用户名: 密码: 验证码:
水相体系酶法制备甘油磷脂酰胆碱及酰基转移机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘油磷脂酰胆碱(L-alpha glycerylphosphorylcholine, L-α-GPC)由胆碱、甘油和磷酸盐组成,是乙酰胆碱和磷脂酰胆碱合成的胆碱源。在治疗人体大脑的精神混乱和神经混乱方面具有重要的医药应用价值,如治疗阿尔茨海默氏症、小脑性共济失调、精神分裂症和双相情感障碍等,但是就作为药用原料及相关研究而言需要较高纯度的L-α-GPC。然而遗憾的是天然L-α-GPC的含量较少。本研究针对制备高纯L-α-GPC中存在的转化率低、纯度低及环境污染等方面的问题,创建了绿色生物制取技术和树脂-硅胶柱色谱联用纯化技术,进行了磷脂酶A_1氨基酸序列测定及活性中心催化机理、自动酰基转移机理、硅胶吸附动力学和热力学等方面的研究,开发出了高纯度的L-α-GPC产品。
     首先,建立了一种水相体系磷脂酶A_1水解大豆粉末磷脂制备L-α-GPC的方法。通过研究pH、底物浓度、温度、磷脂酶A_1添加量和CaCl_2添加量等酶反应条件对磷脂酰胆碱(PC)转化率和L-α-GPC得率的影响,确定了磷脂酶A_1水解反应的显著影响因素,利用响应面对反应体系进行优化。得到最佳酶反应条件:底物浓度51.5mg/mL,反应温度53℃,磷脂酶A_1添加量28.2U/mL,CaCl_2添加量1.9mg/mL,反应时间3.5h,最终L-α-GPC得率为96.8%。同时,根据Arrhenius经验方程,计算出磷脂酶A_1水解反应的活化能为5.96kJ/mol;利用Briggs-Haldane稳态法酶催化模型对酶催化水解过程进行模拟,并计算出反应的动力学参数K_m,V_(max)和kI分别为4.02×10~(-2)mol/L、10.05mol/(L·min)和1.33×10~2mol/L。
     采用树脂-硅胶柱色谱联用纯化技术对酶水解产物进行纯化,依次进行了树脂吸附Ca~(2+)和Cl~-、硅胶纯化、活性炭脱色。通过树脂吸附实验,确定了去除Ca~(2+)的最优条件:处理酶反应液的能力25.1mL/g,Ca~(2+)的初始浓度720μg/mL,吸附流速1mL/min。吸附Cl~-的最优条件:处理酶反应液的能力29.6mL/g,Cl~-的初始浓度997μg/mL,吸附流速1mL/min。阳离子交换树脂和阴离子交换树脂分别用HCl和NaOH再生。通过硅胶纯化实验,确定了去除其它磷脂和杂质的最优条件:洗脱剂80%甲醇、上样量24.4mg/g、上样浓度16.6mg/mL、洗脱流速2mL/min。硅胶在150℃的烘箱中,烘烤3h就可以使吸附饱和的硅胶再生。脱色条件:活性炭作脱色剂,60℃脱色90min。经过树脂-硅胶柱色谱联用四步纯化,最终L-α-GPC产品的纯度为99.8%、回收率为69.8%、比旋光度为-2.5o,Ca~(2+)残留5.8ppm,Cl~-残留8.7ppm。通过LC-MS/MS、ATR-FTIR、~1H NMR和~(13)C NMR等检测技术对L-α-GPC产品进行表征,结果与L-α-GPC标准品一致。
     采用MALDI-TOF/TOF MS和TOF-MS/MS测定磷脂酶A_1的氨基酸序列,利用3D软件和同源模建技术分别对磷脂酶A_1的氨基酸序列进行空间结构模拟。通过3D软件模拟得到Space fillin、BallStick、Ribbons1和Ribbons2等四种空间模型。同时,利用同源模建技术成功设计出磷脂酶A_1的3D空间构型;在此基础上,进一步利用分子对接技术研究了磷脂酶A_1的活性中心,得到了Asp202、His280和Ser141三个氨基酸残基组成的活性中心及其空间结构。经过氨基酸残基组成和空间结构分析,推导出磷脂酶A_1水解PC的“Ser-His-Asp”三联体催化机理;同时,本研究还利用三维显微镜从微观的角度对磷脂酶A_1水解PC的过程进行分析和研究,证实了酶的水解过程是界面反应。
     对L-α-GPC的制备机理进行了研究,通过定量~(13)C NMR证明了磷脂酶A_1是Sn-1位专一性水解酶,结合借助HPLC-RID的磷脂酶A_1水解PC全过程分析,推测酶水解制备L-α-GPC的关键步骤是Sn-2-LPC自动酰基转移。进一步对溶液极性、pH、温度、底物浓度和反应时间等因素对酰基转移的影响进行了探讨,推导出Sn-2-LPC自动酰基转移机理和抑制机理。
     对自制L-α-GPC样品进行硅胶吸附动力学和热力学研究,发现界面扩散控制速率模型1-3(1-X)~(2/3)+2(1-X)能很好的拟合吸附过程。同时,用Langmiur方程对硅胶吸附L-α-GPC的吸附等温线进行拟合,计算出不同温度条件下的回归方程,相关系数均在0.99以上,并且证实了硅胶的吸附为放热反应。最后,利用Clausius-Clapeyron方程计算出80mg/g、160mg/g和240mg/g三个吸附量的硅胶吸附热力学参数,焓变(△HAm)分别为24.85kJ/mol、23.82kJ/mol、22.72kJ/mol。
L-alpha glycerylphosphorylcholine (L-α-GPC), comprised of choline, glycerol, and phosphate, is wellknown as the precursor for producing acetylcholine and phosphatidylcholine (PC) in the body, and forhaving important medical applications in neurological and psychiatric disorders of the human brain, such asalzheimer’s disease, cerebellar ataxia, schizophrenia, and bipolar affective disorder. These potential,valuable uses for L-α-GPC have prompted exploration into its possible role in the brain. Unfortunately,L-α-GPC is scarce in natural sources. The present work described a simple and cost-effective method forproducing L-α-GPC by the green enzymatic technology and the resins-silica gel column chromatographyassociated purification technology, which solved the problem of the low conversion rate, low purity, andenvironmental pollution. Meantime, the amino acid sequence of phospholipase A_1was determined, and thecatalytic mechanism of activity center, auto-acyl migration mechanism, and the adsorption kinetics andthermodynamics of silica gel were also studied.
     An environmental friendliness enzymatic preparation of L-α-GPC was established in this study.L-α-GPC was first produced by phospholipase A_1hydrolysis of phosphatidylcholine (PC) in an aqueousmedium. PC and L-α-GPC were quantitative analyzed by HPLC-ELSD. The effects of substrateconcentrations, temperature, enzyme loading, and dosage of CaCl_2on the PC conversion and L-α-GPCyield were discussed. Based on the single-factor experiments, next four process variables significantlyaffected the L-a-GPC yield and were used to develop the experimental design: substrate concentrations(mg/mL, w of soy lecithin powder/v of deionized water), reaction temperature (oC), enzyme loading (U/mL,U/v of total reaction solution), and dosage of CaCl_2(mg/mL, w/v of total reaction solution). Experimentswere designed by Design Expert7.0software for modeling and optimization of the effects of theexperimental factors on L-a-GPC yield. The optimal condition was confirmed as follows: reaction time3.5h, temperature53oC, enzyme loading28.2U/mL, substrate concentration51.5mg/mL, and dosage ofCaCl_21.9mg/mL; the L-a-GPC yield increased by96.8%, which was close to the amount predicted by themodel. Meanwhile, kinetic model was established. On the base of Arrhenius empirical equation, theactivation energy of phospholipase A_1hydrolysis was5.96kJ/mol. Briggs-Haldane steady enzymatic modelwas fitted for enzymatic hydrolysis process. Kinetic parameters K_m, V_(max)and kIwas4.02×10~(-2)mol/L,10.05mol/(L·min) and1.33×10~2mol/L, respectively.
