用户名: 密码: 验证码:
功能性纳米纤维的制备及固定化酶研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,静电纺纳米纤维由于具有高比表面积、高孔隙率等诸多特点备受关注,并逐渐应用于药物缓释、过滤、组织工程等诸多领域。本论文以静电纺纳米纤维为基材,通过形态结构及化学组成的有效调控,制备功能性纳米纤维,并将其作为固定化酶的载体,以期在增加酶的固定量的同时,进一步改善酶的催化性能。本论文还初步探索基于功能性纳米纤维构建高效酶膜反应器(EMR),以实现生物催化和膜分离过程的有效耦合。
     通过对静电纺聚丙烯腈(PAN)纳米纤维的胺肟化改性,制备偕胺肟聚丙烯腈(AOPAN)纳米纤维,并以AOPAN纳米纤维为基体进行金属离子配合。利用扫描电镜、红外光谱对纳米纤维的微观形貌、化学组成进行表征。结果表明,在优化的改性条件下,偕胺肟基团被成功引入PAN纳米纤维表面,并保持良好的纳米纤维结构。根据动态接触角测量结果,改性后,纳米纤维的润湿性也显著上升。原子吸收光谱被用于测定金属离子的配位性能,通过对比分析,AOPAN纳米纤维对Cd2+、Cu2+和Fe~(3+)三种金属离子配合量大幅高于AOPAN普通纤维。利用多种等温模型分析实验数据,其中Langmuir模型具有更好的拟合性。在动力学分析的基础上得到的平均吸附能表明,吸附过程为化学吸附,其机理为AOPAN纳米纤维表面的偕胺肟基通过配位键与金属离子络合。
     以Fe(Ⅲ)-AOPAN金属配合纳米纤维为载体,利用配位键固定过氧化氢酶,经倒置荧光显微镜及扫描电镜观察,过氧化氢酶被成功地固定于纳米纤维膜的表面。经过对酶催化反应动力学分析,分别得到自由酶和固定化酶的Vmax值和Km值,动力学参数体现了载体与固定化酶之间良好的生物亲和性。固定后的过氧化氢酶其酸碱稳定性、热稳定性、存贮稳定性均得到提高,并体现出良好的重复使用性能。
     利用静电纺丝制备PVA/PA6复合纳米纤维。通过与Cu~(2+)离子配合反应得到Cu(Ⅱ)-PVA/PA6金属配合纳米纤维,并以Cu(Ⅱ)-PVA/PA6金属配合纳米纤维为载体,固定过氧化氢酶。实验结果表明:PVA/PA6具有良好的金属离子配合能力,并在金属离子溶液中保持稳定的纳米纤维形态;固定后的过氧化氢酶体现出更好的酸碱稳定性、热稳定性,其存贮及重复使用性能均有明显提高,其半衰期也由自由状态的8天提高到24天。本论文还通过环氧化反应制备环氧化PVA/PA6复合纳米纤维,并以此为载体利用环氧键共价固定过氧化氢酶。对比分析可知,以Cu(Ⅱ)-PVA/PA6金属配合纳米纤维为载体配位法固定化酶具有更高的固定量和更好的催化性能。
     分别以Fe(Ⅲ)-AOPAN金属配合纳米纤维膜和Cu(Ⅱ)-PVA/PA6金属配合纳米纤维膜为基体构建固定化酶膜反应器。研究了操作压力、膜通量及过氧化氢转化率之间的关系,并对其重复使用性能进行分析,结果显示该酶反应器具有稳定高效的催化性能。
Nanofibers have gained a great deal of attention in recent years due to such properties as high surfacearea per unit mass, remarkable high porosity. The expanding applications of nanofibers include drugdelivery, filtration, tissue engineering and so on. In order to improve the load amount of enzyme andpromote the catalytic character of immobilized enzyme, functional nanofibers were obtained by regulatingthe structures and chemical composition of electrospun nanofibers, which were used as carrier for enzymeimmobilization in this work. In addition, novel enzyme membrane reactor (EMR) was formed on the baseof above work. It was expected that the EMR can integrate the process of biocatalysis and membraneseparation.
     Amidoxime polyacryonitrile (AOPAN) nanofibrous membranes were generated by the reactionbetween electrospun polyacryonitrile (PAN) nanofibrous membranes and hydroxylamine hydrochloride,which were used as the matrix for metal ions chelation. FTIR spectra of the PAN nanofibers and AOPANnanofibers were recorded for analysis of the surface chemical structures, the surface morphologies of thenanofibers were observed by scanning electronic microscope (SEM). FTIR spectrum indicated theconversion of the nitrile to the amidoxime group, and the SEM images revealed that the diameter ofAOPAN nanofibers did not change substantially, and the fibrous structures was not distorted obviously onthe optimal condition. According to the results of dynamic contact angle measurement, the wettability ofAOPAN nanofibers have remarkably improved. Chelated amounts of metal ions were calculated byatomic absorption spectrometry (AAS). Results indicated that the chelated capacities of AOPAN nanofibersto Cd~(2+)、Cu~(2+)and Fe3+ions were higher than that of AOPAN conventional fibers. Many isothermal modelswere used to analyze the experimental data, the chelated isothermal processes of AOPAN nanofibers werefound to be in conformity with Langmuir model. Adsorption processes of AOPAN nanifibers to metal ionswere confirmed as chemical adsorption in accordance with average adsorption energies. The mechanismsof adsorption processes were described as metal ions were chelated with amidoxime group on the surfaceof AOPAN nanofibrous membrane by coordinate bond.
