and rigid kyphosis or kyphoscoliosis.Spine.2002;27:2260-2267.
    49.Suk SI,Kim JH,Kim WJ,et al.Posterior vertebral column resection for severe spinal deformities.Spine.2002;27:2374-2382.
    50.Nakamura H,Matsuda H.Konishi S,et al.Single-stage excision of hemivertebrae via the posterior approach alone for congenital spinedeformity:follow-up period longer than ten years.Spine.2002;27:110-115.
    51.Sink EL,Karol LA,Sanders J,et al.Efficacy of perioperative halo-gravity traction in the treatment of severe scoliosis in children.J Pediatr Orthop.2001;21:519-524.
    52.Rinella A,Lenke L,Whitaker C,et al.Perioperative halo-gravity traction in the treatment of severe scoliosis and kyphosis,Spine.2005;30:475-482.
    53.Mehlman CT,Al-Sayyad MJ.Crawford AH.Effectiveness of spinal release and halo-femoral traction in the management of severe spinal deformity.J Pediatr Orthop.2004;24:667-673.
    54.Emans JB,Kassab F,Caubet JF,et al.Earlier and more extensive thoracic fusion is associated with diminished pulmonary function.Outcome after spinal fusion of 4 or more thoracic spinal segments before age 5[paper 101].Presented at:Scoliosis Research Society Annual Meeting:September 6Y9,2004;Buenos Aires,Argentina.
    55.Harrington PR.Scoliosis in the growing spine.Pediatr Clin North Am.1963; 10:225-245.
    56.Moe JH,Kharrat K,Winter R.B,et al.Harrington instrumentation without fusion plus external orthotic support for the treatment of difficult curvature problems in young children.Clin Orthop Relat Res.1984:35-45.
    57.Mineiro J,Weinstein SL.Subcutaneous rodding for progressive spinal gurvatures:early results.J Pediatr Orthop.2002:22(2):290-295.
    58.Akbarnia BA,Marks DS,Boachie-Adjei O,et al.Dual growing rod technique for the treatment of progressive early-onset scoliosis:a multicenter study.Spine.2005;30:S46-S57.
    59.Thompson GH,Akbarnia AB,Kostial P,et al.Comparison of single and dual growing rod techniques followed through definitive surgery:a preliminary study.Spine.2005;30(18):2039-2044.
    60.Gollogly S,Smith JT,Campbell RM.Determining lung volume with three-dimensional reconstructions of CT scan data:a pilot study to cvaluate the effects of expansion thoracoplasty on children with severe spinal deformities.J Pediatr Orthop.2004;24:323-328.
    61.Gollogly S,Smith JT,White SK.et al.The volume of lung parenchyma as a function of age:a review of 1050 normal CT scans of the chest with three-dimensional volumetric reconstruction of the pulmonary system.Spine.2004:29:2061-2066.
    62.Campbell RM Jr,Smith MD,Hel-Vocke AK.Expansion thoracoplasty:the surgical technique of opening-wedge thoracostomy:surgical technique.J Bone Joint Surg(Am).2004,86(1):51-64.
    63.Campbell RM Jr,Smith MD,Mayes TC,et al.The effect of opening wedge thoracostomy onthoracic insufficiency syndrome associated with fused ribs and congenital scoliosis.J Bone Joint Surg(Am).2004;86(14):1659-1674.
    1.McMaster MJ.Congenital scoliosis caused by a unilateral failure of vertebral segmentation with contralateral hemivertebrae.Spine.1998;23:998-1005.
    2.Pourquie O,Kusumi K.When body segmentation goes wrong.Clin Genet.2001;60:409-416.
    3.Brand-Saberi B,Christ B.Evolution and development of distinct cell lineages derived from somites.Curr Top Dev Biol.2000;48:1-42.
    4.Giampietro PF,Raggio CL,Reynolds CE,et,al.An analysis of PAX1 in the development of vertebral malformations.Clin Genet.2005;68:448-453.
    5.Giampietro PF,Raggio CL,Reynolds C,et,al.DLL3 as a candidate gene for vertebral malformations.American Journal of Medical Genetics Part A 2006;140a:22,2447.
    6.Erol B,Tracy MR,Dormans JP,et al.Congenital scoliosis and vertebral malformations:characterization of segmental defects for genetic analysis.J Pediatr Orthop.2004;24:674-682.
    7.Maisenbacher MK,Han JS,O'Brien ML,et al.Molecular analysis of congenital scoliosis:a candidate gene approach.Hum Genet.2005;116:416-419.
    8.Wynne-Davies,R:Congenital vertebral anomalies:aetiology and relationship to spina bifida cystica.J Med Genet.1975;12:280-288.
    9. Connor JM, Conner AN, Connor RAC, Tolmie JL, Yeung B, Goudie D: Genetic aspects of early childhood scoliosis. Am J Med Genet. 1987; 27:419-424.
    10.Temple IK, Thomas TG, Baraitser M. Congenital spinal deformity in a three-generation family. J Med Genet. 1988;25:831-834.
    11. Cantu JM, Urrusti J, Rosales G, Rojas A. Evidence for autosomal recessive inheritance of costovertebral dysplasia. Clin Genet 1971 ;2:149-154.
    12.Rivera H, Perez-Salas JM, Nazara Z, Ramirez ML. A probably distinct autosomal recessive thoraco-limb dysplasia. J Med Genet 1988;25:619-622.
    