     However, the purity of enzymatic reaction product is not high and requires further purification.Therefore, resin-silica gel column chromatography combinations for purifying L-α-GPC were established.The optimal condition for eliminating Ca~(2+): the ability processing enzymatic reaction solution of001×7resin,25.1mL/g; the concentration of solution,720μg/mL; and adsorption flow rate,1mL/min. Theoptimal condition for eliminating Cl~-: the ability processing enzyme reaction solution of D311resin,29.6mL/g; the concentration of solution,997μg/mL; and adsorption flow rate,1mL/min. The optimalcondition for L-α-GPC purification by silica gel: eluent,80%aqueous methanol (methanol: water, v:v);loading amount,24.4mg/g; loading concentration,16.6mg/mL; and the mobile phase flow rate,2mL/min.The final L-α-GPC was decolorized with activated carbon at60oCfor1.5h. The resin and silica gel showedremarkable ability for L-α-GPC isolation after10uses. Finally, colorless L-α-GPC was obtained at99.8%purity,69.8%recovery, a specific rotation of-2.5°, Ca~(2+)residue5.8ppm, and Cl~-residue8.7ppm via afour-step procedure. The resulted L-α-GPC was charactered by ultra performance liquidchromatography-electrospray ionization-quadrupole-time of flight-mass mass spectrometry (UPLC-Q-TOFMS/MS), attenuated total reflection fourier-transform infrared spectroscopy (ATR-FTIR), and nuclearmagnetic resonance (NMR). The results indicated that it was in good agreement with the standard.
     The successful determination of the amino acid sequence of the phospholipase A_1was carried out byMALDI-TOF/TOF MS and TOF-MS/MS. The spatial structure of3D model of phospholipase A_1wassimulated by the3D software and homology modeling. Four space model was obtained by the3D software, including Ball, Stick, Ribbons1, and Ribbons2. However, this technique cannot continue to explore thespatial structure of the enzyme active center. Therefore, the spatial structure of phospholipase A_1was thensimulated by the homology modeling using1G6T (PDB) as a template. The spatial structure of the enzymeactivity center was further simulated by molecular docking techniques. The results showed that the activitycenter contained three amino acid residues, including Asp202, His280and Ser141. The catalyticmechanism of the phospholipase A_1was inferred through the spatial structure of the molecules and theamino acid residues that it was more similar to the “Ser-His-Asp” triad catalytic mechanism of lipase.Meantime, the hydrolysis process of soybean lecithin powder was analyzed and studied bythree-dimensional microscope from the microscopic point of view.
     The specifity of phospholipase A_1was testified by quantitative analysis of~(13)C NMR. PhospholipaseA_1catalytic hydrolysis progress was monitored by HPLC-RID. The result showed that Sn-1fatty acid ofPC was hydrolyzed by phospholipase A_1to produce Sn-2-LPC, then spontaneous acyl migration occurredin which the Sn-2acyl moved to the Sn-1position to form Sn-1-LPC, and finally the enzyme hydrolyzedthe remaining acyl group to produce L-α-GPC. The effect of some reaction factors, such as the solutionpolarity, pH, reaction temperature, substrate concentration and reaction time on acyl migration regulationand inhibitory mechanism were investigated.
     The adsorption kinetics and thermodynamics of L-α-GPC on silica gel column chromatography wereresearched. The result showed that the adsorption rate of L-α-GPC was governed by interface diffusioncontrol rate model and adsorption time t was in the good linear relationship with1-3(1-X)2/3+2(1-X). Theadsorption isotherm of L-α-GPC could be described with the equation of Langmiur (R2>0.99). When theloading concentration was constant, the adsorption ability of silica gel was decreased with the increasing oftemperature, that is to say, the adsorption of silica gel for L-α-GPC was exothermic reaction. Theadsorption thermodynamics analysis on the equation of Clausius-Clapeyron showed that, under differentadsorption capacity of80mg/g,160mg/g and240mg/g, the adsorption enthalpy change (△HAm) was24.85kJ/mol,23.82kJ/mol,22.72kJ/mol, respectively.
引文
1. Sigala S, Imperato A, Rizzonelli P, et al. L-alpha glycerylphosphorylcholine antagonizes scopolamineinduced amnesia and enhances hippocampal cholinergic transmission in the rat [J]. Eur J Pharmacol,1992,211(3):351-358.
    2. Brownawell A M, Carmines E L, Montesano F, et al. Safety assessment of AGPC as a food ingredient [J].Food Chem Toxicol,2011,49(6):1303-1315.
    3. Gozzoli M, Scolastico C. A process for the preparation of L-alpha glycerylphosphorylcholine [P]. UKPatent, UK2058792.1981.
    4. Ziegenfuss T, Landis J, Hofheins J. Acute supplementation with L-alpha glycerylphosphorylcholineaugments growth hormone response to, and peak force production during, resistance exercise [J]. Int JSport Nutr Exe Metabol,2008,5:15.
    5. Parnetti L, Abate G, Bartorelli L, et al. Multicentre study of L-alpha glycerylphosphorylcholine vsST200among patients with probable senile dementia of Alzheimer's type [J]. Drugs Aging,1993,3(2):159-64.
    6. De J M M M. Cognitive improvement in mild to moderate Alzheimer's dementia after treatment with theacetylcholine precursor choline alfoscerate: a multicenter, double blind, randomized, placebo controlledtrial [J]. Clinical Therapeutics,2003,25:178-193.
    7. Nitsch R M, Blusztajn J K, Pittas A G, et al. Evidence for a membrane defect in Alzheimer disease brain[J]. P Natl Acad Sci USA,1992,89(5):1671-1675.
    8. Di P R, Coppola G, Ambrosio L A, et al. A multicentre trial to evaluate the efficacy and tolerability ofL-alpha glycerylphosphorylcholine versus cytosine diphosphocholine in patients with vasculardementia [J]. J Int Med Res,1991,19:330-341.
    9. Amenta, F. The cholinergic approach for the treatment of vascular dementia: evidence from pre-clinicaland clinical studies [J]. Clin Exp Hypertens,2002,24(7-8):697-713.
    10. Ceda G P, Ceresini G, Denti L, et al. L-alpha glycerylphosphorylcholine administration increases theGH responses to GHRH of young and elderly subjects [J]. Horm Metab Res,1992,24(3):119-121.
    11. Grimm M O W, Grosgen S, Riemenschneider M, et al. From brain to food: analysis ofphosphatidylcholins, lyso-phosphatidylcholins and phosphatidylcholin-plasmalogens derivates inAlzheimer's disease human post mortem brains and mice model via mass spectrometry [J]. JChromatogr A,2011,1218:7713-7722..
    12. Stanley J A, Williamson P C, Drost D J, et al. An in vivo proton magnetic resonance spectroscopystudy of schizophrenia patients [J], Schizophr Bull,1996,22(4):597-609.