     Fe(Ⅲ)-AOPAN nanofibrous membranes were used as carrier for catalases immobilization withcoordination bond. Surface morphologies of the nanofibrous membranes and immobilized catalases wereobserved by fluorescence microscopy and SEM. Enzyme molecules were successfully immobilized on thesurface of Fe(Ⅲ)-AOPAN nanofibrous membranes with coordination bond. Kinetic parameters Vmaxand Kmwere analyzed for both immobilized and free catalases., the results indicated that the immobilized catalaseshad a high affinity with the support. The immobilized catalases showed better resistance to pH andtemperature change than that of free catalases. The storage stability was significantly improved and thereusability was very high after catalases were immobilized onto the surface of Fe(III)-AOPAN nanofibrousmembranes.
     PVA/PA6composite nanofibers were formed by electrospinning. Cu(Ⅱ)-PVA/PA6metal chelated nanofibers were prepared by reaction between PVA/PA6composite nanofibers and Cu2+solution, whichwere used as the support for catalases immobilization. The result of experiments showed that PVA/PA6composite nanofibers have excellent chelation capacity for Cu2+ions. At the same time, the structures ofnanofibers had not been distorted obviously during the reaction with Cu2+solution. The immobilizedcatalases showed better resistance to pH and temperature inactivation than that of free form, and the storagestabilities,reusability of immobilized catalases were significantly improved. The half-lives of free andimmobilized catalases were8d and24d repectively. Besides, the epoxy PVA/PA6nanofibers weregenerated by epoxidation reaction for catalases immobilization. Comparing the experimental data, theimmobilized catalases on matrix of Cu(Ⅱ)-PVA/PA6nanofibers presented higher activities thanimmobilized catalases on the surface of epoxy PVA/PA6nanofibers.
     On the base of Fe(Ⅲ)-AOPAN metal chelated nanofibrous membrane and Cu(Ⅱ)-PVA/PA6metalchelated nanofibrous membrane, the EMRs were assembled. The relationships among operating pressure,membrane flux, and conversion ratio of H2O2were investigated, and results showed that the EMRs weresteady, efficient and repeatable.
引文
1刘锦淮,黄行九等编.纳米敏感材料与传感技术[M].北京,科学出版社,2011.1-2
    2S. Anitha, D. John Thiruvadigal, T.S. Natarajan. A study on defect controlled morphology oforganic/inorganic composite nanofibers with different heat flow rates[J]. Materials Letters,2011,65(2):167-170
    3Joseph K H Hui, Mark J. MacLachlan. Metal-containing nanofibers via coordination chemistry[J]. Coordination Chemistry Reviews,2011,254(19):2363-2390
    4Cui QZ, Dong X T, Wang J X, et al. Direct fabrication of cerium oxide hollow nanofibers byelectrospinning [J]. Journal of Rare Earths,2008,26(5):664-669
    5Wang C H, Shao C L, Wang L J, et al. Electrospinning preparation, characterization andphotocatalytic properties of Bi2O3nanofibers [J]. Journal of Colloid and Interface Science,2009,333(1):242-248
    6Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces: from natural to artificial. AdvanceMaterials,2002,14(24):1857-1860
    7Whitesides G M, Grzybowski B. Self-Assembly at all scales [J]. Science,2002,295:2418-2421
    8Ma P X, Zhang R. Synthetic nano-scale fibrous extracellular matrix [J]. J Biomed MatRes,1999,46(16):60-72
    9Ondarcuhu T, Joachim C. Drawing a single nanofiber over hundreds of microns [J]. Euro physLett,1998,42(2):215—220
    10Fong H, Reneker D H. Electrospinning and formation of nanofibers[M]. In: Salem, editor.Structure formation in polymeric fibers. Munich: Hanser, D.R. Salem(Ed),2001,225-246
    11Deitzel J M, Kleinmeyer J, Hirvonen J K, et al. Controlled deposition of electrospunpoly-(ethylene oxide) fibers [J]. Polymer,2001,42(19):8163-8170
    12Formhals, A. Process and apparatus for preparing of artificial Threads [P]. USPatent,1975504.1934.
    13Simons, H. L. Process and apparatus for producing patterned nonwoven fabrics [P]. US Patent,3280229,1966
    14Nagarajan M T, Jason R B, Laura I C, et al. Unconfined fluid electrospun into high qualitynanofibers from a plate edge [J]. Polymer,2010,5:4928-4936
    15Fridrikh,Yu S V,Brenner J H,et al. Controlling the fiber diameter during electro-spinning [J].Phys Rev Lett.2003,90(14):144502/1—144502/4
    16Reneker D H, Chun I. Nanometer diameter fibers of polymer produced by Eectrospinning [J].Nanotechnology.1996,7(3):216-223.