    13. Lorenz P, Rupprecht E. Spondylocostal dysostosis: dominant type. Am J Med Genet 1990;35:219-221.
    
    14. Giacoia GP, Say B. Spondylocostal dysplasia and neural tube defects. J Med Genet 1991 ;28:51-53.
    
    15. Romeo MG, Distefano G, Di Bella D, Mangiagli A, Caltabiano L, Roccaro S,Mollica F. Familial Jarcho-Levin syndrome.Clin Genet 1991 ;39:253-259.
    
    16. Turnpenny PD, Bulman MP, Frayling TM, Abu-Nasra TK,Garrett C, Hattersley AT, Ellard S. A gene for autosomal recessive spondylocostal dysostosis maps to 19q13.1-q13.3.Am J Hum Genet 1999;65:175-182.
    
    17. Langer LO Jr, Moe JH. A recessive form of congenital scoliosis different from spondylothoracic dysplasia. Birth Defects Orig Artie Ser 1975;11.83-86.
    
    18. Pool RD. Congenital seoliosis in monozygotic twins.Genetically determined or acquired in utero? J Bone Joint Surg Br 1986;68:194-196.
    
    19. Ogden JA, Southwick WO. Congenital and infantile seoliosis in triplets. Clin Orthop 1978;( 136): 176-178.
    
    20.Peterson HA, Peterson LFA. Hemivertebrae in identical twins with dissimilar spinal columns. J Bone Joint Surg [Am] 1967; 49 A:938-942.
    
    21.Hattaway CL. Congenital seoliosis in one ofmonozygotic twins: a case report. J Bone Joint Surg[Am].1977; 59-A:837-8.
    
    22.McKinley LM, Leatherman KD. Idiopathic and congenital seoliosis in twins. Spine 1978;3:227-229.
    
    23. Purkiss SB, Driscoll B, Cole WG, Alman B. I diopathic seoliosis in families of children with congenital seoliosis. Clin Orthop 2002;(401):27-31.
    
    24. 陈竺主编.医学遗传学.人民卫生出版社.2005年第一版..269-297.
    
    25. Chevallier A. [Role of the somitic mesoderm in the development of the rib cage of bird embryos. I. Origin of the sternal component and conditions for the development of the ribs (author's transl)]. J Embryol Exp Morphol 1975;33:291-311.
    
    26. Mark M, Rijli FM, Chambon P. Homeobox genes in embryogenesis and pathogenesis. Pediatr Res 1997;42:421-429.
    
    27. McGinnis W, Garber RL, Wirz J, Kuroiwa A, Gehring WJ. A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 1984; 37:403-408.
    
    28. Kessel M, Gruss P. Murine developmental control genes. Science 1990;249:374-379.
    
    29. Giampietro PF, Blank RD, Raggio CL, et al. Congenital and idiopathic scoliosis: clinical and genetic aspects. Clin Med Res.2003; 1:125-136.
    
    30. Jacobson AG. Somitomeres: mesodermal segments of vertebrate embryos.Development 1988; 104(Suppl):209-220.
    
    31. Dietrich S, Kessel M. The vertebral column. In: Thorogood P,editor. Embryos,genes and birth defects. In: Hoboken, New Jersey: John Wiley & Sons; 1997. p.282-302.
    
    32. Burgess R, Rawls A, Brown D, Bradley A, Olson EN.Requirement of the paraxis gene for somite formation and musculoskeletal patterning. Nature 1996;384:570-573.
    
    33. Saga Y, Hata N, Koseki H, Taketo MM. Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation and initiation. Genes Dev 1997;11:1827-1839.
    
    34. Rida PCG, Le Minh N, Jiang YJ. A Notch feeling of somite segmentation and beyond. Developmental Biology.2004; 265: 2-22.
    
    35. Palmeirium I, Henrique D, Ish-Horowicz D, Pourquie O. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 1997; 91:639-648.
    
    36.Kojika S, Griffin JD. Notch receptors and hematopoiesis. Exp Hematol,2001,29;1041-1052.
    