    13. Ferraro A, Cervoni L, Eufemi M, et al. Comparison of DNA protein interactions in intact nuclei fromavian liver and erythrocytes: a crosslinking study [J]. J Cell Biochem,1996,62(4):495-505.
    14. Parnetti L. Choline alphoscerate in cognitive decline and in acute cerebrovascular disease: an analysisof published clinical data [J]. Mech Ageing Dev,2001,122(16):2041-2055.
    15. Schettini G, Ventra C, Florio T, et al. Molecular mechanisms mediating the effects of L-alphaglycerylphosphorylcholine, a new cognition enhancing drug, on behavioral and biochemical parametersin young and aged rats [J]. Pharmacol Biochem Be,1992,43:139-151.
    16. Brockerhoff H, Yurkows M. Simplified preparation of L-alpha glycerylphosphorylcholine [J]. Can JBiochem,1965,43:1777-1783.
    17. Somg Y S, Somg K R, Seob E, et al. A process for preparation of L-alpha glycerylphosphorylcholine[P]. KO Patent Appliation, WO2007145476.2007-12.
    18. Chen X, Mei Y, Liang P. A method of synthesis for L-alpha glycerylphosphorylcholine [p].CN101544667A.2008.
    19.孙清瑞,鹿保鑫,刘志明等.化学催化法制备甘油磷酸胆碱的研究[J].粮油加工,2009,11:56-58.
    20. Schmidt G, Hershman B, Thannhauser S J. The isolation of L-alpha glycerylphosphorylcholine fromincubated beef pancreas: its significance for the intermediary metabolism of lecithin [J]. J Biol Chem,1945,161:523-536.
    21. Wang Y, Zhao M, Ou S, et al. Preparation of a diacylglycerol enriched soybean oil by phosphalipase A1catalyzed hydrolysis [J]. J Mol Catal B: Enzym,2009,56(2-3):165-172.
    22. Giovanni T, Emilia V. Process for the preparation of L-alpha glycerylphosphorylcholine, L-alphaglycerylphosphorylethanolamine from crude and/or deoleated lecithins [P]. Italy Patent, EP0217765.
    1985.
    23. Adlercreutz D, Wehtje E. A simple HPLC method for the simultaneous analysis of phosphatidylcholineand its partial hydrolysis products1-and2-acyl lysophosphatidylcholine [J]. J Am Oil Chem Soc,2001,78(10):1007-1011.
    24. Adlercreutz D, Wehtje E. An enzymatic method for the synthesis of mixed-acid phosphatidylcholine [J].J Am Oil Chem Soc,2004,81(6):553-557.
    25. Poisson L, Devos M, Godet S. Acyl migration during deacylation of phospholipids rich indocosahexaenoic acid (DHA): an enzymatic approach for evidence and study [J]. Biotechnol Lett,2009,31(5):743-749.
    26.钱峰,裘爱泳.非水介质中磷脂酶A1催化水解磷脂酰胆碱的研究[J].中国油脂,2007,11(32):55-58.
    27. Mcarthur. A method for the preparation of L-alpha glycerylphosphorylcholine using mercuric chloridehydrolysis of lecithin [P]. US, Patent No:2864848.1954.
    28. Roblesa E C, Roels G F M. Preparation of deacylated phosphoglycerides [J]. Chem Phys Lipids,1971,3(6):31-38.
    29. Maria L D, Vind J, Oxenb ll K M. Phospholipases and their industrial applications [J]. Appl MicrobiolBiotechnol,2007,74(2):290-300.
    30. Bornscheuer U T, Kazlauskas R J. Catalytic promiscuity in biocatalysis: using old enzymes to formnew bonds and follow new pathways [J]. Angew Chem Int Ed Engl,2004,43(45):6032-6040.
    31. Kazlauskas R J. Enhancing catalytic promiscuity for biocatalysis [J]. Curr Opin Chem Biol,2005,9(2):195-201.
    32. Aoki J, Nagai Y, Hosono H, et al. Structure and function of phosphatidylserine-specific phospholipaseA1[J]. Biochim Biophys Acta,2002,1582(1-3):26-32.
    33. Higgs H N, Han M H, Johnson G E, et al. Cloning of a phosphatidic acid-preferring phospholipase A1from bovine testis [J]. J Biol Chem,1998,273:5468-5477.
    34. Higgs H N, Glomset J A. Identification of a phosphatidic acid-preferring phospholipase A1from bovinebrain and testis [J]. Proc Natl Acad Sci USA,1994,91(20):9574-9578.
    35. Tani K, Mizoguchi T, Iwamatsu A, et al. p125is a novel mammalian Sec23p-interacting protein withstructural similarity to phospholipid-modifying proteins [J]. J Biol Chem,1999,274:20505-20512.
    36. Nakajima K, Sonoda H, Mizoguchi T, et al. A novel phospholipase A1with sequence homology to amammalian Sec23p-interacting protein, p125[J]. J Biol Chem,2002,277:11329-11335.
    37. Sonoda H, Aoki J, Hiramatsu T, et al. A novel phosphatidic acid-selective phospholipase A1thatproduces lysophosphatidic acid [J]. J Biol Chem,2002,277:34254-34263.
    38. Hiramatsu T, Sonoda H, Takanezawa Y, et al. Biochemical and molecular characterization of twophosphatidic acid-selective phospholipase A1s, mPA-PLA1alpha and mPA-PLA1beta [J]. J Biol Chem,2003,278:49438-49447.
    39. Aoki J, Inoue A, Makide K, et al. Structure and function of extracellular phospholipase A1belonging tothe pancreatic lipase gene family [J]. Biochimie,2007,89(2):197-204.
    40. Sato T, Aoki J, Nagai Y, et al. Serine phospholipid-specific phospholipase A that is secreted fromactivated platelets [J]. J Biol Chem,1997,272:2192-2198.
    41. Aoki J, Nagai Y, Hosono H, et al. Structure and function of phosphatidylserine-specific phospholipaseA1[J]. Biochim Biophys Acta,2002,1582(1-3):26-32.
    42. Hosono H, Homma M, Ogasawara Y, et al. Expression of phosphatidylserine-specific phospholipase A1mRNA in human THP-1-derived macrophages [J]. Cell Transplant,2010,19(6-7):759–764.
    43. Soldatova L, Kochoumian L, King T P. Sequence similarity of a hornet (D. maculata) venom allergenphospholipase A1with mammalian lipases [J]. FEBS Lett,1993,320(2):145-149.
    44. Hoffman D R. Allergens in hymenoptera venom. XXVI: The complete amino acid sequences of twovespid venom phospholipases [J]. Int Arch Allergy Immunol,1994,104(2):184-190.
    45. King T P, Lu G, Gonzalez M, et al. Yellow jacket venom allergens, hyaluronidase and phospholipase:sequence similarity and antigenic cross-reactivity with their hornet and wasp homologs and possibleimplications for clinical allergy [J]. J Allergy Clin Immunol,1996,98:588-600.
    46. Seismann H, Blank S, Cifuentes L, et al. Recombinant phospholipase A1(Ves v1) from yellow jacketvenom for improved diagnosis of hymenoptera venom hypersensitivity [J]. Clin Mol Allergy,2010,8:7.
    47. Imae R, Inoue T, Kimura M, et al. Intracellular phospholipase A1and acyltransferase, which areinvolved in Caenorhabditis elegans stem cell divisions, determine the sn-1fatty acyl chain ofphosphatidylinositol [J]. Mol Biol Cell,2010,21(18):3114-3124.