    17Fong H, Liu W D, Wang C S, Vaia R A. Generation of electrospun fibers of nylon6and nylon6-montmorillonite nanocomposite [J]. Polymer,2002,43(3):775-778
    18Fong H, Reneker D H, Elastomeric nanofibers of styrene-butadiene-styrene triblock copolymer.J Polym Sci: Part B: Polym Phys,1999,37(24):3488-3493
    19Spivak A F, Dzenis Y A, Reneker D H. A model of steady state jet in the electrospinning process[J]. Mech Res Commun,2000,27(1):37-42
    20Sergey V, Jian H, et al. Michael P. Brenner, et al. Controlling the fiber diameter duringelectrospinning [J], Physical Review Letters,2003,90(14):144502(1-4)
    21Darrell H. Reneker, Alexander L. Yarin. Electrospinning jets and polymer nanofibers [J].Polymer2008,(49):2387-2425
    22谢胜,曾泳春.电场分布对静电纺丝纤维直径的影响[J].东华大学学报(自然科学版),2011,37(6):677-682
    23Reneker D H, Yarin A L, Fong H, et al. Bending instability of electrically charged liquid jets ofpolymer solutions in electrospinning [J]. Appl Phys,2000,87:4531
    24Yarin A L, Koombhongse S, Reneker D H, et al. Bending instability in electrospinning ofnanofibers [J]. J Appl Phys,2001,89(5):3018-3026
    25Thero A, Zussman E, Yarin, A L. Eleetrostatic field-assisted alignment of eleetrospunnanofibres [J]. Nanoteehaology,2001,12:384-390
    26Hou H Q, Ge J J, Zeng J, et al. Electrospun polyacrylonitrile nanofibers containing a highconcentration of well-aligned multiwall carbon nanotubes [J]. Chemistry of Materials,2005,17:967-973.
    27Li D, Wang Y L, Xia Y N. Eleetrospinning of polymeric and ceramic nanofibers as uniaxiallyaligned arrays [J]. Nano Letters,2003,3:1167-1171
    28Teo W E, Gopal R, Ramaseshan R, et al. A dynamic liquid support system for continuouselectrospun yarn fabrication [J]. Polymer,2007,48:3400-3405
    29Wu Y, Yu Jian Y, He J H, et al. Controlling stability of the electrospun fiber by magnetic field [J].Chaos Solitons and Fractals,2007,32:5-7
    30Kidoaki S, Matsuda T. Mesoscopic spatial designs of nano-microfiber meshes for tissueengineering matrix and scaffold based on newly devised multilayering and mixingelectrospinning techniques [J].Biomaterials,2005,26:37-46
    31Su Y, Li X Q,Tan LJ, Huang C, et al. Poly(L-lactide-co-3-caprolactone) electrospun nanofibersfor encapsulating and sustained releasing proteins [J].Polymer,2009,50:4212-4219.
    32Dhananjay D, PatrickS D. The synthesis and assembly of polymeric microparticles usingmicrofuidics [J]. Adv Mater,2009,21:1-16
    33Wang H X, Ding J. Polypyrrole-coated electrospun nanofibrous emembranes for recovery ofAu(III) from aqueous solution [J]. Journal of Membrane Science,2007,303:119-125
    34Ma Z W, Masa Y K, Ramakr I S. Immobizlization of cibacron blue F3GA on electrospunpolysulphone ultrafine fiber surfaces towards developing an affinity membrane for albuminadsorption [J]. Journal of Membrane Science,2006,282:237-244
    35Boland E D, Wnek G E, Simpson D G. Tailoring tissue engineering scaffold using electrostaticprocessing techniques:a study of poly(glycolic acid)electrospinning [J]. Journal ofmacromolecular science-pure and applied chemistry,2001,38:1231-1243
    36Zong X H, Bien H, Chung C Y. Electrospun fine-textured scaffolds for heart tissue constructs [J].Biomaterials,2005,26:5330-5338
    37Kyong S R, Lim J, Gene L. Electrospinning of collagen nanofibers effects on the behavior ofnormal human keratinocytes and early stage wound healing [J]. Biomaterials,2006,27:1452-1461
    38Kim J H, Choung P H, Kim I Y, et al. Electrospun nanofibers composed of poly(-caprolactone)and polyethylenimine for tissue engineering applications [J] Materials Science and EngineeringC,2009,29:1725-1731
    39Yang J. Progress in biodegradable polymer nanofibers as drug delivery systems [J]. ChemicalIndustry Times,2010,24(3):33-37
    40Wei A F, Wang J, Feng Q, et al. Preparation of PLLA/FU composite nanofiber film [J]. Journal ofTextile Research,2011,32(12):6-9
    41Wei A F, Wang J, Wang X Q, et al. Preparation and Characterization of the electrospunnanofibers loaded with Clarithromycin [J]. Journal of Applied Polymer Science,2010,118:346–352