    37. Pourquie O. Vertebrate somitogenesis. Annu Rev Cell Dev Biol 2001; 17:311-350.
    38.Artavanis-Tsakonas S, Rand MD, Lake RJ .Notch signaling:cell fate control and signal integration in development.Science,1999,284; 770-776.
    39. Wong PC, Zheng H, Chen H, et al. Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature 1997;398:288-292.
    
    40. D ubrulle J, M cGrew M J, P ourquie O. F GF s ignaling c ontrols s omite b oundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 2001; 106:219-232.
    
    41. Sawada A, Fritz A, Jiang Y, Yamamoto A, Yamasu K, Kuroiwa A, Saga Y,Takeda H. Zebrafish Mesp family genes, mesp-a and mesp-b are segmentally expressed in the presomitic mesoderm, and Mesp-b confers the anterior identity to the developing somites. Development 2000; 127:1691-1702.
    
    42.Aulehla, A, W ehrle, C, B rand-Saberi, B. et a 1. W nt3a p lays a m ajor role i n t he segmentation clock controlling somitogenesis. Developmental Cell, 2003,4:3:395-406.
    
    43. Echelard Y, Epstein DJ, St-Jacques B, et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 1993;75:1417-1430.
    
    44. Hu D, Helms JA. The role of sonic hedgehog in normal and abnormal craniofacial morphogenesis. Development 1999; 126:4873-4884.
    
    45. Soriano P. The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development 1997; 124:2691-2700.
    
    46. Dietrich S, Gruss P. Undulated phenotypes suggest a role of Pax-1 for the development of vertebral and extravertebral structures. Dev Biol 1995;167:529-548.
    
    47. Candia AF, Hu J, Crosby J, Lalley PA, Noden D, Nadeau JH,Wright CV. Mox-1 and Mox-2 define a novel homeobox gene subfamily and are differentially expressed d uring e arly mesodermal p atterning i n m ouse e mbryos. D evelopment 1992; 116:1123-1136.
    
    48. Nacke S, Schafer R, Habre de Angelis M, Mundlos S. Mouse mutant "rib-vertebrae" (rv): a defect in somite polarity. Dev Dyn 2000;219:192-200.
    
    49. Jena N, Martin-Seisdedos C, McCue P, Croce CM. BMP7 null mutation in mice:developmental defects in skeleton, kidney,and eye. Exp Cell Res 1997;230:28-37.
    
    50. Behrens A, Haigh J, Mechta-Grigoriou F, Nagy A, Yaniv M,Wagner EF. Impaired intervertebral disc formation in the absence of Jun. Development 2003;130:103-109.
    
    51. Nadeau JH. Maps of linkage and synteny homologies between mouse and man. Trends Genet 1989;5:82-86.
    
    52. Eppig JT, Nadeau JH. Comparative maps: the mammalian jigsaw puzzle. Curr Opin Genet Dev 1995;5:709-716.
    
    53. Giampietro PF, Raggio CL, Blank RD. Synteny-defined candidate genes for congenital and idiopathic scoliosis. Am J Med Genet 1999; 83:164-177.
    
    54. Mouse Genome Database (MGD), Mouse Genome Informatics Web site, The Jackson Laboratory, Bar Harbor,Maine. Available at:http://www.informatics.jax.org.
    
    55. OMIM~(?) Online Mendelian Inheritance in Man Web site.Available at:http://www.ncbi.nlm.nih.gov/Omim/
    
    56. GDB Human Genome Database Web site. Toronto (Ontario, Canada): The Hospital for Sick Children, Baltimore (Maryland, USA): Johns Hopkins University, 1990-. Updated daily. Available at: http://gdb.org
    
    57. Farley FA, Loder RT, Nolan BT, Dillon MT, Frankenburg EP,Kaciroti NA, Miller JD, Goldstein SA, Hensinger RN. Mouse model for thoracic congenital scoliosis.J Pediatr Orthop 2001; 21:537-540.
    
    58. Skold AC, Wellfelt K, Danielsson BR. Stage-specific skeletal and visceral defects of the I(Kr)-blocker almokalant: further evidence for teratogenicity via a hypoxia-related mechanism. Teratology 2001; 64:292-300.
    
    59. Wery N, Narotsky MG, Pacico N, Kavlock RJ, Picard JJ, Gofflot F. Defects in cervical vertebrae in boric acid-exposed rat embryos are associated with anterior shifts of hox gene expression domains. Birth Defects Res 2003; 67:59-67.
    
    60. Tredwell SJ, Smith DF, Macleod PJ, Wood BJ. Cervical spine anomalies in fetal alcohol syndrome. Spine 1982;7:331-334.
    