    48. Carriere F, Withers-Martinez C, van T H, et al. Structural basis for the substrate selectivity ofpancreatic lipases and some related proteins [J]. Biochim Biophys Acta,1998,1376(3):417-432.
    49. Ishiguro S, Kawai-Oda A, Ueda J, et al. The defective in anther dehiscience1gene encodes a novelphospholipase A1catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollenmaturation, anther dehiscence, and flower opening in Arabidopsis [J]. Plant Cell,2001,13(10):2191-2209.
    50. Noiriel A, Benveniste P, Banas A, et al. Expression in yeast of a novel phospholipase A1cDNA fromarabidopsis thaliana [J]. Eur J Biochem,2004,271(18):3752-3764.
    51. Kato T, Morita M T, Fukaki H, et al. SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE,are involved in the shoot gravitropism of arabidopsis [J]. Plant Cell,2002,14(1):33-46.
    52. Watanabe I, Koishi R, Yao Y, et al. Molecular cloning and expression of the gene encoding aphospholipase A1from aspergillus oryzae [J]. Biosci Biotechnol Biochem,1999,63(5):820-826.
    53. Kim I H, Garcia H S, Hill C G. Phospholipase A1-catalyzed synthesis of phospholipids enriched in n-3polyunsaturated fatty acid residues [J]. Enzyme Microb Technol,2007,40(5):1130-1135.
    54. Givskov M, Molin S. Secretion of serratia liquefaciens phospholipase from escherichia coli [J]. MolMicrobiol,1993,8(2):229-242.
    55. Givskov M, Olsen L, Molin S. Cloning and expression in escherichia coli of the gene for extracellularphospholipase A1from serratia liquefaciens [J]. J Bacteriol,1988,170(12):5855-5862.
    56. Song J K, Kim M K, Rhee J S. Cloning and expression of the gene encoding phospholipase A1fromserratia sp. MK1in escherichia coli [J]. J Biotechnol,1999,72(1-2):103-114.
    57. Schmiel D H, Wagar E, Karamanou L, et al. Phospholipase A of yersinia enterocolitica contributes topathogenesis in a mouse model [J]. Infect Immun,1998,66(8):3941-3951.
    58. Richmond G S, Smith T K. A novel phospholipase from trypanosoma brucei [J]. Mol Microbiol,2007,63(4):1078-1095.
    59. Richmond G, Smith T K. The role and characterization of phospholipase A1in mediatinglysophosphatidylcholine synthesis in trypanosoma brucei [J]. Biochem J,2007,405(2):319-329.
    60. Jaeger K E, Dijkstra B W, Reetz M T. Bacterial biocatalysts: molecular biology, three-dimensionalstructures, and biotechnological applications of lipases [J]. Annu Rev Microbiol,1999,53:315-351.
    61. Tyndall J D, Sinchaikul S, Fothergill-Gilmore L A, et al. Crystal structure of a thermostable lipase frombacillus stearothermophilus P1[J]. J Mol Biol,2002,323(5):859-869.
    62. Ollis D L. The alpha/beta hydrolase fold [J]. Protein Eng,1992,5:197-211.
    63. Heikinheimo P, Goldman A, Jeffries C, et al. Of barn owls and bankers: a lush variety of alpha/betahydrolases [J]. Structure,1999,7(6):141-R146.
    64. Simons J W, Adams H, Cox R C, et al. The lipase from staphylococcus aureus. expression inescherichia coli, large-scale purification and comparison of substrate specificity to staphylococcushyicus lipase [J]. Eur J Biochem,1996,242:760-769.
    65. van O M G, Deveer A M, Dijkman R, et al. Purification and substrate specificity of staphylococcushyicus lipase [J]. Biochem,1989,28(24):9278-9285.
    66. Scandella C J, Kornberg A. Membrane-bound phospholipase A1purified from escherichia coli [J].Biochem,1971,10(24):4447-4456.
    67. Bojdr k, Svendsen A, Fuglsang C C, et al. Lipolytic enzyme variants [P]. WO,2000/32758.2000-08-06.
    68. Bojse K, Svendsen A, Fuglsang C C. et al. Lipolytic enzyme variants [P]. US Patent,7312062.2007-12-25.
    69. Slizyte R, Rustad T, Storro I. Enzymatic hydrolysis of cod (gadus morhua) by-products. optimization ofyield and properties of lipid and protein fractions [J]. Process Biochem,2005,40:3680-3692.
    70. Yang B, Zhou R, Yang J G, et al. Insight into the enzymatic degumm ing process of soybean oil [J]. JAm Oil Chem Soc,2008,85(5):421-425.
    71. Shimizu T, Ohto T, Kita Y. Cytosolic phospholipase A2: biochemical properties and physiological roles[J]. IUBMB Life,2006,58(5-6):328-333.
    72. Clausen K. Enzymatic oil-degumming by a novel microbial phospholipase [J]. Eur J Lipid Sci Technol,2001,103(6):333-340.
    73. Bojsen K, Svendsen A, Fuglsang C C, et al. Producing a lipolytic enzyme variant useful in bakingprocesses and purification of vegetables oils, comprises altering the parent lipolytic enzyme, preparinga variant and testing its activity on selected ester bond [P]. PCT, WO2000/32758.2000.
    74. Castello P, Jollet S, Potus J, et al. Effect of exogenous lipase on dough lipids during mixing of wheatflours [J]. Cereal Chem,1998,75(5):595-601.
    75. Dutilh C E, Groger W. Improvement of product attributes of mayonnaise by enzymic hydrolysis of eggyolk with phospholipase A2[J]. J Sci Food Agric,1981,32(5):451-458.
    76. Clausen K. Enzymatic oil-degumming by a novel microbial phospholipase [J]. Eur J Lipid Sci Technol,2001,103(6):333-340.
    77.韩国麒.油脂化学[M].郑州:河南科学技术出版社,1995.
    78. Manahan D J. A guide to phospholipid chemistry [M]. New York: Oxford University Press,1997.
    79.梁峙,李勇.对大豆磷脂的开发应用探讨[J].食品科技,2001,(1):14-18.
    80. Kung V, Redemann T. Liposome composition and method [P]. US Patent,1986/000081.1986-07-31.
    81. Lowell, George H, Amselem, et al. Submicron emulsions as vaccine adjuvants [P]. WO9511700.1999-10-05.
    82. Chagnon M S. Electromagnetic wave absorbing, surface modified magnetic particles for use in medicalapplications, and their method of production [P]. US, Pat No5441746.1993-05-05.
    83.巩菊芳,史锋,邵邻相等.大豆磷脂对小鼠学习记忆及脑组织脂类成分的影响[J].卫生研究,2004,33(3):324-327.
    84.刘小杰,袁长贵.大豆磷脂的研究进展[J].中国食品添加剂,2001,4:15-19.
    85. Ramadan M F. Quercetin increases antioxidant activity of soy lecithin in a triolein model system [J].LWT,2008,41(4):581-587.
    86.郭勇,傅铁信.大豆卵磷脂的分离与纯化方法研究[J].粮油加工与食品机械,2004,(2):43-45.
    87.邓启刚,安红,宋伟明.溶剂萃取技术制备粉状大豆磷脂[J].食品科学,2005,(8):219-222.
    88. Boselli E, Caboni M F. Supercritical carbon dioxide extraction of phospholipids from dried egg yolkwithout organic modifier [J]. J Supercriti Fluid,2000,19(1):45-50.