    42Xu X L, Chen X S, Ma P A. The release behavior of doxorubicin hydrochloride from medicatedfibers prepared by emulsion-electrospinning [J]. European Journal of Pharmaceutics andBiopharmaceutics,2008,70:165-170
    43Song B T, Wu C T, Chang J. Dual drug release from electrospun poly (lactic-co-glycolicacid)mesoporous silica nanoparticles composite mats with distinct release proles [J]. ActaBiomaterialia,2012,8:1901-1907
    44Deng X C, Wang F, Chen Z L. A novel electrochemical sensor based on nanosrtuctured filmelectrode for monitoring nitric oxide in living tissues [J]. Talanta,2010,82:1218-1224
    45Um J S, Jang H J, Kim S M. The electrolyte of electrochemical oxygen gas sensor [J]. ElectronMater Lett,2007,3:211-216
    46Dai H, Xu H F, Lin Y Y. A highly performing electrochemical sensor for NADH based ongraphite-poly (methylmethacrylate) composite eletrode [J]. Electrochemical Commmunucaiton,2009,11:343-346
    47Luoh R, Thomas H H. Electrospun nanocomposite fiber mats as gas sensors [J]. CompositeScience and Technology,2006,66:2436-2441
    48Wang X, Drew C, Lee S H. Electrospun nanofibrous membranes for highly sensitive opticalsensors [J]. Nano Letters,2002,2:1273-1275
    49Katarzyna S, Perena G, Sanford S. Electrospun biocomposite nanofibers for urea biosensing[J]. Sensors and Actuators B,2005,108:585-588
    50Jing-jing Long, Yu-jie Fu, Yuan-gang Zu. Ultrasound-assisted extraction of flaxseed oil usingimmobilized enzymes [J]. Bioresource Technology,2011,102(21):9991-9996
    51Fang S M, Wang H N, Zhao Z X, et al. Immobilized enzyme reactors in HPLC and itsapplication in inhibitor screening: A review [J]. Journal of Pharmaceutical Analysis,2012,2(2):83-89
    52Shakeel Ahmed Ansari, Qayyum Husain. Potential applications of enzymes immobilized on/innano materials: A review [J]. Biotechnology Advances,2012,30(3):512-523
    53Kun Yang, Ning-Shou Xu, Wei Wen Su. Co-immobilized enzymes in magnetic chitosan beadsfor improved hydrolysis of macromolecular substrates under a time-varying magnetic field [J].Journal of Biotechnology,2010,148(2):119-127
    54Yoko H, Madoka T, Kazuhik I. Poly(vinylferrocene-co-2-hydroxyethyl methacrylate) mediator asimmobilized enzyme membrane for the fabrication of amperometric glucose sensor [J].Sensorsand Actuators B: Chemical,2009,136(2):122-127
    55Hongwei Yu, Chi Bun Ching. Theoretical analysis of adsorption effect on kinetic resolution ofracemates catalyzed by immobilized enzymes [J]. Journal of Biotechnology,2008,136:359-364
    56Neha R. Sonare, Virendra K. Rathod. Transesterification of used sunflower oil usingimmobilized enzyme [J]. Journal of Molecular Catalysis B: Enzymatic,2010,66(1-2):142-147
    57Das S, David B S, Ji H F, et al. Ezymatic hydrolysis of biomass with recyclable use ofcellobiase enzyme immobilized in sol–gel routed mesoporous silica [J]. Journal of MolecularCatalysis B: Enzymatic,2011,70(2):49-54
    58曹林秋主编载体固定化酶——原理、应用和设计[M].北京:化学工业出版社,2008.91-96.
    59Michael J, Eisenmenger, José I, Reyes-De-Corcuera. High hydrostatic pressure increasedstability and activity of immobilized lipase in hexane [J]. Enzyme and Microbial Technology,2009,45(2):118-125
    60Huerta L M, Vera C, Guerrero C, et al. Synthesis of galacto-oligosaccharides at very highlactose concentrations with immobilized β-galactosidases from Aspergillus oryzae [J]. ProcessBiochemistry,2011,46(1):245-252
    61Na Song, Shuang Chen, Xin Huang. Immobilization of catalase by using Zr(IV)-modifiedcollagen fiber as the supporting matrix [J]. Process Biochemistry,2011,46(11):2187-2193
    62Huang X J, Yu A G, Jiang J, et al. Surface modification of nanofibrous poly(acrylonitrile-co-acrylic acid) membrane with biomacromolecules for lipase immobilization [J]. Journal ofMolecular Catalysis B: Enzymatic,2009,57(4):250-256
    63Liu K, Li X F, Li X M, et al. Lowering the cationic demand caused by PGA in papermaking bysolute adsorption and immobilized pectinase on chitosan beads [J] Carbohydrate Polymers,2010,82(3):648-652
    64Thaís F Schmidt, Luciano Casel. Enzyme activity of horseradish peroxidase immobilized inchitosan matrices in alternated layers [J]. Materials Science and Engineering: C,2009,29(6):1889-1892
    65张爱静,孟范平,杨菲菲.以壳聚糖微球为载体的固定化乙酰胆碱酯酶的基本性质[J].环境化学,2011,30(6):1069-1074