    61. Bantz EW. Valproic acid and congenital malformations. A case report. Clin Pediatr (Phila) 1984;23:352-353.
    
    62. Hanold KC. Teratogenic potential of valproic acid. J Obstet Gynecol Neonatal Nurs 1986;15:111-116.
    
    63. Edwards MJ. Hyperthermia as a teratogen: a review of experimental studies and their clinical significance. Teratog Carcinog Mutagen 1986;6:563-582.
    
    64.Ewart-Toland A, Yankowitz J, Winder A, Imagire R, Cox VA,Aylsworth AS,Golabi M. Oculoauriculovertebral abnormalities in children of diabetic mothers.Am J Med Genet 2000; 90:303-309.
    
    65. Turnpenny PD, Kusumi K. DLL3 and Spondylocostal Dysostosis. In:Epstein C, Erickson R,Wynshaw-Boris A, eds. Inborn Errors of Development:The Molecular Basis of Clinical Disorders of Morphogenesis. New York: Oxford University Press, 2004:420-481.
    
    66. Turnpenny PD, Thwaites RJ, Boulos FN. Evidence for variable gene expression in a large inbred kindred with autosomal recessive spondylocostal dysostosis. J Med Genet. 1991;28:27-33.
    
    67. Turnpenny PD, Whittock N, Duncan J, et al. Novel mutations in DLL3, a somitogenesis gene encoding a ligand for the Notch signalling pathway cause a consistent pattern of abnormal vertebral segmentation in spondylocostal dysostosis. J Med Genet. 2003;40:333-339.
    
    68. Bulman MP, Kusumi K, Frayling TM, et al. Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat Genet. 2000;24:438-441.
    
    69. Kusumi K, Sun ES, Kerrebrock AW, et al. The mouse pudgy mutation disrupts Delta homologue D113 and initiation of early somite boundaries.Nat Genet. 1998;19:274-278.
    
    70. Dunwoodie SL, Clements M, Sparrow DB, et al. Axial skeletal defects caused by mutation in the spondylocostal dysplasia/pudgy gene D113 are associated with disruption of the segmentation clock within the presomitic mesoderm.Development. 2002; 129:1795-1806.
    
    71. Barrantes IB, Elia AJ, Wu¨nsch K, et al. Interaction between Notch signalling and Lunatic fringe during somite boundary formation in the mouse. Curr Biol.1999;9:470-480.
    
    72. Conlon RA, Reaume AG, Rossant J. Notch1 is required for the coordinate segmentation of somites. Development. 1995;121:1533-1545.
    
    73. Evrard Y A, Lun Y, Aulehla A, et al. Lunatic fringe is an essential mediator of somite segmentation and patterning. Nature. 1998;394:377—381.
    
    74. Hrabe de Angelis M, McIntyre J, Gossler A. Maintenance of somite borders in mice requires the Delta homologue D111. Nature. 1997;386:717—721.
    
    .75. Shen J, Bronson RT, Chen DF, et al. Skeletal and CNS defects in Presenilin-1 deficient mice. Cell. 1997;89:629-639.
    
    76. Zhang N, Gridley T. Defects in somite formation in lunatic fringe eficient mice.Nature. 1998;394:374-377.
    
    77. Avon SW, Shively JL. Orthopaedic manifestations of Goldenhar syndrome.J Pediatr Orthop. 1988;8:683-686.
    
    78. Beals RK, Rolfe B. VATER association. A unifying concept of multiple anomalies. J Bone Joint Surg [Am]. 1989;71:948-950.
    
    79. Kallen K, Mastroiacovo P, Castilla EE, et al. VATER non-random association of congenital malformations: study based on data from four malformation registers.Am J Med Genet. 2001; 101:26-32.
    
    80. Li L, Krantz ID, Deng Y et al. Alagille syndrome is caused by mutations in human Jaggedl, which encodes a ligand for Notchl. Nat Genet 1997: 16: 243-251.
    
    81. McGaughran JM, Oates A, Donnai D, Read AP,Tassabehji M. Mutations in PAX1 may be associated with Klippel-Feil syndrome. Eur J Hum Genet 2003:11:468-474.
    
    82. Ming JE, Muenke M. Multiple hits during early embryonic development: digenic diseases and holoprosencephaly. Am J Hum Genet 2002: 71: 1017-1032.
    
    83. Wallin J, Wilting J, Koseki H, Fritsch R, Christ B, Balling R. The role of Pax-1 in axial skeleton development.Development 1994: 120: 1109-1121.
    
    84. Wilm B, Dahl E, Peters H, Balling R, Imai K. Targeted disruption of Pax1 defines its null phenotype and proves haploinsufficiency. Proc Natl Acad Sci USA 1998:95:8692-8697.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700