    89. Hancer M, Patist A, Kean R T, et al. Micellization and adsorption of phospholipids and soybean oilonto hydrophilic and hydrophobic surfaces in nonaqueous media [J]. Colloid Surface A,2002,204(1-3):31-41.
    90.李凯,刘元法,王兴国.大豆粉末磷脂干燥技术的研究现状[A].中国粮油学会油脂专业分会第十五届学术年会论文选集[C].武汉:粮油加工与食品机械杂志社,2006,162-165.
    91. Liu Y F, Shan L, Wang X G. Purification of soybean phosphatidylcholine using D113-III ion exchangemacroporous resin packed column chromatography [J]. J Am Oil Chem Soc,2009,86(2):183-188.
    92.陆文达,李剑英,陈光华.优质大豆粉末磷脂制备与开发[J].粮食与油脂,2002,(5):7-9.
    93.李杰,王丽,于长青.大豆磷脂的研究现状及展望[J].黑龙江八一农垦大学学报,2005,(2):81-84.
    94. Eckard P R, Taylor L T, Sleck G C. Method development for the separation of phospholipids bysubcritical fluid chromatography [J]. J Chromatogr A,1998,826:241-247.
    95. Adams B A, Holmes E L. Adsorptive powders of synthetic zeolites [J]. J Soc Chem Ind,1935,54:1-6.
    96.王格慧.新型天然纤维材料离子交换树脂合成与应用研究[D].南京:中国林科院林化所,2000.
    97.马建标,李晨曦.功能高分子材料[D].北京:化学工业出版社,2000.
    98.胡秀峰,冯长根,曾庆轩等.大孔树脂在红霉素提取中的应用进展[J].国外医药抗生素分册,2004,25(1):17-19.
    99.何炳林.吸附与吸附树脂[J].石油化工,1977,6(3):263-283.
    100.马振山.大孔吸附树脂在药学领域的应用[J].中成药,1997,19(12):40-42.
    101.吕秀阳,徐小红,吴素芳等.混合床离子交换树脂精致蛋黄卵磷脂的研究[J].离子交换与吸附,2005,21(1):62-67.
    102.张颖颖,杨亦文,任其龙等.硅胶柱层析法提纯大豆磷脂酰胆碱的研究[J].高校化学工程学报,2006,20(5):685-690.
    103.孙登文,先雪峰,刑少龙等.硅胶吸附法精制天然维生素E的工艺研究[J].中国油脂,2002,27(5):68-70.
    104. Lacaze J P C L, Stobo L A, Turrell E A, et al. Solid-phase extraction and liquid chromatography massspectrometry for the determination of free fatty acids in shellfish [J]. J Chromatogr A,2007,57:1145-1151.
    105. Wan J C, Zhang W N, Jiang B, et al. Separation of individual tocopherols from soybean distillate bylow pressure column chromatography [J]. J Am Oil Chem Soc,2008,85(4):331-338.
    106. Zhang Z F, Liu Y, Luo P, et al. Separation and purification of two flavone glucuronides from erigeronmultiradiatus (Lindl.) benth with macroporous resins [J]. J Biomed Biotechnol,2009,1-8.
    107. Gunawan S, Kasim N S, Ju Y H. Separation and purification of squalene from soybean oil deodorizedistillate [J]. Sep Purif Technol,2008,2(60):128-135.
    108. Shin S J, Park C E, Baek N I, et al. Betulinic and oleanolic acids isolated from forsythia suspensaVAHL inhibit urease activity of helicobacter pylori [J]. Biotechnolo Bioproce E,2009,14(2):140-145.
    109. Giacometti J, Milo evi A, Milin. Gas chromatographic determination of fatty acids contained indifferent lipid classes after their separation by solid-phase extraction [J]. J Chromatogr A,2002,47-54.
    1. Sigala S, Imperato A, Rizzonelli P, et al. L-alpha glycerylphosphorylcholine antagonizes scopolamineinduced amnesia and enhances hippocampal cholinergic transmission in the rat [J]. Eur J Pharmacol,1992,211:351-358.
    2. Brownawell A M, Carmines E L, Montesano F, et al. Safety assessment of AGPC as a food ingredient [J].Food Chem Toxicol,2011,49(6):1303-1315.
    3. Parnetti L, Abate G, Bartorelli L, et al. Multicentre study of L-alpha glycerylphosphorylcholine vsST200among patients with probable senile dementia of Alzheimer's type [J]. Drugs Aging,1993,3(2):159-164.
    4. De Jesus Moreno M M. Cognitive improvement in mild to moderate Alzheimer's dementia aftertreatment with the acetylcholine precursor choline alfoscerate: a multicenter, double blind, randomized,placebo controlled trial [J]. Clin Ther,2003,25(1):178-193.
    5. Deicken R F, Fein G, Weiner M W, et al. Abnormal frontal lobe phosphorous metabolism in bipolardisorder [J]. Am J Psychiatry,1995,152:915-918.
    6. Grimm M O W, Grosgen S, Riemenschneider M, et al. From brain to food: analysis ofphosphatidylcholins, lyso-phosphatidylcholins and phosphatidylcholin-plasmalogens derivates inAlzheimer's disease human post mortem brains and mice model via mass spectrometry [J]. JChromatogr A,2011,1218:7713-7722.
    7. Stanley J A, Williamson P C, Drost D J, et al. An in vivo proton magnetic resonance spectroscopy studyof schizophrenia patients [J]. Schizophr Bull,1995,22:597-609.
    8. Parnetti L. Choline alphoscerate in cognitive decline and in acute cerebrovascular disease: an analysis ofpublished clinical data [J]. Mech Ageing,2001,122(16):2041-2055.
    9. Schettini G, Ventra C, Florio T, et al. Molecular mechanisms mediating the effects of L-alphaglycerylphosphorylcholine, a new cognition-enhancing drug, on behavioral and biochemical parametersin young and aged rats [J]. Pharmacol Biochem Behav,1992,43:139-151.
    10. Brockerhoff H, Yurkows M. Simplified preparation of L-alpha glycerylphosphorylcholine [J]. Can JBiochem,1965,43:1777-1783.
    11. Chen X, Mei Y, Liang P. A method of synthesis for L-alpha glycerylphosphorylcholine [P].CN101544667A.2008-03-27.
    12. Wang Y, Zhao M, OU S, et al. Preparation of a diacylglycerol enriched soybean oil by phosphalipase A1catalyzed hydrolysis [J]. J Mol Catal B: Enzym,2009,56(2-3):165-172.
    13.孙清瑞,鹿保鑫,刘志明等.化学催化法制备甘油磷酸胆碱的研究[J].粮油加工,2009,11:56-58.
    14. Song Y S, Song K R, Seob E, et al. A process for Preparation of L-alpha glycerylphosphorylcholine [P].KO Patent Appliation, WO2007145476.2007-12.
    15. Gozzoli M, Scolastico C. A process for the preparation of L-alpha glycerylphosphorylcholine [P]. UK,Patent2058792.1981.
    16.钱峰,裘爱泳.非水介质中磷脂酶A1催化水解磷脂酰胆碱的研究[J].中国油脂,2007,11(32):55-58.
    17. Liu N, Wang Y, Zhao Q, et al. Fast synthesis of1,3-diacyglycerol by lecitase ultra-catalyzedesterification in solvent-free system[J]. Eur J Lipid Sci Technol,2011,113(8):973-979.