    66Akkus G S, Nursevin O H. Immobilization of catalase into ehemieally crosslinked chitosanbeads [J]. Enzyme Mierob Technol,2003,7:889-894
    67M Yakup Ar ca, Gülay Bayramo lu. Invertase reversibly immobilized ontopolyethylenimine-grafted poly(GMA–MMA) beads for sucrose hydrolysis [J]. Journal ofMolecular Catalysis B: Enzymatic,2006,38(6):131-138
    68Hirokazu Seto, Hidetaka Kawakita, Keisuke Ohto. Introduction of carbonyl group to sugarsusing pyranose2-oxidase-immobilized membrane [J]. Biochemical Engineering Journal,2009,48(1):36-41
    69S Aksoy, H Tumturk, N Hasirci. Stability of α-amylase immobilized on poly(methylmethacrylate-acrylic acid) microspheres [J]. Journal of Biotechnology,1998,60(2):37-46
    70Zhongli Lei, Shuxian Bi. Preparation and properties of immobilized pectinase onto theamphiphilic PS-b-PAA diblock copolymers [J]. Journal of Biotechnology,2007,128(1):112-119
    71Ashly P C, Mohanan P V. Preparation and characterization of Rhizopus amyloglucosidaseimmobilized on poly(o-toluidine)[J]. Process Biochemistry,2010,45(8):1422-1426
    72Evelyne Simon, Catherine M Halliwell, Chee Seng, et al. Immobilisation of enzymes onpoly(aniline)–poly(anion) composite films. Preparation of bioanodes for biofuel cell applications[J]. Bioelectrochemistry,2002,55(1):13-15
    73Elena N, Efremenko, V I. Lozinsky. Addition of Polybrene improves stability oforganophosphate hydrolase immobilized in poly(vinyl alcohol) cryogel carrier [J]. Journal ofBiochemical and Biophysical Methods,2002,51(2):195-201
    74Gang Peng, Chunxia Zhao, Bailing Liu, et al. Immobilized trypsin onto chitosan modifiedmonodisperse microspheres: A different way for improving carrier's surface biocompatibility [J].Applied Surface Science,2012,258(15):5543-5552
    75Sebania L, Manuela F, Venera A. Experimental characterization of proteins immobilized onSi-based materials [J]. Microelectronic Engineering,2007,84:468-473
    76Lin Lei, Yongxiao Bai, Yanfeng Li, et al. Study on immobilization of lipase onto magneticmicrospheres with epoxy groups [J]. Journal of Magnetism and Magnetic Materials,2009,321(4):252-258
    77Manthiriyappan Sureshkumar, Cheng Kang Lee. Polydopamine coated magnetic-chitin (MCT)particles as a new matrix for enzyme immobilization [J]. Carbohydrate Polymers,2011,84(2):775-780
    78Jae-Min Park, Mina Kim, Ju-Yong Park, et al. Immobilization of the cross-linked para-nitrobenzyl esterase of Bacillus subtilis aggregates onto magnetic beads [J]. ProcessBiochemistry,2010,45(2):259-263
    79T Bahar, S S elebi. Characterization of glucoamylase immobilized on magnetic poly (styrene)particles [J]. Enzyme and Microbial Technology,1998,23(5):301-304
    80Yong Liu, Shaoyi Jia, Qian Wu, et al. Studies of Fe3O4-chitosan nanoparticles prepared byco-precipitation under the magnetic field for lipase immobilization [J]. CatalysisCommunications,2011,12(8):717-720
    81Arica M Y, Han D Y. Immobilization of glucoamylase onto sapcerarm attached magneticpoly(methylmethacrylate) microsphere: Charecterization and application to a continuous flowreactor [J]. J Molec Catal B: Enzym,2000,11:127-138
    82朱浩,侯晨,李彦锋.单分散磁性纳米粒子固定化猪胰脂肪酶的研究[J].高分子学报,2011,8:861-865
    83B C Kim, S Nair, J Kim, J H Kwak, J W Grate, S H Kim, M B Gu. Immmobilized chymotrypsin onthe electrospun nonafibers of polystryrene and poly(styrene-co-maleic anhydride)[J].Nanotechnology,2005,16:382-388
    84徐鑫华等.聚乙烯醇静电纺丝法固定葡萄糖氧化酶[J].天津大学学报,2006,39(7):857-859
    85Zhen-Gang Wang, Zhi-Kang Xu et al. Enzyme immobilization on electrospun polymer nanobers:Anoverview [J]. Journal of Molecular Catalysis B: Enzymatic,2009,56:189-195
    86Yu Y, Jiang H L.Study of Lipase Immobilization on the Exchange Resin by Adsorption [J].Journal of Food Science and Biotechnology.2007,26(4):97-100
    87Tang S S, Yi J R, Ding Y. Immobilization of tyrosinase in agar-embedding [J]. Science andTechnology of Food Industry,2010,9:188-191
    88Fernando L G, Lorena B A. Preparation of a robust biocatalyst of d-amino acid oxidase onsepabeads supports using the glutaraldehyde crosslinking method [J]. Enzyme and MicrobialTechnology,2005,37:750-756
    89Deng H T, Wu J, Xu Z K, et al. Recent advances in enzyme immobilization on membranes andtheir applications [J]. Membrane Science and Technology,2004,24(3):47-53
    90郭庆启,张娜,方桂珍.环氧化双醛氧化纤维素固定化β-半乳糖苷酶的研究[J].食品科学,2011,32(11):204-208
    91Bayramolu G, Yilmaz M, YakupArica M. Reversible immobilization of laccase topoly(4-vinylpyridine) grafted and Cu(II) chelated magnetic beads: Biodegradation of reactivedyes [J]. Bioresource Technology,2010(101):6615-6621
    92Akgol S, Ozturk N, Karagozler A A, et al. A new metal-chelated beads for reversible use inuricase adsorption [J]. Journal of Molecular Catalysis B: Enzymatic,2008,51:36-41
    93Song L,Song B D, Jiang Y Q. Enzyme immobilization and its application in enzyme biosensor[J]. Chemistry and Bioengineering,2006,23(11):54-56
    94Shinji Sakaiu. Development of electrospun poly(vinylalcohol) fibers immobilizing lipase highlyactivated by alkyl-silicate for flow-through reactors [J]. Journal of Membrane Science,2008,425:454-459
    95张元兴,许学书编.生物反应器工程[M].上海,华东理工大学出版社,2001.217-301
    96Edwards W, Leukes W D, Rose P D, et al. Immobilization of polyphenol oxidase in chitosanpolysulphone capillary membranes for improved phenolic effluent bioremediation [J]. Enzymemicrob Technol,1999,25(10):769-773
    97M M Hoq, T Yamane, S Shimizu, et al. Continuous hydrolysis of olive oil by lipase inmicroporous hydrophobic membrane bioreactor [J]. J Am Oil Chem Soc,1985,62:1016-1021
    98Wang Z G, Wan L S, Xu Z K. Surface engineering of polyacrylonitrile-based asymmetricmembranes towards biomedical applications: An overview [J]. Journal of Membrane Science,2007,304:8-23
    99Zhang G, Dasgupta.P K. Hematin as a peroxidase substitute in hydrogen peroxidedeterminations [J]. Anal Chem,1992,64:517-522
    100王伟,孙谧,刘万顺.单功能过氧化氢酶的高级结构[J].中国生物化学与分子生物学报,200824(3):197-202
    101Zhang T, Lu L. Development of theoretical study on the catalase mimics [J]. ShangdongChemical Industry,2011,40(2):36-41
    102何照兴,袁军.过氧化氢酶的应用与实践[J].印染,2001,5:29-30
    103Paar A, Costa S, Tzanov T, et al. Thermal stable catalases from newly isolatedBacillus sp. for the treatment and recycling of textile bleaching effluents [J]. Journal ofBiotechnology,2001,89(2-3):147-153
    104Chu H D, Leeder J G, Gibert S G. immobilized catalases reactor for use in peroxidesterilization of dairy products [J]. Journal of Food Science,2006,40:641-643
    105Yoshimoto M, Miyazaki Y, Kudo Y. Glucose oxidation catalyzed by liposomal glucose oxidasein the presence of catalase containing liposomes [J]. Biotechno Prog,2006,22:704-709
    106Sahiner N, Ilgin P, Polymer. Multiresponsive polymeric particles with tunable morphology andproperties based on acrylonitrile (AN) and4-vinylpyridine (4-VP)[J]. Polym,2010,51:3156-3163
    107Bayramoglu G, Arica M Y, Reversible immobilization of catalase on fibrous polymer graftedand metal chelated chitosan membrane [J]. J Mol Catal B-Enzym,2010,62:297-304
    108Akgol S, Ozturk N, Denizli A, New generation polymeric nanospheres for catalaseimmobilization [J]. J Appl Polym Sci,114,962-970,2009
    109Nogami M, Kim S Y, Asanuma N, Ikeda Y, Adsorption behavior of amidoxime resin forseparating actinide elements from aqueous carbonate solutions [J]. J Alloy Comp,2004,374:9-271
    110Wan L S, Ke BB, Xu Z K, Electrospun nanofibrous membranes filled with carbon nanotubesfor redox enzyme immobilization [J]. Enzyme Microb Tech,2008,42:332-339
    111Cetinus S A, Sahin E, Saraydin D, Preparation of Cu(II) adsorbed chitosan beads for catalaseimmobilization [J]. Food Chem,2009,114,962-969
    112Wang ZG, Wan LS, Xu ZK, Surface engineering of polyacrylonitrile-based asymmetricmembranes towards biomedical applications: an overview, J Membrane Sci,2007,304:8-23
    113Liu X, Chen H, Wang C C, Qu R J, Ji C N, Sun CM, Zhang Y, Synthesis of porousacrylonitrile/methyl acrylate copolymer beads by suspended emulsion polymerization and theiradsorption properties after amidoximation, J Hazardous Mater,2010,175:1014-1021
    114Lin Weiping, Fu Ruowen, Lu Yun, Zeng Hanmin. Preparation of amidoxime group-containingchelating fibers and their gold absorption properties. II. A preliminary investigation of theabsorption behavior of Au3+onto chelating fibers containing amidoxime groups [J]. ReactivePolymers,1994,22(1):1-8