    18. Fernandez-Lorente G, Filice M, Terreni M, et al. Lecitase ultra as regioselective biocatalyst in thehydrolysis of fully protected carbohydrates strong modulation by using different immobilizationprotocols [J]. J Mol Catal B-Enzym,2008,51:110-117.
    19. Wang Y, Zhao M M, Song K K, et al. Partial hydrolysis of soybean oil by phospholipase A1(lecitaseultra)[J]. Food Chem,2010,121(4):1066-1072.
    20. Manjula S, Jose A, Divakar S, et al. Degumming rice bran oil using phospholipase A1[J]. Eur J LipidSci Technol,2011,113(5):658-664.
    21. Hu M, Li Y, Decker E A, et al. Impact of layer structure on physical stability and lipase digestibility oflipid droplets coated by biopolymer nanolaminated coatings [J]. Food Biophys,2010,6(1):37-48.
    22. List G R. Commercial manufacture of lecithin, in lecithins: source, manufacture and uses [D]. Szuhaj BF (ed), American Oil Chemists Society Press, Champaign,1989, pp145-161.
    23. Eckard P R, Taylor L T, Slack G C. Method development for the separation of phospholipids bysubcritical fluid chromatography [J]. J Chromatogr A,1998,826(2):241-247.
    24. Wang Y, Zhao M M, OU S Y, et al. Preparation of a diacylglycerol-enriched soybean oil byphosphalipase A1catalyzed hydrolysis [J]. J Mol Catal B-Enzym,2009,56(2-3):165-172.
    25. Chopra R, Rastogi N K, Sambaiah K. Enrichment of rice bran oil with α-linolenic acid by enzymaticacidolysis: optimization of parameters by response surface methodology [J]. Food Bioprocess Technol,2011,4(7):1153-1163.
    26. Tripathi S, Mishra H N. Modeling and optimization of enzymatic degradation of aflatoxin B1(AFB1) inred chili powder using response surface methodology [J]. Food Bioprocess Technol,2011,4(5):770-780.
    27. Poisson L, Devos M, Godet S, et al. Acyl migration during deacylation of phospholipids rich indocosahexaenoic acid(DHA):an enzymatic approach for evidence and study [J]. Biotechnol Lett,2009,31(5):743-749.
    28. Yang T, Fruekilde M B, Xu X. Suppression of acyl migration in enzymatic production of structuredlipids through temperature programming [J]. Food Chem,2005,92(1):101-107.
    29.罗淑年,于殿宇,梁少华等.大豆粉末磷脂酶解改性及其性能研究[J].中国油脂,2008,1(33):47-49.
    30.孙万成.固定化磷脂酶A1水解卵磷脂的研究[J].食品研究与开发,2006,10(27):28-31.
    31. Kodali D R, Tercyak A, Fahey D A, et al. Acyl migration in1,2-dipalmitoyl-sn-glycerol [J]. ChemPhys Lipids,1990,52(3-4):163-170.
    32. Sheelu G, Kavitha G, Fadnavis N W. Efficient immobilization of lecitase ultra in gelatin hydrogel anddegumming of rice bran oil using a spinning basket reactor [J]. J Am Oil Chem Soc,2008,85(8):739-748.
    33. Garcia H S, Kim I H, Lopez-Hernandez A, et al. Enrichment of lecithin with n-3fatty acids byacidolysis using immobilized phospholipase A1[J]. Grasasy aceites,2008,59:368-374.
    34. Clapham D E. Calcium signaling [J]. Cell,2007,131:1047-1058.
    35. Yang J G, Yang B, Zhou R, et al. Effect of metal ions and surfactant on the enzymatic degummingprocess of vegetable oil [J]. China Oils and Fats,2007,32:34-36.
    36. Rogers J, Yu B Z, serves S V, et al. Knetic basis for the substrate specificity during hydrolysis ofphospholipids by secreted phospholipase A2[J]. Biochem,1996,35(29):9375-9378.
    37. Kim H R, Hou C T, Lee K T, et al. Enzymatic synthesis of structured lipids using a novel cold activelipase from pichia lynferdi NRRL Y-7723[J]. Biochem Eng J,2008,41:241-250.
    38. Sun S D, Shan L, Liu Y F, et al. A novel, two consecutive enzyme synthesis of feruloylated monoacyl-and diacyl-glycerols in a solvent-free system [J]. Biotechnol Lett,2007,29(12):1947-1950.
    39. Cochran W G, Cox G M. Experimental designs [D]. New York: John Wiley,1992.
    40. Cao W, Zhang C, Hong P, et al. Response surface methodology for autolysis parameters optimization ofshrimp head and amino acids released during autolysis [J]. Food Chem,2008,109:176-183.
    41. Sigel A, Sige H, Sigel R K O. Metal ions in life sciences [D]. John Wiley&Sons,1912.
    42. Radzi S M, Basri M, Salleh A B, et al. High performance enzymatic synthesis of oleyl oleate usingimmobilised lipase from candida antartica [J]. Electron J Biotechnol,2005,8:291-298.
    43. Lee D C, Park J H, Kim G J, Kim H S. Modeling, simulation,and kinetic analysis of a heterogeneousreaction system for the enzymatic conversion of poorly soluble substrate [J]. Biotechnol Bioeng,1999,64:272-283.
    44. Guo Z, Sun Y. Solvent-free production of1,3-diglyceride of CLA: strategy consideration and protocoldesign [J]. Food Chem,2007,100(3):1076-1084.
    45. Haas M J, Cichowicz D J, Phillips J, et al. The hydrolysis of phosphatidylcholine by an immobilizedlipase: optimization of hydrolysis in organic solvents [J]. J Am Oil Chem Soc,1993,70(2):111-117.
    46. Yadav G D, Devi K M. Enzymatic synthesis of perlauric acid using novozym435[J]. Biochem Eng J,2002,10(2):93-101.
    47. Marangon A G. Enzyme kinetics a modern approach [M]. John Wiley&Sons, Inc., Hoboken, NewJersey,2003, pp44-60.
    48.袁勤生.现代酶学[M].上海:华东理工大学出版社,2001-19-70.
    49. Leskovac V. Comprehensive enzyme kinetics [M]. Kluwer Academic/Plenum Publishers, New York,2003-31-51.
    50.岑沛霖,关怡新,林建平.生物反应工程[M].北京:高等教育出版社,2005-14-20.
    51. Taylor K B. Enzyme kinetics and mechanisms [M]. Kluwer Academic Publishers, Dordrecht,2002-44-121.
    1. Matsuo T, Matsuda H, Katakuse I, et al. Field desorption mass spectra of tryptic peptides of humanhemoglobin chains [J]. Biomed Mass Spectrom,1981,8(1):25-30.
    2.赵玉芬.生物有机质谱[M].郑州:郑州大学出版社,2005.
    3. Guo N, Niggins T N. MALDI-TOF MS/microwave-assisted acid hydrolysis identification of HbGcoushatta [J]. Clin Biochem,2008,42(2):99-107.
    4. Wild B J, Green B, Cooper E K, et al. Rapid identification of hemoglobin variants by electrosprayionization mass spectrometry [J]. Blood Cell Mol Dis,2001,27(3):691-704.
    5. Shimizu A, Toyofumi N, Masahiki K, et al. Detection and identification protein variants and adducts inblood and tissues: an application of soft ionization mass spectrometry to clinical diagnosis [J]. JChromatogr B,2002,776(1):15-30.
    6. Reilly C T H. Rapid analysis of hemoglobin from whole human blood by matrix-assisted laserdesorption/ionization time of flight mass spectrometry [J]. Rapid Comm Mass Spectrom,1997,11(13):1435-1439.