    115吴之传,汪学骞,陶庭先,等.螯合金属离子的腈纶纤维的制备及性能[J].纺织学报,2004,25(6):36-38
    116Tomoyuki Shiraishi, Masao Tamada, Kyouichi Saito, Takanobu Sugo. Recovery of cadmiumfrom waste of scallop processing with amidoxime adsorbent synthesized by graft-polymerization [J]. Radiation Physics and Chemistry,2003,66(1):43-47
    117Wu Z C, Zhang Y, Tao T X, Zhang L F, Fong H, Silver nanoparticles on amidoximebers forphoto-catalytic degradation of organic dyes in waste water, Appl Surf Sci,2010,257:1092-1097
    118董永春,武金娜,孙苏婷,等.偕胺肟改性聚丙烯腈纤维与不同金属离子之间的配位反应性能[J].四川大学学报(工程科学版),2011,43(1):173-178
    119J F Yang, F Yang, H B Xin. Reaction kinetic study on preparing amidoxime-group chelatedfiber [J]. China Synthetic Fiber Industry,2006,29(2):27-27
    120C P Huang, H L Xin. A study of amidoximation of polyacrylonitrile fiber in aqueous solution [J].Journal of textile research,2000,21(2):89-92
    121Qufu Wei, Qi Li, Xueqian Wang, etc. Dynamic waterad sorption behaviour of plasma-treatedpolypropylene nonwovens [J]. Polymer Testing,2006,25:717-722
    122D Li, A W Neumann. A reformulation of the equation of state for interfacial tension [J]. Journalof Colloid and Interface Science,1990,137(1):304-307
    123Fenglin Huang, Qufu Wei, Xueqian Wang, etc. Dynamic contact angles and morphology of PPfibres treated with plasma [J]. PolymerTesting,2006,25:22-27
    124C Y Chen, C L Chiang, C R Chen. Removal of heavy metal ions by a chelating resineontaining glyeine as ehelating groups [J]. Separation and Purifieation Techology,2007,54:396-403
    125章慧等编著.配位化学——原理与应用[M].北京:化学工业出版社,2008.312-322
    126宋世谟,王正烈,李文斌等编.物理化学[M].北京:中国教育出版社,1995.190-197
    127Ling-Shu Wan,Bei-BeiKe, Zhi-Kang Xu. Electrospun nanofibrous membranes filled withcarbon nanotubes for redox enzyme immobilization [J]. Enzyme and Microbial Technology,2008,42:332-339
    128潘利华,罗建平,王贵娟,等.磁性纳米氮化铝颗粒固定化β-葡萄糖苷酶的性质[J].催化学报,2008,29:1021-1026
    129Ashutosh Tiwari. A Novel Nanocomposite Matrix Based on Silylated Chitosan and MultiwallCarban Nanotubes for the Immobilization of Urease [J]. J Inorg Organomet Polym,2009,19:361-366
    130M L Tavernier, P Michaud, A Wadouachi, et al. Continuous production of oligoglucuronans byimmobilized glucuronan lyase [J]. Enzyme and Microbial Technology,2009,45(8):48-52
    131Senay Akkus Cetinus, et al. Preparation of Cu(II) adsorbed chitosan beads for catalaseimmobilization. Food Chemistry [J].2009,114:962-969
    132Kilkowski, W J, Gross, G G. Color reaction of hydrolysable tannins with Bradfordreagent,Coomassie brilliant blue [J]. Phytochemistry,1999,51:363-366
    133Whiffen,L K.: Midgley,D J, Megee,P A. Polyphenolic compounds interfere with quantificationof protein in soil extracts using the Bradford methed [J]. Soil Biology&Biochemis,2007,39,691-694
    134Goddard, J M, Hotchkiss,J H. Polymer surface modification for the attachment of bioactivecompounds[J]. Progress in Polymer Seience,2007,32,698-725
    135Dai, G L, Dai, L H, Yu, Y, etc. Preparation and crystallization preinvestigation of thefluorescein-5-isothiocyanate derivatives of chicken egg white lysozyme [J]. Acta ChimicaSinica,2005,63(7):559-561
    136袁勤生主编.现代酶学[M].上海:华东理工大学出版社,2001.19-25
    137Ling-Shu Wan, Bei-Bei Ke, Zhi-Kang Xu. Electrospun nanofibrous membranes filled withcarbon nanotubes for redox enzyme immobilization [J]. Enzyme and Microbial Technology2008,42:332-339
    138Arpana Kumari, Arvind M. Kayastha. Immobilization of soybean (Glycine max)-amylase ontochitosan and amberlite MB-150beads: Optimization and characterization [J]. Journal ofMolecular Catalysis B: Enzymatic,2011,69:8-14
    139Fagain, CO. Understanding and increasing protein stability [J]. Biochimica Biophysica Aeta,1995,1252:1-14
    140左秀琴,马洁峰,刘彩彩.静电纺丝制备交联PVA纳米纤维[J].塑料,2005,34(6):1-5
    141肖学良,魏取福,何婷婷等. PVA甲酸溶液与PVA水溶液静电纺丝的比较研究[J].天津工业大学学报,2009,28(3):10-13
    142Hong J, Yin G B, Shi F F. Study on the mechanical properties of electrospun PA6nanofibermembranes [J]. Journal of Industrial Textile,2009,9:22-24
    143T Subbiah, GS Bhat, RW Toch, et al. Electrospoinning of nanofibers [J]. Journal of AppliedPolymer Science,2005,96:557-569
    144N Bhardwaj, SC Kundu. Electrospinning: A fascinating fiber fabrication technique [J].Biotechnology Advances,2010,28:325-347
    145J Foshi, H Darrell. Electrospinning process and application of electrospun fibers[J]. Journal ofelectrostatics,1995,35:152-160
    146Peter K. Electrostatic spinning of acrylic microfibers[J].Journal of Colloid and InterfaceScience,1971,36(1):71-79
    147Fong H,Chun I, Reneker D H.Beaded nanofibers formed during electrospinning [J].Polymer,1999,40(16):4585-4592
    148Taylor GS. Electrically driven jets [J]. Proceeding of Royal Society of London A,1969,313:453-475
    149Darrell H. Reneker, Alexander L. Yarin. Electrospinning jets and polymer nanofibers[J].Polymer,2008,(49):2387-2425
    150Qufu Wei, Qi Li, Xueqian Wang, et al. Dynamic water adsorption behavior of plasma-treatedpolypropylene nonwovens [J], Polymer Testing,2006,25:717-722
    151Fenglin Huang, Qufu Wei, Xueqian Wang, et al. Dynamic contact angles and morphology ofPP fibres treated with plasma[J], PolymerTesting2006,25:22-27
    152Wu Z C, Zhang Y D. Synthsis,characterization and anti-bacterial activity of PVA-Fe(Ⅲ), Zn(Ⅱ),Cd(Ⅱ), Hg(Ⅱ)[J]. Chinese Journal of Applied Chemistry,2008,25:669-672
    153安德列亚斯S.博马留斯主编.生物催化——基础与应用[M].孙志浩等译.北京:化工出版社,2006.3-9
    154Ma GH, Wang P, Sun ZG. Nanoscience and Enzyme [J]. China Basic Science,2009,5:49-55
    155Cetinus S A.Immobilization of catalase into chemically crosslinked chitosan beads [J].Enzyme and Microbial Technology,2003,32:889-894
    156CetinusS A. Immobilization of catalase on chitosan film [J]. Enzyme and MicrobialTechnology,2000,26:497-501
    157Tukel S.S,Alptekin O. Immobilization and kinetics of catalase onto magnesium silicate [J].Process Biochemistry,2004,39:2149-2155
    158Horozova E, Dimcheva N.Study of catalase immobilized on a silicate matrix for non-aqueousbiocatalysis [J]. Central European Journal of Chemistry,2005(2):279-287
    159L J Domink, L L Raymond. Immobilization of bovine catalase in sol-gels [J]. Enzyme andMicrobial Technology,2006,39:626-633
    160Opwis K, Knittel D, Schollmeyer E. Immobilization of catalase on textile carrier materials [J].AATCC Review,2004,12:25-28
    161Horst F, Rueda E H. Ferreira M L. Activity of magnetite-immobilized catalase in hydrogenperoxide decomposition [J]. Enzyme and Microbial Technology,2006,38:1005-1012
    162Costa S A, Tzanov T, Paar A, et al. Immobilization of catalases from Bacillus SF on aluminafor the treatment of textile bleaching effluents [J]. Enzyme and Microbial Technology,2001,28:815-819
    163Costa S A, Tzanov T, Carneiro F, et al. Recycling of textile bleaching effluents for dyeingimmobilized catalase [J]. Biotechnology Letters,2002,24:173-176
    164陈培根,吴之传,汪学骞等.聚乙烯醇纤维-Fe(Ⅲ)配位反应动力学[J].应用化学,2007,24:314-317
    165Lan Hongyun Liu Zuguang Lei Fuhou. Immobilization of rhus laccase on thecuprum-complexed maleated sin-ethylene glycol ester polymer [J]. Ion Exchange andAdsorption,2007,23(5):415-420
    166Ester Junko, Tomotani. Production of high-fruetose syrup using immobilized invertase inmembrane reactor [J].Journal of Food Engineering,2007,80(2):662-667
    167Timothy M, La P, Christian G, et al. Adaptations in baeterial catabolic enzyme activity andcommunity structure in membrane-coupled bioreactors fed simple synthetic wastewater [J].Journal of biotechnology,2006,121(3):368-380
    168Romain K, Aurelie C, Jean L. Production, in continuous enzymatic membrane reactor of anantihypertensive hydrolysate from an industrial alfalfa white protein concentrate exhibiting ACEinhibitory and opioid activities [J]. Food Chemistry,2006,98(1):120-126
    169Francisco J, Hemandez, Antonia P, et, al. A new recirculating enzymatic membrane reactor forester synthesis in ionic liquid-supercritical carbon dioxide biphasic systems [J]. Appl Cata BEnviron,2006,67(2):121-126
    170Giorno L, Amore E D, Mazzei R, et at. Aninnovative approach to improve the performance of atwo separate phase enzyme membrane reactor by immobilizing lipase in presence of emulsion[J]. Journal of Membrane Science,2007,295:95-101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700