    7. Lacan P, Michel B, Zanella-Cleon I. Two new β chain variants: Hbtripoli [β26(B8) Glu→Ala] and Hbtizi-ouzou [β29(B11) Gly→Ser][J]. Hemoglobin,2004,28:205-212.
    8. Bojdr K, Svendsen A, Fuglsang C C, et al. Lipolytic enzyme variants [P]. WO,2000/32758.2000-08-06.
    9. Bojse K, Svendsen A, Fuglsang C C, et al. Lipolytic enzyme variants [P]. US Patent,7312062.2007-12-25.
    10.李脉,杨继国,杨博.磷脂酶A1酶活测定方法的研究[J].现代食品科技,2007,23(8):80-82.
    11.梁世中.生物工程设备[M].北京:中国轻工业出版社,2002.
    12.邓成萍,薛文通,孙晓琳等.超滤在大豆多肽分离纯化中应用[J].食品科学,2006,27(2):192-196.
    13.李明,宋俊梅.大豆多肽分离提纯方法研究进展[J].粮食加工,2010,35(4):69-73.
    14.张仁斌.高效液相色谱:在医药研究中的应用[M].上海:上海科学技术出版社,1983.
    15. Sanz N V, Benavente F, Toro I, et al. Optimization of HPLC conditions for the separation of complexcrude mixtures produced in the synthesis of therapeutic peptide hormones [J]. Chromatographia,2001,53(1):167-173.
    16.白泉,葛小娟,耿信笃.反相液相色谱对多肽分离纯化与制备[J].分析化学,2002,30(9):1126-1129.
    17.蒋菁莉,徐彦军,娄飞等.反相高效液相色谱-电喷雾质谱法分析食源血管紧张素转换酶抑制肽[J].分析化学,2007,35(3):427-430.
    18. Kiefer F, Arnold K, Künzli M, et al. The Swiss-model repository and associated resources [J]. NucleicAcids Res,2009,37:387-392.
    19. Arnold K, Bordoli L, Kopp J, et al. The Swiss-model workspace: a web-based environment for proteinstructure homology modeling [J]. Bioinformatics,2006,22(2):195-201.
    20.詹冬玲,王嵩,韩葳葳等.人参β-香树素合成酶同源模建及高通量虚拟筛选抑制剂的研究[J].化学学报,2007,70(3):217-222.
    21.成善汉,柳俊,谢从华等.植物转化酶抑制子及其分子生物学的研究进展[J].海南大学学报,2007,25(1):83-95.
    22. Derewenda U, Swenson L, Green R, et al. An unusual buried polar cluster in a family of fungal lipases[J]. Nat Struct Biol,1994,1:36-47.
    23. Derewenda U, Swenson L, Green R, et al. Current progress in crystallographic studies of new lipasesfrom filamentous fungi [J]. Protein Eng,1994,7(4):551-557.
    24. Han W W, Li Z S, Zheng Q C, et al. Computational studies on bergaptol o-methyltransferase fromammi majus L: the substrate specificity [J]. Polymer,2006,47(23):7953-7961.
    25. Han W W, Li Z S.; Zheng Q C, et al. Toward a blueprint for β-primeverosidase from tea leavesstructure/function properties: homology modeling study [J]. Theor Comput Chem,2006,5(1),433-446.
    26. Affinity user guide. Accelrys Inc, San Diego, USA,1999.
    27. Muralidhar R V, Chirumamilla R R, Marchant R, et al. Understanding lipase stereoselectivity [J].World J Microb Biot,2003,18(2):81-97.
    28. Maria L D, Vind J, Oxenb ll K M, et al. Phospholipases and their industrial applications [J]. ApplMicrobiol Biotechnol,2007,74(2):290-300.
    29. Ransac S, Ivanova M, Panaiotov I, et al. Monolayer techniques for studying lipase kinetics [J]. MethodsEnzymol,1997,286:263-292.
    30. Verger R, de Haas G H. Enzyme reactions in a membrane model.1. a new technique to study enzymereactions in monolayers [J]. Chem Phys Lipids,1973,10(2):127-13.
    1. Fischer E. Wanderung von acyl bei den glyceriden [J]. Bet Dtsch Chem Ges,1920,53(9):1621-1634.
    2. Akahori Y. Studies on isotopic acyl exchange. II. effects of bases and solvents on the rate of acylexchange between p-nitrophenyl acetate and acetic acid [J]. Kagaku no Ryoiki,1965,13(3):352-361.
    3. Pavlova L V, Rachinskii F Y. Rearrangements connected with the migration of acyl and certain othergroups [J]. Russ Chem Rev,1968,37(6):587-603.
    4. Martin J B. The equilibrium between symmetrical and unsymmetrical monoglycerides and determinationof total monoglycerides [J]. J Am Chem Soc,1953,75(22):5483-5486.
    5. Van Lohuizen O E, Verkade P E. Migration of an acyl group in glycerol derivatives [J]. Red Trau ChimPays-Bas,1960,79(2):133-159.
    6. Wolfenden R, Rammler D H, Lipmann F. On the Site of esterification of amino acids to soluble RNA [J].Biochemistry,1964,3(3):329-338.
    7. Verkade P E. On the mechanism of the acyl group migration in glycerol derivatives [J]. Recl Trav ChimPays-Bas,1966,85(4):426-428.
    8. Serdarevich, B. Glyceride isomerizations in lipid chemistry [J]. J Am Oil Chem Soc,1967,44(7):381-393.
    9. Freeman I P, Morton I D. Acyl migration in diglycerides [J]. J Chem Soc,1966,(c):1710-1711.
    10. Mattson F H, Volpenhein R A. Synthesis and properties of glycerides [J]. J Lipid Res,1962,3:281-296
    11. Hanahan D J. Lipid chemistry [D]. John Wiley and Sons Inc, New York, N Y,1960.
    12. de Haas G H, Mulder I, van Deenen L L M. On the specificity of phospholipase A [J]. Biochim BiophysRes Commun,1960,3(3),287-291.
    13. de Haas G H, van Deenen L L M. Synthesis of enantiomeric mixed-acid phosphatides [J]. BiochimBiophys Res Commun,1961,80(9):951-970.
    14. van Deenen L L M, de Haas G H, Heemskerk C H T. Hydrolysis of synthetic mixed-acid phosphatidesby phospholipase A from human pancreas [J]. Biochim Biophys Acta,1963,67:295-304.
    15. Gupta C M, Radhakrishnan R, Khorana H G. Glycerophospholipid synthesis: improved general methodand new analogs containing photoactivable groups [J]. Proc Natl Acad Sci U S A,1977,74(10):4315-4319.
    16. Warner T G, Benson A A. An improved method for the preparation of unsaturated phosphatidylcholines:acylation of sn-glycero-3-phosphorylcholinein the presence of sodium methylsulfinylmethide [J]. JLipid Res,1977,18(4),548-552.
    17. Van Den Bosch H, Van Golde L M G, Slotboom A J, et al. The acylation of isomeric monoacylphosphatidylcholines [J]. Biochimica et Biophysica Acta,1968,152(4):694-703.
    18. Homma H, Nishijima M, Kobayashi T, et al. Incorporation and metabolism of2-acyllysophospholipidsby Escherich1a coli [J]. Biochim Biophys Acta,1981,663(1):1-13.
    19. Lammers J G, Liefkens T J, Bus J, et al. Syntheses and spectroscopic properties of α-andβ-phosphatidylcholines and phosphatidylethanolamines [J]. Chem Phys Lipids,1978,22(4):293-305.
    20. Ponpipom M M, Bugianesi R L. Isolation of1,3-distearoyl-glycero-2-phosphocholine (beta-lecithin)from commercial1,2-distearoyl-sn-glycero-3-phosphocholine [J]. J Lipid Res,1980,21(1):136-139.
    21. Larrabee A L. Time-dependent changes in the size distribution of distearoylphosphatidylcholinevesicles [J]. Biochem,1979,18(5):3321-3326.
    22. Serdarevich B. Glyceride isomerizations in lipid chemistry [J]. J Am Oil Chem Soc,1967,44(7):381-393.
    23. Pliickthun A, Dennis E A. Acyl and phosphoryl migration in lysophospholipids: importance inphospholipid synthesis and phospholipase specificity [J]. Biochem,1982,21(8):1743-1750.
    24. Richmond G S, Smith T K. Phospholipases A1[J]. Int J Mol Sci,2011,12:588-612.
    25. Ekroos K, Ejsing C S, Bahr U, et al. Charting molecular composition of phosphatidylcholines by fattyacid scanning and ion trap MS3fragmentation [J]. J Lipid Res,2003,44(8):2182-2192.
    26. Vikbjerg A F, Mu H, Xu X. Synthesis of structured phospholipids by immobilized phospholipase A2catalyzed acidolysis [J]. J Biotechnol,2007,128(3):545-554.
    27. Poisson L, Devos M, Godet S, et al. Acyl migration during deacylation of phospholipids rich indocosahexaenoic acid (DHA): an enzymatic approach for evidence and study [J]. Biotechnol Lett,2009,31(5):743-749.
    28. Yang T, Fruekilde M B, Xu X. Suppression of acyl migration in enzymatic production of structuredlipids through temperature programming [J]. Food Chem,2005,92(1):101-107.
    29. Kodali D R, Tercyak A, Fahey D A, et al. Acyl migration in1,2-dipalmitoyl-sn-glycerol [J]. ChemPhys Lipids,1990,52(3-4):163-170.
    30. Morimoto T, Murakami N, Nagatsu A, et al. Regiospecific deacylation of glycerophospholipids by useof mucor javanicus lipase [J]. Tetrahedron Lett,1993,34(15):2487-2490.
    1. Schmidt G, Hershman B, Thannhauser S J. The isolation of L-alpha glycerylphosphorylcholine fromincubated beef pancreas: its significance for the intermediary metabolism of lecithin [J]. J Biol Chem,1945,161:523-536.
    2. Mcarthur C S. A method for the preparation of L-alpha glycerylphosphorylcholine using mercuricchloride hydrolysis of lecithin [P]. US, Patent No.2864848.1954.
    3. Cubero Roblesa E, Roels G F M. Preparation of deacylated phosphoglycerides [J]. Chem Phys Lipids,1971,6(1):31-38.
    4. Gozzoli M, Scolastico C. A process for the preparation of L-alpha glycerylphosphorylcholine [P]. UKPatent, UK2058792.1981.
    5. Zhang Z F, Liu Y, Luo P, et al. Separation and purification of two flavone glucuronides from erigeronmultiradiatus (lindl.) benth with macroporous resins [J]. J Biomed Biotechnol,2009,1-8.
    6. Gunawan S, Kasim N S, Ju Y H. Separation and purification of squalene from soybean oil deodorizedistillate [J]. Sep Purif Technol,2008,2(60):128-135.
    7. Shin S J, Park C E, Baek N I, et al. Betulinic and oleanolic acids isolated from forsythia suspensa vahlinhibit urease activity of helicobacter pylori [J]. Biotechnolo Bioproce E,2009,14(2):140-145.
    8. Giacometti J, Milo evi A, Milin. Gas chromatographic determination of fatty acids contained indifferent lipid classes after their separation by solid-phase extraction [J]. J Chromatogr A,2002,976:47-54.
    9. Liu Y F, Shan L, Wang X G. Purification of soybean phosphatidylcholine using D113-III ion exchangemacroporous resin packed column chromatography [J]. J Am Oil Chem Soc,2009,86(2):183-188.
    10. Saghir M, Shaheen N, Shah M H. Comparative evaluation of trace metals in the blood of hepatitis Cpatients and healthy donors [J]. Biol Trace Elem Res,2011,143(2):751-763.
    11. Cao H, Wu D H, Autom J. Rapid and sensitive determination of trace chloride ion in drinks usingresonance light scattering technique [J]. Methods Manag Chem,2008, ID745636:1-5.
    12. Yu Z F, Wang M, Zhang J F. Purification and anti-fatigue activity of flavonoids from corn silk [J]. TransChin Soc Agric Eng,2007,23:253-256.
    13. Snijder H J, Dijkstra B W. Bacterial phospholipase A: structure and function of an integral membranephospholipase [J]. Biochimica et Biophysica Acta,2000,1488(1-2):91-101.
    14. Dekker N. Outer-membrane phospholipase A: known structure,unknown biological function [J]. MolMicrobiol,2000,35(4):711-717.
    15. Snijder H J, Van Eerde J H, Kalk K H, et al. Structural investigations of the active-site mutantAsn156Ala of outer membrane phospholipase A: function of the Asn-His interaction in the catalytictriad [J]. Protein Sci,2001,10(10):1962-1969.
    16. Lacaze J P C L, Stobo L A, Turrell E A, et al. Solid-phase extraction and liquid chromatography-massspectrometry for the determination of free fatty acids in shellfish [J]. J Chromatogr A,2007,1145:51-57.
    17. Lee W, Park S, Chang T Y. Liquid chromatography at the critical condition for polyisoprene using asingle solvent [J]. Anal Chem,2001,73(16):3884-3889.
    18. Wan J C, Zhang W N, Jiang B, et al. Separation of individual tocopherols from soybean distillate bylow pressure column chromatography [J]. J Am Oil Chem Soc,2008,85(4):331-338.
    19. Snyder L R, Kirkland J J. Introduction to modern liquid chromatography [D]. A Wiley-IntersciencePublication, New York,1rd ed,1979.
    20. Hamilton R J, Sewell P A. Introduction to high performance liquid chromatography [D]. London,2rdEd,1982, pp163.
    21. Kannan N, Sundaram M M. Kinetics and mechanism of removal of methylene blue by adsorption onvarious carbons comparative study [J]. Dyes Pigm,2001,51(1):25-40.
    22. Derylo-Marczewska A, Blachnio M, Marczewski A W, et al. Adsorption of selected herbicides fromaqueous solutions on activated carbon [J]. J Therm Anal Calorim,2010,101(2):785-794.
    1. Levenspiel O. Chemical reaction engineering [D].2rd Ed, Wiley, New York,1972.
    2. Safarik I, Rego L F T, Borovska M, et al. New magnetically responsive yeast-based biosorbent for theefficient removal of water-soluble dyes [J]. Enzyme Microb Tech,2007,40(6):1551-1556.
    3. Kargi F, Cikla S. Biosorption of zinc(II) ions onto powdered waste sludge (PWS): kinetics and isotherms[J]. Enzyme Microb Tech,2006,38(5):705-710.
    4. engel Y A, Boles M A. Thermodynamics an engineering approach. mcgraw-hill series in mechanicalengineering (3rd ed.)[D]. Boston, MA: Mcgraw-Hill. ISBN0070119279.1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700